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Abstract

A binary Steinhaus triangle is a triangle of zeroes and ones that points down
and with the same local rule than the Pascal triangle modulo 2. A binary Steinhaus
triangle is said to be rotationally symmetric, horizontally symmetric or dihedrally
symmetric if it is invariant under the 120 degrees rotation, the horizontal reflec-
tion or both, respectively. The first part of this paper is devoted to the study of
linear subspaces of rotationally symmetric, horizontally symmetric and dihedrally
symmetric binary Steinhaus triangles. We obtain simple explicit bases for each of
them by using elementary properties of the binomial coefficients. A Steinhaus graph
is a simple graph with an adjacency matrix whose upper-triangular part is a binary
Steinhaus triangle. A Steinhaus graph is said to be even or odd if all its vertex
degrees are even or odd, respectively. One of the main results of this paper is the
existence of an isomorphism between the linear subspace of even Steinhaus graphs
and a certain linear subspace of dihedrally symmetric binary Steinhaus triangles.
This permits us to give, in the second part of this paper, an explicit basis for even
Steinhaus graphs and for the vector space of parity-regular Steinhaus graphs, that
is the linear subspace of Steinhaus graphs that are even or odd. Finally, in the last
part of this paper, we consider the generalized Pascal triangles, that are triangles of
zeroes and ones, that point up now, and always with the same local rule than the
Pascal triangle modulo 2. New simple bases for each linear subspace of symmetric
generalized Pascal triangles are deduced from the results of the first part.
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1 Introduction

A binary Steinhaus triangle (or Steinhaus triangle for short) of size n is a triangle
(aij), <i<i<n of 0’s and 1’s verifying the same local rule than the Pascal triangle mod-
ulo 2, that is,

;5 = Qi—1,5-1 + Ai—1,5 (IIlOd 2), (LR)

for all integers 7, j such that 2 < ¢ < j < n. Note that (0) and (1) are the Steinhaus
triangles of size 1 and () is the Steinhaus triangle of size 0. An example of Steinhaus
triangle of size 7 is depicted in Figure

It is clear that a Steinhaus triangle (a; j)1<i<j<n is completely determined by its first
row (a1,j)1<j<n- Indeed, by induction on i and using (LR)), we obtain that

i—1

a; = (Z ; 1) ayj—x  (mod 2), (1)



Figure 1: A Steinhaus triangle of size 7

for all integers 7,7 such that 1 < ¢ < 5 < n, where the binomial coefficient (Z‘) is the
coefficient of the monomial X? in the expansion of (14 X )¢, for all non-negative integers
a and b such that b < a. In the sequel, the Steinhaus triangle whose first row is the
sequence S is denoted by V.S. The Steinhaus triangle in Figure [1|is then V(0010100).

Since the set ST (n) of binary Steinhaus triangles of size n is closed under addition
modulo 2, it follows that ST (n) is a vector space over Z/27. Moreover, since a Steinhaus
triangle is uniquely determined by its first row, the dimension of ST (n) is n, for all
non-negative integers n.

This kind of binary triangles has been introduced by Hugo Steinhaus in his problem
book |26} 27|, where he posed, as an unsolved problem, the following

Question. Does there exist, for every non-negative integer n such that n =0 or 3 mod 4,
a Steinhaus triangle of size n containing as many 0’s as 1’s?

The Steinhaus triangle V(0010100) depicted in Figure [I|solves this problem for n = 7,
since it contains 14 zeroes and 14 ones. Note that, since a triangle of size n contains (";rl)
elements, the condition n = 0 or 3 mod 4 is a necessary and sufficient condition for having
a triangle of size n with an even number of terms. The Steinhaus problem was solved for
the first time by Heiko Harborth in 1972 [23]. Since then, many solutions of this problem
have appeared in the litterature [21], 22, 20], [13]. Generalizations of this problem in Z/mZ,
for all m > 2, can be found in [24, [9] 1], T4] and in higher dimensions in [12].

The local rule can also be written as
Qi—1j-1 =01+ a;; (mod2) or a;,;=a;_1;+a_1;-1 (mod?2),

for all integers 4, such that 2 < i < j < n. This is the reason why the 120 degrees
rotation and the horizontal reflection of a Steinhaus triangle are also Steinhaus triangles,
of the same size. We denote by r and h the corresponding automorphisms of S7 (n), that
are,

r:  ST(n) — ST (n)

(@ij)icicion = (@j_iy1n—it1)1<i<j<n
and
h:  ST(n) — ST(n)
(aij)i<icjsn > (Gin—jti)i<icjcn

for all non-negative integers n. These automorphisms verify the following identities

r® = h* = hrhr = idsr(),

where idgs7(,) is the identity map on ST (n). Therefore, the subgroup (r, h) generated by
r and h, of the automorphism group of ST (n), is isomorphic to the dihedral group Ds.
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This induces a faithful representation of D3 on ST (n), for all non-negative integers n. In
the sequel, the automorphism subgroup (r, h) is simply denoted by Dj. For instance, for
S = (11001) and for all g € D3, the Steinhaus triangles g (V.S) are depicted in Figure 2]

Figure 2: Action of D3 on V(11001)

For any subgroup G of D3 and any non-negative integer n, we consider the linear
subspace of invariant triangles of ST (n) under G, that is,

ST(n)={VeST(n)|VgeG,g(V)=V}.

