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Abstract— EMC risk analysis requires various configurations 

of coupling paths described by important sets of unknown or 

uncertain parameters. More specifically, values at risk 

corresponding to extreme values of relevant fields, currents or 

voltages are often the most important information with regard to 

a possible EMC risk. Therefore, we aim at estimating extreme 

quantiles of the relevant field, current or voltage. Controlled 

stratification accelerates the standard Empirical estimation 

convergence to sample output extreme values, thus reducing the 

required number of calls to cost-expensive full-wave simulations. 

However, controlled stratification requires a simple (i.e. fast 

calculation time) model with sufficient correlation to the initial 

model. The main idea in this communication is to use a surrogate 

model as a simple model. Kriging was previously identified as a 

surrogate model with relevant properties. In this paper, we 

investigate the performance of combined kriging and control 

stratification. We show that this combination outperforms the 

stand-alone kriging surrogate model for estimating extreme 

quantiles. On the contrary, the latter performs better to identify 

less extreme quantiles.  

Keywords— Uncertainty propagation; Extreme Quantiles 

Estimation; Monte Carlo; Kriging; Controlled Stratification 

I.  INTRODUCTION  

EMC risk analysis, in the context of intentional 
electromagnetic interference (IEMI), often requires solving 
Maxwell equations with 3D numerical solvers based for 
instance on the method of moments or the finite difference time 
domain. Such models are deterministic and may be considered 
to provide “exact” solutions, but are very time consuming. At 
system-level EMC analysis, many input data are not well 
known due to epistemic uncertainties. These uncertainties 
propagate through the model. As a result, the calculated output 
exhibits non tractable fluctuations and may be described as a 
random variable. A proper IEMI risk assessment requires 
estimation of some extreme quantiles of the output for some 
input distributions. Finally, the knowledge of extreme quantile 
levels of aggression and of susceptibility levels informs about 
the probability of failure.  

The Empirical Estimation (EE) is the standard approach to 
retrieve the output distribution. This approach is simple and 
very robust but converges very slowly, especially if extreme 
values are targeted. Surrogate models (SMs) are functions that 
approximate the true model (physical phenomena) and may be 
calculated from a much more reduced set of realizations. Once 
trained, they have a negligible computational cost compared to 
the model. Accurate SMs offer very good alternatives to a 
standard EE approach. Once the SM is trained, the output 

distribution can be estimated by propagating the uncertainty 
through the SM as a substitute of the model.   

SMs can also be used in addition to reliability technics such 
as Subset Simulation [1], Importance Sampling [2], that 
besides, can work without a SM. In other words, stand-alone 
SMs are not specifically dedicated to target the output 
distribution tail. On the contrary, Controlled Stratification (CS) 
[3] is dedicated to target extreme events, and requires a simple 
correlated model. This is possibly a SM as we propose in this 
paper. Note that CS has been successfully applied to a spring-
mass-damper problem with splines as SM [4] and to an EMC  
crosstalk problem with a simple model which was not a SM 
[5].  

Many probabilistic SMs exist, with many variants. In a 
recent paper [6], we showed that kriging [7] was the best 
candidate for CS as well as Polynomial Chaos Expansion 
(PCE)-kriging [8]. But computation time of the PCE part of the 
latter delays considerably the SM training. The kriging can also 
be improved by adaptively sampling the input space [9]. The 
time spent to train the adaptive kriging becomes prohibitive for 
large input samples. Accordingly, we chose the kriging as SM. 

In this study, our purpose is to produce a cost-effective 
solution to determine extreme quantile estimation with a 
reasonable uncertainty or variance. The quantile estimation 
performance of the proposed combined Kriging and Controlled 
Stratification (K-CS) approach is compared to EE and kriging. 
To our knowledge, the K-CS has not yet been introduced to 
produce an IEMI risk assessment. A first specific case study 
with high non-linearity is used for the theoretical assessment of 
this new approach. Then, we deal with a second case study, 
which is analyzed as would be done in practice. Our purpose is 
to, not only demonstrate the performances of the K-CS, but 
also to provide a framework, easily reusable for practical 
applications.  

This paper is organized as follow. First, a brief overview of 
kriging and CS are provided in section II. Then, we provide an 
evaluation of K-CS performance in section III based on the 
first specific case study mentioned above. The last section 
deals with the practical implementation of the method on a 
second case study. Finally, a conclusion and perspectives are 
given. 



