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Abstract
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also has a decision to make, but this decision does not directly a¤ect
the receiver. We introduce speci�c perfect Bayesian equilibria, in which
the players agree on a joint decision after that a message has been sent
(�talk and cooperate equilibrium,� TCE). We establish that a TCE
exists provided that the receiver has a �uniform punishment decision�
(UPD) against the sender.
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1 Introduction

Starting with Crawford and Sobel (1982), strategic information transmission
has been investigated in various directions. In the standard model, an in-
formed agent sends a costless message to a decision maker. The utility of
both individuals depends on the information of the sender and the decision
of the receiver.
In this paper, we consider generalized sender-receiver games in which

there is a single informed player (as usual) but the sender and the receiver
have simultaneous decisions to make. We minimally depart from standard
sender-receiver games: we still assume that the sender�s action does not
directly a¤ect the receiver�s utility. This is a restrictive assumption, but it is
likely to hold in many contexts where the informed player is himself a decision
maker. Suppose for instance that the receiver is an investor while the sender
is a �nancial expert who can make investments on his own, as an insider (see,
e.g., Benabou and Laroque (1992) and Morgan and Stocken (2003)). The
�nancial expert�s investments convey information but are typically negligible
with respect to the investor�s pro�t.
In our generalized sender-receiver game, the informed player �rst sends a

message to the uninformed one. Then the receiver proposes a joint decision to
the sender and �nally, the latter can reject the proposal. In case of rejection,
the players make their decisions independently of each other. If the informed
player accepts to cooperate, he only reveals information through his message
to the uninformed one.
We ask whether our generalized sender-receiver game has a perfect Bayesian

equilibrium (PBE) in which information transmission is followed by agree-
ment of the sender. To formulate the question in a precise way, we assume
that the informed player has �nitely many types and that both players have
�nitely many actions. We de�ne a TCE (�talk and cooperate equilibrium�)
as a PBE of the sender-receiver game in which the informed player always
accepts the receiver�s proposal on equilibrium path, namely, talks1 and then
cooperates. A TCE may very well be nonrevealing, but then, no information
ever transpires from the joint decision that is actually made.
We �rst propose a characterization of TCE in terms of three proper-

ties: incentive compatibility (IC), individual rationality for the informed

1The sender�s message is cheap talk in the sense that it is does not have a direct e¤ect
on the players� utility.
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player (IR) and optimality for the uninformed one (Opt). (IC) says that,
for every type, the sender is indi¤erent between any two messages that he
sends with positive probability given his type. This property is familiar in
sender-receiver games in which the sender can randomize over �nitely many
messages (see, e.g., Aumann and Hart (2003)). The sender�s individual ra-
tionality condition (IR) is formulated at the posterior stage, namely, after
the sender has sent his message. (Opt) says that the receiver proposes a joint
decision that maximizes his own posterior expected utility given the sender�s
message.
A consequence of (IC) is that the interim expected utility of the sender,

given his type, coincides with his posterior expected utility, given his type and
any message that is possibly sent by this type. Hence the sender�s individual
rationality condition (IR) can as well be formulated at the interim stage. With
this reformulation of our characterization, our model is related to a particular
case of the principal-agent problems considered in Bester and Strausz (2001).
When no decision of the principal is contractible, Bester and Strausz (2001)�s
model reduces to a standard sender-receiver game with exogenous interim
participation constraints for the sender (see (6), p. 1082). In our model,
the sender�s interim reservation utility emerges from the decisions that he
could make without cooperating with the receiver. In other words, our (IR)
condition, when it is formulated at the interim stage, can be interpreted as
an endogenous participation constraint for each type of the sender.
Once a characterization of TCE is available, the next question is whether

the existence of a TCE can be guaranteed under meaningful assumptions on
the players� utility functions. A key to existence turns out to be that the
receiver has a �uniform punishment decision� (UPD). Such a decision enables
the receiver to credibly punish the sender as if the latter�s type were common
knowledge.
We show on an example that existence of a TCE may fail if no UPD

is available. We nonetheless prove that, if the receiver has a UPD, then a
TCE exists, without any further assumption. For this, we rely on results
of Simon, Spie·z and Toruńczyk (1995) and Renault (2000). We provide two
examples in which a TCE cannot be constructed in a straightforward way,
i.e., in which there is no nonrevealing TCE and no completely revealing TCE.
These examples show that UPD is satis�ed if the receiver�s optimal choice,
when he considers all sender�s types equally likely, consists of a status quo
decision that keeps the sender at his individually rational level, whatever his
type.
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The paper is organized as follows: the basic Bayesian game, without in-
formation transmission, is described in Section 2. The solution concept, �talk
and cooperate� equilibrium (TCE) is de�ned in Section 3.1 and characterized
in Section 3.2. Our existence result is stated in Section 3.3. The next section
is devoted to examples. Section 5 investigates the extension of our results
to the case where the receiver cares about the sender�s decision. This more
general case allows us to make further connections with the literature.

2 Game without information transmission

2.1 Basic Bayesian game

We start with a two-person Bayesian game, which describes the players�
information, decisions and utility functions. This game will be extended
later in order to account for information transmission and cooperation. It
stands for the default game to be played when no agreement is reached.
Let K be a �nite set. At a virtual initial stage of the game, an element k

of K is chosen according to a prior probability distribution p 2 �(K);2 only
player 1 is informed of k, which will be referred to as player 1�s type. Unless
speci�ed otherwise, we assume that p` > 0 for every ` 2 K. Player 1 and
player 2 choose simultaneously an action in respective �nite sets A1 and A2.
If the pair of actions a 2 A = A1 � A2 is chosen, player 1�s (von Neumann-
Morgenstern) utility is Uk(a1; a2) and player 2�s (von Neumann-Morgenstern)
utility is V k(a2). We denote this basic Bayesian game as B(p).

3

Player 1 is an expert with private information and will become the sender.
Player 2 is a decision maker who cares for player 1�s information. As in stan-
dard sender-receiver games, both players are a¤ected by player 2�s decisions.
The novelty is that player 1 also has a decision to make. However, the game
retains a fundamental feature of standard sender-receiver games, namely,
player 2 is not directly a¤ected by the expert�s action.
As a benchmark, we can consider the (Bayesian) Nash equilibria of the

game B(p) described above, in which there is no communication. In such an
equilibrium, player 2 chooses an action that maximizes his expected utility

2All along the paper, given a �nite set E, we denote as �(E) the set of probability
distributions over E.

3It is convenient to keep track of the parameter p, which can be interpreted as player
2�s prior belief, because p will typically be updated.
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at the prior p and player 1 best replies as a function of his type. A di¤erence
with standard sender-receiver games is that after B(p) has been played, some
of player 1�s information may be revealed through his decisions.
We denote as �decisions� possibly randomized actions in the basic Bayesian

game, i.e., elements of �(Ai), i = 1; 2, and �(A). We still write U
k and V k

for the linear extensions of the utility functions over randomized actions.
�Strategies� will appear in Section 3, when the game B(p) will be extended
by allowing information transmission. In the next subsections, we de�ne two
further basic notions in B(p).

2.2 Optimal decisions for the uninformed player

Let g be the mapping that associates player 2�s maximal expected utility to
every q 2 �(K):

g(q) = max
a22A2

X

k2K

qkV k(a2).

The mapping g is convex as a maximum of linear functions. Let

R(q) =

(

� 2 �(A2) :
X

k2K

qkV k(�) = g(q)

)

(1)

= Conv

(

a2 2 A2 :
X

k2K

qkV k(a2) = g(q)

)

The set R(q) is convex and compact.
We will also consider joint decisions � 2 �(A) that are optimal for player

2 given his belief q, namely,

F (q) =

(

� 2 �(A) :
X

k2K

qkV k(�) = g(q)

)

(2)

=
�

� 2 �(A) : margA2(�) 2 R(q)
	

where margA2(�) denotes the marginal distribution of � over A2. Finally,
let

R = [q2�(K)R(q). (3)

The setR is the set of �rationalizable� decisions of player 2, i.e., the decisions
that are optimal for some belief of player 2. R is compact, but not necessarily

5



convex. We assume in the sequel that A2 � R, namely, that actions that
cannot be rationalized have been eliminated from A2; even then, R can be
strictly included in �(A2) (see Section 4).

2.3 Individual rationality for the informed player

We consider two possible notions of individually rational utility vectors for
the informed player. The relevance of these de�nitions will become fully
clear in the next section. Recall that R is the set of rationalizable decisions
of player 2, de�ned by (3).

De�nition 1 An interim utility vector u = (uk)k2K is individually rational
for player 1 i¤ player 2 has a rationalizable decision that prevents player 1
from getting more than uk when his type is k, namely,

9� 2 R 8k 2 K 8a1 2 A1 : U
k(a1; �) � u

k. (4)

Given player 1�s type k, let us de�ne

mk = min
�2R

max
a12A1

Uk(a1; �). (5)

De�nition 2 An interim utility vector u = (uk)k2K is type by type individ-
ually rational for player 1 i¤ uk � mk for every k 2 K.

It is clear that individual rationality, as de�ned by (4), implies type by
type individual rationality. But in general the reverse is not true (see Exam-
ple 1 in Section 4). This motivates the following de�nition

De�nition 3 Let � 2 �(A2) be a decision of player 2; � is a uniform pun-
ishment decision (UPD) i¤ � 2 R and

8k 2 K 8a1 2 A1 : U
k(a1; �) � m

k

With these de�nitions the following result is immediate:

Lemma 4 Let u = (uk)k2K be an interim utility vector for the informed
player. If the uninformed player has a UPD, u is individually rational i¤ u
is type by type individually rational.
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Observe that all the notions de�ned in this subsection are independent
of the prior belief p as far as p` > 0 for every ` 2 K. Note also that, in
De�nition 1, player 2�s decision � is already �uniform,� in the sense that
� prevents player 1 from getting more than uk simultaneously for all types
k and actions a1. However, in this de�nition u

k can be fairly high. The
additional property of a UPD � is that for every k, � maintains player at
his minmax level mk. The examples of Section 4 will illustrate that UPD
is easily ful�lled if the optimal action of player 2 when he views all types of
player 1 as equally likely, is a status quo that cannot give player 1 more than
his reservation utility mk, whatever his type k and action.

3 Game with information transmission

3.1 �Talk and cooperate� equilibrium (TCE)

We now extend the basic game B(p) into a sender-receiver game by allowing
the informed player to voluntarily send a costless message to the uninformed
one. In the extended game, cooperation of the informed player is explicitly
required. We �rst consider a scenario in which the informed player can con-
clude an agreement with the uninformed one after having sent a message.
Let S be some given, �nite set of messages, such that j S j�j K j.4

Sender-receiver game Gpost(p), with cooperation agreement at the
posterior stage:

- A type k is chosen in K according to p, only player 1 is informed of k.

- Player 1 sends a message s 2 S to player 2.

- Player 2 proposes a joint decision � 2 �(A) to player 1.

- If player 1 accepts player 2�s proposal, the joint decision � is enforced,
player 1 gets Uk(�) and player 2 gets V k(�).