 

 

II. THEORETICAL BACKGROUND 

A. Goal and procedure overview 

 Most physical phenomena studied in engineering can be 

modeled. A model is a function M that enables to predict an 

output Y given the input X: 

Y=M(X) (1)  

The model M is considered as an exact description of the 

physical phenomenon. It is typically time expensive. For 
instance, most EMC problems require full-wave simulations 
with many input parameters. Due to epistemic uncertainties, 
the input X is uncertain. The input may be therefore 
considered as a multivariate random variable. The uncertainty 
propagates through the model and therefore the output Y is 
also defined as a random variable (univariate in this paper but 
could be multivariate). 

The goal is to compute a quantile qε of the cumulative 
distribution function (cdf) of the output Y written as FY(y). By 
definition, qε is related to the cdf: 

  )()( qYPyFY  (2)  

Estimating the quantile can be summarized with the 
following three main steps: 

1) Sample n realizations of the multivariate input. From those 
realizations, use the model to compute these n realizations 
of the output using the model. This first step is called the 
Design of Experiment (DOE). The sampling quality is 
important. We chose the well-known Latin Hypercube 
Sampling (LHS) [10].  

2) Estimate the cdf of the output: )(ˆ yFY . We used in this 

paper three methods: 

 Empirical Estimation. 

 Surrogate modeling (kriging). 

 Controlled Stratification based on kriging. 

3) Estimate the targeted quantile, which is straightforward 
once the second step is done: 

)(ˆˆ 1 


Y
Fq  (3)  

In the following, we undertake a fair comparison between 
the K-CS approach and the two other approaches. To do so, the 
total number of the true model calls (n) has to be exactly the 
same for all of them. 

The computations were done on an AMD® Ryzen 7 1700x 
8-cores processor, 16 threads machine, working at 3.4-3.8GHz. 
The implementation was coded in Matlab 2018 with the 
“UQLab” Framework [11], developed by Stefano Marelli and 
Bruno Sudret at ETH Zurich. Additionally, we used the 
following Matlab toolboxes: “Optimization”, “Global 
Optimization”, “Statistics and Machine Learning” and 
“Parallel Computing”.  

B. Empirical Estimation(EE) 

From the DOE sample (of size n), the output sample is 
ordered and the empirical cdf is computed. Finally, a linear 
interpolation is made between sampled points. We used the 
Matlab function “quantile”, implementing that technique. 

EE is a simple and robust technique, but needs a very large 
DOE to estimate extreme quantiles with accuracy. 

C. Surrogate Modeling 

The goal of a SM is to approximate the model. The 

function M’ of the SM is: 

)(ˆ XM'YY  (4)  

Once the SM is built up from the DOE of size n, the SM may 
predict an unlimited number of output realizations at little cost 
while being accurate. Therefore, we use one million of 
predicted outputs to estimate the empirical quantile. 

The Kriging was implemented using “UQLab”[12] with the 
following parameters: 

 Trend: constant (ordinary kriging).  

 Correlation family: Matern 5_2.  

 Estimation method: Maximum likelihood. 

 Optimization method: Hybrid Genetic Algorithm and 
gradient with a maximum of 200 iterations. 

D. Controlled Stratification(CS) 

CS is a technique dedicated to find extreme quantiles. CS 
samples the input space in order to generate more extreme 
output events in much less trials than direct sampling (i.e. with 
EE).  

CS requires beforehand a correlated simple model. In our 
case, this simple model is a kriging SM. From the total 
simulation budget of n, nSM is reserved for building the SM and 
the remaining nCS are used for the CS. We chose arbitrary:  


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
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2

n
nSM  (5)  

The SM, once built, is used to predict a large number of 
output realizations. The predicted output sample is stratified, or 
sliced, hence the name “stratification”. The strata limits are 
SM quantiles estimation, thus the adjective “controlled”:  

1....0 ,  ]q̂, …,q̂[ 00


ssn n  
(6)  

The number of strata (ns) is arbitrary as well as the stratum 
limits, except 𝑞̂𝛼1

 (or for upper tail 𝑞̂𝛼𝑛𝑠−1 
) which has to be the 

ε targeted quantile. We used 4 strata and two different limits 
sets according to lower tail or upper tail quantile identification: 

{
𝑙𝑜𝑤𝑒𝑟 𝑡𝑎𝑖𝑙: [𝑞̂0, 𝑞̂𝜀 , 𝑞̂2𝜀 , 𝑞̂0.5, 𝑞̂1], 𝜀 < 0.25

𝑢𝑝𝑝𝑒𝑟 𝑡𝑎𝑖𝑙:  [𝑞̂0, 𝑞̂0.5, 𝑞̂1−2(1−𝜀), 𝑞̂𝜀 , 𝑞̂1], 𝜀 > 0.75
 (7)  

 CS has a budget of ncs points. Each stratum has a dedicated 
number of simulation points Nj, j=1…ns. 
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A more advanced allocation strategy based on an adaptive 
allocation of the number of points is also possible. However, 
adaptive allocation relies on the estimation of the optimal 
allocation, which does not always warrant performance 
improvement, in contrast with the uniform strategy [13].  