- If player 1 rejects player 2�s proposal, player 1 chooses an action a1 2
A1, player 2 simultaneously chooses an action a2 2 A2, player 1 gets
Uk(a1; a2) and player 2 gets V

k(a2).

4For a precise analysis of the number of messages, see Bester and Strausz (2001), Hart
(1985) and Heumann (2015).
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In the previous description, it is understood that player 1 can make use
of a lottery in �(S) to select the message that he sends. If player 2 proposes
a joint decision � that is randomized, it is understood that the players can
rely on a third party to perform the lottery � on their behalf. This is meant
to re�ect the players� cooperation possibilities.
The equilibria of the basic Bayesian game B(p) can be recovered as equi-

libria of Gpost(p) in which player 1 rejects any proposal of player 2 after
having sent an uninformative message. We are rather interested in perfect
Bayesian equilibria of Gpost(p) in which player 1 always accepts player 2�s
proposal, so that both players cooperatively use any information revealed by
player 1. This motivates the following de�nition.

De�nition 5 A �talk and cooperate� equilibrium (TCE) for B(p) is a perfect
Bayesian equilibrium of Gpost(p) in which player 1 accepts player 2�s proposal
on equilibrium path.

Let us formalize the previous de�nition further. A strategy for player 1
(the sender) in Gpost(p) is fully described by a signaling mapping � : K !
�(S) together with a mapping � : K�S��(A)! fy; ng��(A1) indicating
whether player 1 accepts player 2�s proposal (�y�) or not (�n�) and in the
latter case, which decision player 1 chooses. For every k 2 K and s 2 S, we
write �(s j k) for �(s)(k). Let S� be the support of the probability over S
induced by p and �. Recalling that pk > 0 for every k 2 K,

S� = fs 2 S j 9k 2 K : �(s j k) > 0g .

A strategy of player 2 (the receiver) is fully described by a proposal mapping
� : S ! �(A) together with a mapping � : S ! �(A2) indicating which
decision player 2 chooses if player 1 rejects his proposal. A TCE consists
of a pair of strategies ((�; �); (�; �)) forming a perfect Bayesian equilibrium
(PBE) of Gpost(p) and such that � prescribes �y� on every (k; s; �(s)), k 2 K,
s 2 S�.

3.2 Characterization of TCE

Our �rst result is a tractable characterization of TCE. To state it, we �rst
need to make precise what incentive compatibility means in our framework.
Given a signaling mapping � : K ! �(S) and a restricted proposal mapping
�� : S� ! �(A) (for instance, �� is the restriction to S� of a proposal
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mapping � de�ned all over S), we say that � is incentive compatible given
�� i¤ 8k 2 K; 8s; s

0 2 S�

�(s j k) > 0 and �(s0 j k) > 0) Uk(��(s)) = U
k(��(s

0)) (6)

�(s j k) > 0 and �(s0 j k) = 0) Uk(��(s)) � U
k(��(s

0))

These conditions are appropriate because player 1 sends his message di-
rectly, by himself.5 If he randomizes over messages s and s0 2 S, he must
be indi¤erent between s and s0. As a consequence, player 1�s interim utility
vector from � and ��, which we denote as U(��) = (U

k(��))k2K , satis�es

Uk(��) = U
k(��(s)) 8k 2 K; 8s 2 S� : �(s j k) > 0. (7)

Finally, for every s 2 S�, player 2 can compute a posterior probability dis-
tribution ps(�) over K by Bayes formula.

We can now state our characterization.

Proposition 6 Let � : K ! �(S) be a signaling mapping for the sender
and �� : S� ! �(A) be a restricted proposal mapping for the receiver. The
mappings � and �� are part of a TCE for the Bayesian game B(p) i¤ the
following conditions hold:

(IC) � is incentive compatible given �� (i.e., (6)).

(IR) the sender�s interim utility vector from � and �� (namely, (7)) is
individually rational (i.e., (4)).

(Opt) for every message s 2 S�, ��(s) 2 F (ps(�)) (with F de�ned by (2)),
where ps(�) denotes the receiver�s posterior belief computed from p and
�.

Proof
Let ((�; �); (�; �)) be a TCE. Let us show that � and the restriction ��

of � to S� satisfy (IC), (IR) and (Opt).
If player 1 of type k sends message s 2 S� and accepts ��(s), he gets

Uk(��(s)). Let us set for every s
0 2 S�, z

k(s0) = maxa12A1 U
k(a1; �(s

0)).

5Similar incentive compatibility conditions appear in Aumann and Hart (2003) and
Hart (1985).
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Player 1�s equilibrium conditions imply that, for every type k: 8s 2 S� such
that �(s j k) > 0, 8s0 2 S� (even such that �(s

0 j k) = 0): Uk(��(s)) �
Uk(��(s

0)) and Uk(��(s)) � z
k(s0). Indeed, player 1 can consider any mes-

sage s0 2 S�, and, having sent s
0, can accept or reject ��(s

0); in the latter case,
player 1 cannot do better than best replying to �(s0). Since ((�; �); (�; �))
forms a PBE by de�nition, if player 1 rejects player 2�s proposal after having
sent s0, player 2 forms some belief over K and makes an optimal decision,
namely, �(s0) 2 R. Player 1�s equilibrium conditions thus imply (IC) together
with, for every k 2 K and s 2 S� such that �(s j k) > 0,

Uk(��) = U
k(��(s)) � z

k(s0) for every s0 2 S�.

In particular, (IR) is satis�ed.
For player 2, the Nash equilibrium conditions (i.e., on equilibrium path)

prescribe that for every message s 2 S�, his proposal ��(s) be optimal given
his posterior belief ps(�), namely, (Opt).
Conversely, assume that the mappings � and �� satisfy (IC), (IR) and

(Opt). We will complete them into a TCE. By (IR), the interim utility vector
U(��) associated with � and �� by (7) is individually rational for player
1. Hence, there exist some belief q and some � � 2 R(q) such that (4) holds.
Let us de�ne player 1�s strategy in Gpost(p) as follows, given his type k,

- choose a message s 2 S according to �(� j k)

- accept � (i.e., choose �y�) i¤ Uk(�) � Uk(��)

- in case of rejection of player 2�s proposal, play a best reply to � �, i.e.,
maximize Uk(�; � �).

To de�ne the proposal mapping � of player 2, let a1 2 A1 be an arbitrary
action of player 1 and set

�(s) = ��(s) if s 2 S�
(a1; �

�) if s =2 S�.

Finally, if player 1 rejects the proposal, player 2 chooses �(s) = � �, for
every s 2 S. It can be checked that the strategy pro�le ((�; �); (�; �)) forms
a PBE of Gpost(p). �

In the sender-receiver game Gpost(p), the receiver makes a proposal after
having received a message of the sender who then agrees or not. However, (7)
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shows that given incentive compatibility, the sender�s interim utility vector
does not depend on the message that he sends. This motivates an alternate
possible scenario, in which the sender is asked to cooperate before sending
his message, namely right after having learnt his type. More precisely, let us
consider the following game Gint(p):

Sender-receiver game Gint(p), with cooperation agreement at the
interim stage:

- A type k is chosen in K according to p, only player 1 is informed of k.

- Player 1 cooperates or not. In the latter case, player 1 chooses an action
a1 2 A1, player 2 simultaneously chooses an action a2 2 A2, player 1
gets Uk(a1; a2) and player 2 gets V

k(a2).

- If player 1 cooperates, he sends a message s 2 S to player 2 and then

- player 2 chooses a joint decision � in A, player 1 gets Uk(�) and player 2
gets V k(�).

In the gameGint(p), as in Bester and Strausz (2001), player 1 faces interim
participation constraints and if player 1 participates, he delegates the joint
decision to player 2, who acts as a principal. However, in our framework,
the utility that player 1 gets if he does not cooperate is not the e¤ect of
an exogenous outside option; it rather depends on player 2�s reaction in
the default Bayesian game. By proceeding as above, one can establish the
following analog of Proposition 6:

Proposition 7 Let � : K ! �(S) be a signaling mapping for the sender and
�� : S� ! �(A) be a restricted proposal mapping for the receiver. The map-
pings � and �� are part of a PBE in Gint(p) in which the sender participates
whatever his type i¤ (IC), (IR) and (Opt) hold.

The previous result says in particular that the incentive compatibility
constraints (IC) are identical, whether the sender is asked to cooperate at
the interim stage or at the posterior stage. This property holds because the
sender fully controls the message that he sends (see Remark 2 below).
A direct consequence of Proposition 7 is that a TCE ofB(p) can be de�ned

equivalently as a PBE of Gint(p) in which the sender cooperates whatever
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his type. In other words, in our framework, �talk and cooperate� turns out
to be equivalent to �cooperate and talk.�6

3.3 Existence of TCE

If player 1 cannot make a private use of his information, a nonrevealing TCE
trivially exists. This happens in standard sender-receiver games or if the
expert�s preferences are independent of the state, as in Chakraborty and
Harbaugh (2010).7 The next example illustrates that existence of a TCE
may fail in more general environments.

Example 1: Player 1 has two types (j K j= 2), we now denote as p 2 [0; 1]
the probability of type 1. Both players have two actions (A1 = fT;Bg,
A2 = fL;Rg). The utility functions are:

(U1; V 1)(�) =
L R

T 1; 4 4; 0
B 0; 4 0; 0

(U2; V 2)(�) =
L R

T 0; 0 0; 4
B 4; 0 1; 4

Player 1 knows the state, player 2 wants to match the state (by playing L
when player 1 is of type 1 and R when player 1 is of type 2); player 1 also
wants to match the state but if he does, he is happier if player 2 does not.
The following properties are immediate: all decisions of player 2 are ra-

tionalizable (given his belief p that player 1�s type is k = 1, he plays R if
p � 1

2
, L if p � 1

2
and any mixed decision if p = 1

2
), the minmax level of

player 1 of type k is mk = 1, k = 1; 2.
Assume that some signal s is sent with positive probability by both types

of player 1. Any joint decision �(s) 2 �(A) that player 2 can propose upon
receiving s is type independent and thus satis�es U1(�(s))+ U2(�(s)) � 4.
If player 1 rejects player 2�s proposal, player 1 can then match the state (i.e.,
play �(1) = T , �(2) = B) while player 2 will play some �(s) 2 �(fL;Rg),
which will depend on his belief over k after having received s and observed
player 1�s rejection. For this � and every �(s), U1(�; �(s))+ U2(�; �(s)) = 5.

6Schlag and Vida (2013) illustrate the importance of the timing of talk and commitment
in a di¤erent context.