The SM identifies Nj output realizations (j)Ŷ belonging to 
the j

th 
stratum. The model is called for each identified input in 

order to compute (j)Y . If the correlation (as defined in [3]) is 

high, most of the (j)Y remains in the j
th
 stratum of the exact 

model. In fact, CS performance relies more on the high 
correlation associated to input sensitivity between the SM and 
the model than on the accuracy of SM prediction. In such 
conditions, an input producing an extreme event with the SM is 
likely to produce also an extreme event of the true model. 
Finally, the output estimated cdf is computed: 
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III. PERFORMANCES COMPARISON 

A. Presentation of the model 

The true model is the reflection coefficient of a RLC serial 
circuit given by: 

𝑌 = |
𝑅 + 𝑗2𝜋𝑓 (𝐿 −

1
𝐶(2𝜋𝑓)2) − 50

𝑅 + 𝑗2𝜋𝑓 (𝐿 −
1

𝐶(2𝜋𝑓)2) + 50
| (10)  

 The 4 random inputs are: the frequency (f ), the resistance 
(R), the capacitor (C) and the inductance (L).  

The frequency is uniformly distributed from 100 to 900 
MHz. The resistance, capacitor and inductance are uniformly 
distributed between 90% and 110% of their nominal values. 
The nominal values (R=50 Ω, C=1.5 pF and L=67.5 nH) are 
chosen to reach a perfect resonance at 500 MHz. This test case 
is not a realistic one. However, it is used as a challenging test 
with regard to the high non-linearity of this resonating circuit. 

The model output distribution is plotted in Fig. 1 from a 
reference sample of 10

6
 output realizations. So many 

realizations were computable because the model is analytical. 
The reference sample empirical distribution with 95% 
confidence bounds can be computed with Matlab function 
“ecdf”. From the lower and upper bound, the precision of a 
given quantile can be deduced. For q10% and q1%, the precision 

is ±0.55% and ±1.1%, respectively. As the probability 
decreases, there are fewer realizations amongst the reference 
sample that are below the quantile. That is why the precision is 
lower for more extreme quantiles. These precisions are still far 
better than expected by all methods we deal with in this paper, 

which use much less realizations. Hence, the quantiles from the 
reference sample are considered as true. 

 

Fig. 1. Reflection coefficient model: Histogram of 106 responses of the true 

model with the true quantiles that will be estimated. 

B. Methodology, implementation details 

1) Algoritm details for performance assessment  
In this section III, our purpose is to investigate the spread of 

the estimated quantile. For EE, kriging, and K-CS approaches, 
we perform Monte Carlo simulations of the 3 steps introduced 
in section II. 

For each Monte Carlo simulation (32 in total), we perform 
the 4 following phases of calculation: 

1. Get a DOE of size n. 

2. Estimate the targeted quantile with the three methods 

(EE, kriging, K-CS). 

3. Compute the relative error between the estimated and 

the true quantile: 

 𝐸𝑟𝑟 =
𝑞̂𝜀 − 𝑞𝜀

𝑞𝜀

⋅ 100 (11)  

4. Compute the statistics of Err for the three methods.  

 

2) Performance assessment 
The chosen statistics to compare the errors (Err) are:  

 The mean error : 

Err ˆ
1   (12)  

 The maximal absolute error: 

𝜃2 = 𝜇̂|𝐸𝑟𝑟| + 1.96 ⋅ 𝜎̂|𝐸𝑟𝑟 |  (13)  

TABLE I.  TIME SPENT TO ESTIMATE ONCE A QUANTILE WITH KRIGING              

DOE size 100 200 400 800 1600 3200 6400 

Time (min) 0.42 0.47 0.65 1.28 3.54 12.81 106.3 

 

Each Monte Carlo simulation takes time especially for large 
DOE sizes. For example, we report in Table I, the time spent 
for one Monte Carlo simulation with kriging for different DOE 
sizes.  As a consequence, we had to limit to 32 Monte Carlo 
simulations. Therefore, we have only 32 error realizations. The 



 

 

inference of θ1  and θ2 is done with bootstrapping [14] and a 
kernel fit [15] thanks to the Matlab functions “bootstrap” and 
“ksdensity”. 