7In such a nonrevealing equilibrium, player 2 proposes a decision maximizing his own
expected utility and maintains this decision in case of rejection by player 1.
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Hence one of player 1�s types will reject �(s) and a TCE cannot involve any
such signal s.
Assume now that player 1 fully reveals his type. Let �(k) be player 2�s

proposal when player 1 claims to be of type k. Optimality for player 2 then
leads to �(1) = L, �(2) = R, so that player 1�s interim utility vector is at
best (1; 1). Again, by rejecting the proposal and matching the state, player
1 can guarantee a higher payo¤ to at least one of his types. �

In the previous example, player 2 has no UPD (recall De�nition 3) and
Lemma 4 does not hold: individual rationality for player 1 (De�nition 1)
amounts to u1+u2 = 5 and is more demanding than type by type individual
rationality (De�nition 2), i.e., u1 � 1 and u2 � 1.8 Having a UPD turns
out to be a su¢cient condition for the existence of a TCE, at every prior p,
whatever the players� utility functions.

Proposition 8 Assume that the uninformed player has a uniform punish-
ment decision (UPD). Then for every p 2 �(K), the Bayesian game B(p)
has a talk and cooperate (TCE) equilibrium.

The proof of this proposition relies on results of Simon et al. (1995) and
Renault (2000) (see Appendix). As a by-product, we get that there exists a
TCE in which the sender�s interim utility vector U(��) satis�es

Uk(��) � inf
r2�(K)

max
x2F (r)

Uk(x) for every k 2 K. (8)

In the previous inequalities, the lower bound on Uk(��) is computed by allow-
ing for a maximum over F (r), which re�ects the players� possible cooperation.
We deduce that U(��) is type by type individually rational:

inf
r2�(K)

max
x2F (r)

Uk(x) � inf
r2�(K)

min
�2R(r)

max
a12A1

X

k

qkUk(a1; �) = m
k for every k 2 K.

Hence, by lemma 4, U(��) is individually rational.
9

8Observe that incentive compatibility is not an issue in the example. The problem
only rests on individual rationality. If player 1 were forced to cooperate, �(1) = (T;L),
�(2) = (B;R) would be achievable in the sense that it is incentive compatible for player 1
and posterior optimal for player 2. Note also that even if the de�nition of TCE is weakened
by replacing PBE by Nash equilibrium, the previous example still has no TCE.

9The lower bound in (8) is strictly higher than mk as soon as the uninformed player is
indi¤erent between some of his actions.
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Remark 1: We have noted above that individual rationality for the informed
player, namely (IR), can be interpreted as an interim participation constraint.
If the uninformed player has a UPD, by Lemma 4, (IR) can be formulated
type by type and thus takes the same form as in Bester and Strausz (2001),
with mk as type k�s (endogenous) reservation utility. More precisely, when
no decision of the principal is contractible, Bester and Strausz (2001)�s model
amounts to considering exogenous reservation utility levels uk0, k 2 K, for
player 1 and reducing A1 to a singleton. Bester and Strausz (2001)�s equi-
librium conditions are similar to the above ones (namely, (IC), (IR) with
respect to uk0, k 2 K, and (Opt)). They establish a version of the revelation
principle but do not address the problem of existence of an equilibrium. Suf-
�cient conditions can be derived by using the same tools as for Proposition
8 (see Salamanca (2017)).

Remark 2: Even assuming that player 2 has a UPD, the existence of a TCE
is made di¢cult by the incentive compatibility conditions ((IC), namely (6)),
which require player 1 to be indi¤erent between the various messages that he
sends with positive probability. Introducing a mediator in the game Gint(p)
could be helpful by transforming (IC) into linear inequalities. If a mediator is
added to the game Gpost(p), veto-incentive compatibility (see Forges (1999)),
should likely be considered.

4 Examples of (partially revealing) TCE

In both examples below, as in Example 1, the informed player has two pos-
sible types (j K j= 2) and two possible actions (A1 = fT;Bg); we denote
as p 2 [0; 1] the probability of type 1. Unlike in Example 1, the uninformed
player has a UPD. We will show that there is no nonrevealing TCE and no
completely revealing TCE. As expected from Proposition 8, there exists a
partially revealing TCE and indeed we construct one. Example 2 is just
meant to indicate the pattern of the equilibria that can be constructed.

Example 2: Player 2 has three actions (A2 = fL;C;Rg) and the utility
functions are:

(U1; V 1)(�) =
L C R

T 1; 4 1; 3 1; 0
B 0; 4 0; 3 4; 0

(U2; V 2)(�) =
L C R

T 4; 0 0; 3 0; 4
B 1; 0 1; 3 1; 4

14



As in Example 1, player 1 knows the state and player 2 wants to match the
state (by playing L when player 1 is of type 1 and by playing R when player 1
is of type 2). Player 2 has an additional decision C, which can be interpreted
as �status quo�. All decisions of player 2 are rationalizable: R is optimal if
0 � p � 1

4
, C is optimal if 1

4
� p � 3

4
and L is optimal if 3

4
� p � 1.10 For

player 1, not matching the state (i.e., playing T when type 1 and R when
type 2) is safe (in the sense that it guarantees a utility that does not not
depend on player 2�s decision) while matching the state (i.e., playing B when
type 1 and T when type 2) is risky (in the sense that it only gives a high
utility in case of di¤erentiation with respect to player 2�s decision). We check
that m1 = m2 = 1 and that C is a UPD of player 2.
Let us take p = 1

2
. There is no nonrevealing TCE because optimality for

player 2 implies he should play C, but then player 1 cannot achieve individual
rationality without revealing his type. There is no completely revealing TCE
either; optimality for player 2 leads to L if type 1 is reported and R if type 2
is reported. By individual rationality for player 1, the joint decision must be
(T; L) if type 1 is reported and (B;R) if type 2 is reported, but this is not
incentive compatible.
However, a partially revealing TCE is easily constructed. At this TCE,

player 1 sends signals m and s so as to reach the posteriors pm = 1
4
and

ps =
3
4
. Let �(m) = (B; 3

4
C; 1

4
R) and �(s) = (T ; 1

4
L; 3

4
C). For player 1,

U(�(m)) = U(�(s)). For player 2, any mixture of C and R (resp., of L and
C) is optimal at pm =

1
4
(resp., ps =

3
4
).