The bootstrapping technique is a resampling method with 
replacement to retrieve a distribution of a statistic. We 
resampled 1000 subsamples from the original 32 errors 
samples, computed the statistics on each of them to achieve 
1000 realizations of θ1 and θ2. The histogram of those 
realizations is fitted to a kernel density. Finally, a 95% 
confidence interval, as well as the most likely realization 
(highest point of the θ1 and θ2  kernel pdf), can be deduced from 
the kernel distribution.  

C. Results of quantile estimation 

In Fig. 2 and Fig. 3, we plot the estimator of the mean of 
the errors θ1 and the estimator of the maximal error θ2 for 
various DOE sizes when the targeted quantile is q10% and q1%. 
The maximal likelihood of the statistic estimators are plotted 
with uncertainty bars corresponding to the 95% confidence 
interval.  

In both plots, for every method, the maximal likelihood of 
θ1 and θ2 and their uncertainty decreases when increasing the 
DOE size. 

1) Ordinary quantile (q10%) 
In Fig. 2, one can distinguish two regions of n: 

1. n=[50,150]: No method performs very well (risk of 
high θ2 values). Note that θ1 for kriging is positively 
biased for n=50. 

2. n=[250,350,450]: θ2 for kriging is much lower than θ2 
for CS. Therefore, kriging performs better than K-CS.  

2) Extreme quantile (q1%)  
In Fig. 3, one can distinguish two regions of n:  

1. n=[1000]: None of the three methods perform well. 
Note that θ1 for kriging is very strongly positively 
biased. 

2. n=[2000,3000,4000]: kriging θ2 is similar to EE θ2, 
whereas θ2 for CS is much lower. Moreover, θ1 

obtained from kriging is still strongly biased. 
Therefore, K-CS outperforms both EE and kriging.   

The model is strongly non-linear because of the resonance 
phenomenon. The DOE size needed to reach reasonable 
accuracy is very large. As a consequence, the time spent to 
build a kriging is not negligible as shown in Table I. Because 
the K-CS needs only half of the DOE size needed for kriging, 
the time spent for the K-CS is much reduced compared to the 
stand alone kriging. 

We may therefore conclude that K-CS is well fitted to 
estimate extreme quantiles. 

 

Fig. 2. Reflection coefficient q10%  estimation. Mean relative error (θ1) and 

maximum absolute relative error (θ2) with: Empirical Estimation (EE), kriging 
(KRI) and kriging+controlled stratification (K-CS). 

 

Fig. 3. Reflection coefficient q1%  estimation. Mean relative error (θ1) and 

maximum absolute relative error (θ2) with: Empirical Estimation (EE), kriging 
(KRI) and kriging+controlled stratification (K-CS).   

IV. EMC APPLICATION CASE 

A. Presentation of the model 

The model is the electrical far-field magnitude radiated by a 
PCB trace, loaded at each end, above an infinite ground plane. 
See the schematic in Fig. 4. 

 

Fig. 4. PCB schematic. 



 

 

 

Fig. 5. PCB radiation model: Histogram of the 106 responses of the PCB 

radiation true model and the true quantiles that will be estimated. 

 
The 11 random variable inputs are: the frequency (f), 

geometrical characteristics (the substrate thickness (h), the 
trace width/length W/l), electrical characteristics (substrate 
permittivity εr, voltage source Vs, impedance source Zs, 
impedance load Zl), and the position where the field is 
measured (spherical coordinates r, θ, and φ). Each input 
follows a Gaussian distribution centered at their nominal value 
with a relative standard deviation of 10%. The nominal values 
are chosen so the trace appears as a quarter wavelength 
transmission line: f=404 MHz, h=0.775 mm, W=0.51 cm, 
l=10.16 cm, εr=4.6, Vs=1 V, Zs=50 Ω, Zl=1 Ω, r=3 m, φ= θ= 
2π. 

The model output is the radiated field magnitude computed 
from (23) in [16]. The histogram of the output reference 
sample (10

6
 realizations) is plotted in Fig. 5 with three true 

quantiles. The estimated precision of q90%, q99%, q99.9% is 

respectively ±0.0093%, ±0.019% and ±0.044%. This precision 
is computed like in the 3

rd 
§ in section III.A. 