The interim utility vector of player 1 at the TCE is (1; 1) and the expected
utility of player 2 is 3: Both players just get the same expected utility as in
the Nash equilibrium of the Bayesian game B(1

2
). In the latter game, player

1�s action completely reveals his type but player 2 has to make his decision
simultaneously, so that he cannot make any use from player 1�s revealed
information. In the TCE, player 1 reveals some information before a joint
decision is made; no further information is revealed. �

In the next example, we construct a TCE in which both players get strictly
more than their individually rational level.

Example 3: Player 2 has �ve actions (A2 = fLL;L;C;R;RRg) and the
utility functions are:

10However no mixture of decisions L and R is rationalizable, i.e., the set R is strictly
included in �(A2).
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(U1; V 1)(�) =
LL L C R RR

T 6; 10 10; 9 0; 7 4; 4 3; 0
B 1; 10 2; 9 �1; 7 5; 4 7; 0

(U2; V 2)(�) =
LL L C R RR

T 7; 0 5; 4 �1; 7 2; 9 1; 10
B 3; 0 4; 4 0; 7 10; 9 6; 10

The utilities associated with action T for type 1 and action B for type 2
are as in Forges (1990), where the informed player has no decision to make.
The preferences associated with the other action (i.e., B for type 1 and
T for type 2) are widely opposed to the ones of player 2. As in the two
previous examples, all decisions of player 2 are rationalizable (RR is optimal
for 0 � p � 1

5
, R is optimal for 1

5
� p � 2

5
, C is optimal for 2

5
� p � 3

5
,

L is optimal for 3
5
� p � 4

5
and LL is optimal for 4

5
� p � 1). Decision

C is a UPD for player 2, the minmax level of player 1 is mk = 0, k = 1; 2.
The benchmark Nash equilibrium of the Bayesian game B(1

2
) gives (0; 0) as

interim utility vector to player 1 and 7 as expected utility to player 2.
There is no nonrevealing TCE at p = 1

2
. Indeed, individual rationality

for player 1 means that both types k must get a utility of at least 0 and
optimality for player 2 requires that he takes action C. These conditions
cannot be met at any x 2 �(A).
There is no completely revealing TCE at any p 2 (0; 1). To check this,

assume there is such a TCE, �(k) 2 �(A), k = 1; 2. Optimality for player
2 implies that �(1) = ((�1;1 � �1); LL) and �(2) = ((�2;1 � �2); RR), with
�k denoting the probability of T when k is reported. Individual rationality
for player 1 is satis�ed since both types of player 1 get more than 0 at �(k),
k = 1; 2. The incentive compatibility conditions are

6�1 + (1� �1) � 3�2 + 7(1� �2),

�2 + 6(1� �2) � 7�1 + 3(1� �1).

They imply �1 � �2 + 3, which is impossible.
Here is a partially revealing TCE at p = 1

2
: player 1 sends messages m

and s so as to reach the posteriors pm =
1
5
and ps =

4
5
. If player 2 receives

message m, he proposes the joint decision �(m) = (B; 1
6
R; 5

6
RR) while if he

receives message s, he proposes the joint decision �(s) = (T ; 5
6
LL; 1

6
L). Both

types of player 1 are indi¤erent between sending m or s and accepting player
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2�s proposal; the corresponding interim utility vector is (20
3
; 20
3
). By rejecting

player 2�s proposal, player 1 cannot hope for more than 0, whatever his type.
Player 2�s expected utility at this TCE is 8. �

5 Extension to more general utility functions

The sender-receiver game Gpost(p) studied in this paper can be equivalently
described as follows: (i) the informed player sends a message to the unin-
formed one and then, as a function of the message, (ii) the players conclude
an agreement which comes into e¤ect if both players approve it. The advan-
tage of this description is that it allows to extend the basic Bayesian game
B(p) into a game with possible cooperation, regardless of the restrictive as-
sumption on the uninformed player�s payo¤ function. If both players have a
decision to make, we do not assume anymore that player 2 makes a proposal
to player 1 but rather that both players must approve a joint agreement that
is proposed to them. As a starting point, we just ask whether there exist
proposals that are accepted by both players without trying to justify how
these proposals are generated.
In Forges, Horst and Salomon (2016), we proceed as described in the

previous paragraph. Under a weaker assumption11, we establish an existence
result for a solution concept that is similar to TCE in that it is achieved by
talk and approval, but di¤ers from TCE in that it is implemented in Nash
equilibrium rather than in PBE. More precisely, we assume that if a proposed
agreement is rejected by at least one of the players, there is no restriction on
the actions that can be taken in the (possibly updated) Bayesian game.12

The following example illustrates the di¢culty of establishing the exis-
tence of a TCE, which as a PBE involves credible punishments, if player 2�s
utility depends on player 1�s action, even if it does not depend on player 1�s
type.