B. Methodology, implementation details 

The methodology is similar to section III excepting error 
estimation. This case study being an application case, Monte 
Carlo simulations are not performed. A single error is therefore 
calculated for a given DOE size. Indeed, in practice, a single 
budget of n simulations is allowed. We then study the quantile 
estimation convergence as a function of the DOE size.  

1) Algoritm details for performance assessment  
The algorithm implemented for the application case follows 

the first three steps introduced in section III. 

2) Performance assessment  
The error as a function of the DOE size exhibits large 

statistical fluctuations. It is not possible, strictly speaking, to 
group some realizations in order to infer a statistic (e.g. the 
mean) because they are not sampled from the same 
distribution. However we assume that this is the case for close 
DOE sizes. We used an averaging sliding window of size of 30 
to smooth the noise of the errors with Matlab function 
“movmean”. 

In practice, the true quantile will not be available. The 
proposed framework would need a small adjustment and an 
optimization algorithm. Instead of errors, only the estimated 
quantile will be available. An optimization algorithm would 
have to find the DOE size when the quantile estimator presents 
small variations. The convergence is then reached. The best 
suited algorithm, the variation estimator, and an acceptable 
criterion have yet to be defined. 

C. Results: comparison quantile estimation 

Fig. 6, Fig. 7, Fig. 8 are plots of the errors when estimating 
q90%, q99%, and q99.9%, respectively. The dot points represent 
error realizations while solid lines represent the smoothed 
errors described in section II.B.2.  

In each plot, for every method, the smoothed errors 
converge to 0, and the realizations are less spread as the DOE 
size increases. 

1)  Ordinary quantile (q90%) 

In Fig. 6, there are two domains for n: 
1. n≤100: None of the three methods performs well. 

2. n>100: EE is still clearly the worst due to its very large 
spread from 0. K-CS mean error is closer to zero than 
kriging mean error, but has some rare but high errors. 
Kriging presents a small but clear negative bias. The 
two methods perform equally. 

2) Extreme quantile (q99%) 

In Fig. 7, there are two domains for n: 
1. n≤200: None of the three methods performs well. 

2. n>200: EE is still the worst method. Kriging is still 
biased but with low spread. K-CS is unbiased with low 
spread but there are very few high errors. K-CS starts 
to outperform the stand-alone kriging.  

3) Very extreme quantile (q99.9%) 

In Fig. 8, the domains limits are shifted upward. The first 

is now: n≤350 and the second: n>350. K-CS clearly 

outperforms both EE and kriging. 

 

Fig. 6. PCB radiation q90% estimation. Relative error (%) with: Empirical 

Estimation (EE), kriging (KRI) and kriging + controlled stratification (K-CS). 



 

 

 

Fig. 7. PCB radiation q99% estimation: relative error (%) with: Empirical 

Estimation (EE), kriging (KRI) and kriging + controlled stratification (K-CS). 

 

Fig. 8. PCB radiation q99.9% estimation: relative error (%) with: Empirical 

Estimation (EE), kriging (KRI) and kriging + controlled stratification (K-CS). 

V. CONCLUSION 

In this paper we introduced the controlled stratification 
based on kriging (K-CS) and compared it with Empirical 
Estimation (EE) and kriging (KRI) to estimate an extreme 
quantile of an output distribution. 

Through a Monte Carlo analysis of the three methods for a 
reference model (RLC circuit reflection coefficient) with high 
non-linearity we showed that the new K-CS method proposed 
in this paper outperforms the two other methods, especially the 
stand-alone kriging approach, for extreme quantiles estimation. 

Then, an EMC case study application (PCB radiation) has 
been used to investigate the convergence of K-CS as a function 
of the DOE size. The performance of K-CS approach is 
confirmed for extreme quantiles. On the contrary, a stand-alone 
kriging approach suffices for not too extreme quantiles. 

The K-CS becomes more relevant than kriging when 
estimating q1% of the reflection coefficient. For the PCB 
radiation model, the K-CS becomes a better solution when 
estimating q99.9%.Therefore, K-CS outperforms kriging for less 
extreme quantiles as non-linearity of the model (in the extreme 
values region) increases. 

In the context of IEMI risk analysis and the determination 
of low probability risk of failure the K-CS is therefore relevant 
to reach an acceptable approximation with a limited DOE size.  

For very high dimension models, the time building the 
Kriging may become important. In that case, model order 
reduction techniques like Partial Least Square [17] could be 
used.   
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