Example 4: We modify player 2�s utility function in Example 1 by assuming

11Player 2 has a uniform punishment strategy that need not be rationalizable.
12Forges (2013), Peters and Szentes (2012), Peters (2015) allow for early commitment

to punishment, while Celik and Peters (2011, 2016) do not.
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V 1 = V 2 = V , as follows:

(U1; V )(�) =
L R

T 1; 4 4; 0
B 0; 0 0; 4

(U2; V )(�) =
L R

T 0; 4 0; 0
B 4; 0 1; 4

Consider the following scenario: player 1 reports his type, 1 or 2, and
according to player 1�s message, the agreement �(1) = (T ; 1

2
L; 1

2
R) or the

agreement �(2) = (B; 1
2
L; 1

2
R) is submitted to the players� approval. If player

1 can threaten player 2 to make the decision (1
2
T; 1

2
B) if player 2 does not

approve the agreement, i.e., to punish player 2 at his minmax level 2, then
the previous scenario induces a Nash equilibrium.
Suppose however that, in case of rejection of the proposal, the players

play the Bayesian game, with possibly updated beliefs. Then, in a PBE,
player 1 must match the state, namely, choose T when k = 1 and B when
k = 2. This implies that, in this example, there is no way to associate a
joint decision with player 1�s message that would be consistent with a PBE
in which player 1 sends a message, both players approve the joint decision
and play the Bayesian game if one of them rejects the decision.
To be fully precise, we can proceed as in Example 1 for player 1. If,

in a PBE, this player rejects an agreement after having sent a message, he
must then match the state (i.e., play �(1) = T , �(2) = B). Player 2�s best
response, depending on his belief over k, can be any � 2 �(fL;Rg). By
matching the state, player 1 gets an interim utility vector (u1; u2) satisfying
u1 + u2 = 5 for every � . Hence, as in Example 1, player 1 rejects any
agreement �(s) that follows a message s that is sent with positive probability
by both of his types. Assume thus that player 1 reveals his type k at the
message stage. If player 2 now rejects a proposal �(k), the default game is
played, with player 2�s belief pkk = 1. Hence, to avoid rejection by player 2,
(T; L) must be played if k = 1 and (B;R) must be played if k = 2. But this
gives a utility of 1 to each type of player 1 and is again be rejected by this
player. �

This example is not a counter-example to an extension of our existence
result (Proposition 8) when the uninformed player�s utility depends on the
informed player�s action, because UPD does not hold in the game above.
Yet, in games like the previous one, in which the uninformed player�s utility
does not depend on the informed player�s type, there always exist a Nash
equilibrium with talk (by the informed player) and cooperation (of both
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players), even if UPD does not hold (see Forges, Horst and Salomon (2016),
Section 3.2.2). The example thus suggests that, as soon as the uninformed
player�s utility depends on the informed player�s action, the techniques that
we used so far do not su¢ce to establish the existence of a TCE.

We go on by modifying Example 1 in a way that allows for more cooper-
ation opportunities. Then a TCE is easily constructed.

Example 5:

(U1; V 1)(�) =
L R

T 1; 1 4; 0
B 0; 4 0; 0

(U2; V 2)(�) =
L R

T 0; 0 0; 4
B 4; 0 1; 1

The interpretation is now that player 1 knows the state of nature, both
players like to match the state and like it even more if the other does not
match the state.13

Let us start by assuming that both players know that the state is k = 1.
Then, the joint decision

� =
L R

T 0 1
2

B 1
2
0

can be implemented as a subgame perfect equilibrium of the extended game
in which both players get to approve �. Indeed, if they both accept �, � is
enforced and each of them gets 2. If one of the players rejects �, the default
game is played, subgame perfectness calls for (T; L), with utility 1 for each
player.
Let us go back to the game in which only player 1 knows the state, while

player 2 believes that k = 1 with probability p. The previous (nonrevealing)
decision is not individually rational for player 1. Indeed, we can proceed as
examples 1 and 4. If both players accept �, player 1�s types both get 2. If
player 1 unilaterally rejects �, player 2 forms a belief q over the state and
makes some decision (� ; 1� �) 2 �(fL;Rg). By matching the state, namely,
by playing T if k = 1 and B if k = 2, player 1 is sure to get an interim utility

13In this example, for each type k of player 1, the set of feasible payo¤s - (Uk(�); V k(�)),
� 2 �(A) - that give each player more than his Nash equilibrium payo¤ - equal to 1 here
- has a nonempty interior. This property did not hold in Examples 1 and 4.
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vector (u1; u2) such that u1 + u2 = 5, hence, whatever � , one of player 1�s
types pro�ts from rejection.
Let us next assume that player 1 sends the messagem or s to player 2 and

that as a function of the message, the following agreements are submitted to
the players� approval:

�(m) =
L R

L 0 3
4

R 1
4
0

�(s) =
L R

L 0 1
4

R 3
4
0
.

Then we can construct a PBE implementing these agreements. Player 1
reveals his type (i.e., sends m when k = 1 and s when k = 2) and at
equilibrium, both players approve the agreement associated with player 1�s
message. If one of them rejects it, player 1 plays T if k = 1 and B if k = 2. If
player 1 rejects, player 2 believes that each type is equally likely and chooses
L or R with probability 1

2
. If he himself is the only one to reject, player 2

chooses L (resp., R) if m (resp., s) has been sent.
If both players accept the agreement, both types of player 1 get 3 and

player 2 gets 1. Player 1 cannot pro�t from lying and accepting. Given player
2�s reaction, if player 1 rejects, each of his types can get an expected utility
of at most 2:5. Given player 1�s reaction, if player 2 rejects, his expected
utility cannot exceed 1. Furthermore, o¤ equilibrium path, every player
plays optimally given the strategy of the other, with player 2 believing that
player 1�s types are equally likely in case of rejection by the latter.
As a benchmark, the expected payo¤s of the Nash equilibrium of the

Bayesian game with prior probability p, without information transmission
are

min fp+ 4(1� p); 4p+ (1� p)g � 2:5 for player 1
max fp; 1� pg � 1 for player 2.

Hence the TCE proposed above is Pareto-improving with respect to this
benchmark. �

6 Appendix: proof of Proposition 8

To establish Proposition 8, we rely on a lemma, which follows from a theorem
of Simon et al. (1995) (see Renault (2000), Simon (2002), Simon et al.
(2008)).
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Lemma Let us �x a �nite set K, a compact, convex set X, linear functions
Uk : X ! R, k 2 K, a non-empty convex valued, upper-hemi-continuous
correspondence F : �(K) ! X and a lower-semi-continuous function ' :
�(K)! R satisfying the following
Assumption A: 8q; r 2 �(K) 9x such that x 2 F (r) and q � U(x) � '(q).
Then there exist a �nite set S and for every p 2 �(K) (such that pk > 0

for every k 2 K) mappings � : K ! �(S) and � : S ! X such that S� = S,
(IC) and (Opt) hold. Furthermore, the interim utility vector U(��) satis�es

q � U(��) � '(q) for every q 2 �(K) (9)

To get some intuition on how we are going to make use of the previous
lemma, let us �rst show that, for an appropriate de�nition of the mapping
', (9) says that U(��) is individually rational for the informed player. Let
us take ' = f1, with f1 de�ned by

f1(q) = min
�2R

X

k

qk max
a12A1

Uk(a1; �) for every q 2 �(K).

The mapping f1 corresponds to the minmax level of player 1 in the Bayesian
game that is de�ned as B(q) but in which player 2�s decisions are restricted to
R. It is easily checked that, if u = (uk)k2K is individually rational according
to De�nition 1, then

q � u � f1(q) for every q 2 �(K).

When the set R is convex, the converse also holds. However R is not nec-
essarily convex and even when it is the case, f1 and F (de�ned by (2)) may
not satisfy Assumption A.14

Instead of f1, let us consider the following mapping

f(q) = min
�2R

max
a12A1

X

k

qkUk(a1; �) for every q 2 �(K). (10)

The mapping f corresponds to the minmax level of player 1 in an auxiliary
game, again de�ned as B(q), in which player 1 is not informed (and player

14This can be illustrated on Example 1, in which, denoting the probability of type 1 as
q 2 [0; 1] , f1(q) = min f4� 3q; 3q + 1g.
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2�s decisions are still restricted to R). We will show below that f and F
(de�ned by (2)) do satisfy Assumption A.
The lemma will then provide us with a TCE such that (9) holds with

' = f . This does not yet guarantee that player 1�s utility vector U(��) at
the TCE is individually rational, since f1 � f . However the mappings f1 and
f coincide at the extreme points of �(K) and thanks to UPD, type by type
individual rationality is su¢cient for individual rationality (by Lemma 4).
To get some further intuition on the lemma, consider the following dra-

matic strengthening of Assumption A:

8r 2 �(K) 9x such that x 2 F (r) and 8q 2 �(K) q � U(x) � '(q).

Given our comments on (9), the previous condition says that for every prior
probability r, there exists a decision x that is optimal for the uninformed
player and such that the utility vector U(x) is individually rational for the
informed player (admitting that individual rationality is captured by the
mapping '). This implies that, for every prior r, there exists a nonrevealing
TCE.
Assumption A, as it appears in the statement of the lemma, just says

that if player 1 and player 2 hold respective, possibly di¤erent, priors, q and
r, there is a joint decision that is optimal for player 2 at his prior r and gives
player 1, at his prior q, an expected utility of at least '(q). The assumption
is likely to be satis�ed if '(q) is the minmax level of player 1 when he cannot
make use his information, i.e., in our framework, if ' = f .

Proof of Proposition 8
Let us consider the set X = �(A), the extension to X of the utility

functions Uk of the informed player, the correspondence F de�ned by (2)
and the following mapping ':

'(q) = inf
r2�(K)

max
x2F (r)

q � U(x). (11)

The assumptions of the previous lemma are then satis�ed. Indeed, ' is con-
structed so as to satisfy Assumption A and is easily shown to be Lipschitz
of constant M = maxk;x j U

k(x) j. To check the latter property, �x any
q 2 �(K) and " > 0. By the de�nition of inf max,

9r� = r�(q; ") s.t. 8x 2 F (r�)
X

k

qkUk(x) � '(q) + "
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8r 9x� = x�(q; r) 2 F (r)
X

k

qkUk(x�) � '(q).

Let us take q1; q2 and " > 0. Consider r�2 = r�(q2; ") and x
�
1 = x�(q1; r

�
2) 2

F (r�2):

'(q1)� '(q2) �
X

k

qk1U
k(x�1)�

X

k

qk2U
k(x�1) + "

� j
X

k

Uk(x�1)(q
k
1 � q

k
2) + " j�M k q1 � q2 k +"

Let then "! 0 and do the same by exchanging q1 and q2.
By the lemma, there exist a signaling mapping � and a proposal mapping

� such that S� = S (and thus �� = �), satisfying (IC) and (Opt). To show
that � and � de�ne a TCE, there remains to show that U(�) satis�es (IR).
The de�nitions of F , ' and f (see (2), (11) and (10)) imply that, for

every q 2 �(K),

f(q) � inf
r2�(K)

min
�2R(r)

max
a12A1

X

k

qkUk(a1; �)

� inf
r2�(K)

max
�2R(r)

max
a12A1

X

k

qkUk(a1; �) � '(q).

By (9), q �U(�) � f(q) for every q 2 �(K). In particular, by taking q as the
kth extreme point of �(K), we get that Uk(�) � mk. Hence, U(�) is type
by type individually rational. Since the uninformed player has a UPD, by
Lemma 4, U(�) is also individually rational. �
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