It is well known that there are exactly 6 subgroups of Ds, that are {idST(n)}, (h), (rh),

(r2h), (r) and Ds. Obviously, we have ST (n)® = ST (n) for the trivial subgroup G =
{idST(n)}. Moreover, by the linear maps

STm)"™W — ST(n)™
\Y, — (V)

and
STm)™ — ST
\Y — r (V)

it is clear that the three linear subspaces ST (n)™, ST (n)"™ and ST (n) (") are iso-
morphic to each other. Therefore, for all non-negative integers n, we only consider the
lincar subspaces ST(n)™, ST(n)" and ST (n)™*, that will be denoted by HST (n),
RST (n) and DST (n), respectively, in the sequel of this paper. Obviously, these vector
spaces simply correspond to ker (h — idgT(n)), ker (r — idsT(n)) and ker (r — idg’]’(n)> N
ker (h — idST(n)), respectively.

A Steinhaus triangle V of HST (n), RST(n) or DST(n) is said to be horizon-
tally symmetric, rotationally symmetric or dihedrally symmetric, respectively, and verifies
h(V)=V,r(V)=Vorr(V)=h(V)=V, respectively. Examples of such symmetric
Steinhaus triangles appear in Figure [3|

Figure 3: Triangles of HST (6), RST (6) and DST(6).

In [3], it was proved that
o dimHST (n) = [2],
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e dim RST(TL) = I_%J + 51,(11 mod 3)»
° dlIIlDST(TL) = LnT—%J + 51,(71 mod 6)5

for all non-negative integers n, where 0; (, mod j) is equal to 1, if n = ¢mod j, and 0
otherwise. Bases of HST (n), RST (n) and DST (n), for all non-negative integers n, are
obtained in [7]. In this paper, we give new bases, for each of these three linear subspaces,
which are simpler than those mentioned. They are obtained by considering elementary
properties of generalized binomial coefficients.

A Steinhaus graph of order n > 1 is a simple graph whose adjacency matrix has an
upper-triangular part which is a binary Steinhaus triangle of size n — 1. For any sequence
S = (ay,as,...,a,1) of 0’s and 1’s of length n — 1, its associated Steinhaus graph G (.5)

is the simple graph of order n whose adjacency matrix M (S) = (a;;), <ijen Verifies

i) a;j = aj,;, foralli,j € {1,...,n}, (symmetry)
ii) a;; =0, for all i € {1,...,n}, (diagonal of zeroes)
iii) ay; =a;_1, for all j € {2,...,n — 1}, (sequence S)

iv) a;; = a;_1,;-1+ a;_1,, for all integers ¢, j such that 2 <7 < j < n, (local rule of V.5)

where {z,...,y} denotes the set of integers {i € Z | x < i < y}, for any integers x and
y. For example, for S = (0010100), the Steinhaus graph G (5) and its adjacency matrix
M (S) are depicted in Figure [4

DO@ODO)
OOODBDA)
00OOD

G (0010100) M (0010100)
Figure 4: The Steinhaus graph G (0010100) and its adjacency matrix M (0010100)

The set of Steinhaus graphs of order n is denoted by SG(n), for all positive integers n.
It is clear that there is a natural correspondence between SG(n) and ST (n—1). Therefore,
for all positive integers n, the set SG(n) is a vector space over Z/27 of dimension n — 1.

The family of Steinhaus graphs has been introduced in [24]. In [15], it was proved
that any simple graph of order n is isomorphic to an induced subgraph of a Steinhaus
graph of order (72‘) + 1. A general problem on Steinhaus graphs is to characterize those, or
their associated binary sequences, having a given graph property such as connectedness,
planarity, bipartition, regularity, etc. It is easy to see that a Steinhaus graph is either
connected or totally disconnected (the edgeless graph). The bipartite Steinhaus graphs
are characterized in [17, I8, 8] and the planar ones in [19]. In [16] 2], it was conjectured
that there is only one regular Steinhaus graph of odd degree, the complete graph Ky =
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G (1), and that the regular Steinhaus graphs of even degrees are the edgeless graphs
K, = G(00---0) of orders n, for all positive integers n, and the non-trivial graphs
G (110110---110) of orders n = 3m + 1, for all positive integers m. This conjecture was
verified up to 117 vertices in [I] and up to 1500 vertices in [10] for the odd case.

A Steinhaus graph is said to be even (resp. odd) if every vertex has even degree (resp.
odd degree). Examples of even and odd Steinhaus graphs are given in Figure . For all
positive integers n, the sets of even Steinhaus graphs and of odd Steinhaus graphs of order
n are denoted by £§G(n) and OSG(n), respectively. In [16], it was proved that ESG(n)
is a linear subspace of SG(n) of dimension | 23], for all positive integers n, and OSG(n)
is an affine subspace of direction £5G(n), for all even numbers n. Obviously, since the
number of vertices of odd degrees is always even, OSG(n) = () when n is odd. According
to the terminology used in [1], a parity-regular Steinhaus graph is a Steinhaus graph that
is even or odd. For all positive integers n, the set of parity-regular Steinhaus graphs of
order n is denoted by PRSG(n), that is, PRSG(n) = £SG(n) U OSG(n). As shown in
[1], the set PRSG(n) is a linear subspace of SG(n) of dimension [2] — 81 (s mod 2), for all
positive integers n. Bases of PRSG(n) have been computed, for n < 30, in [I]. In this
paper, we determine bases of £SG(n) and PRSG(n), for all positive integers n. This is
achieved by showing that the vector space £SG(n) is isomorphic to a particular linear

subspace of DST (2n — 1), for all positive integers n.

00 00
SR
DOODE L IS
0o}
OO 0D B
OB DOODG
oo, o
OOOOO@0)

G (1001000) M (1001000) G (1001001) M (1001001)
Figure 5: Even and odd Steinhaus graphs

This paper is organized as follows. In Section [2, some basic properties on generating
index sets of Steinhaus triangles and on derived and antiderived binary sequences are
introduced. After that, for all non-negative integers n, the linear subspaces RST (n),
HST (n) and DST (n) are studied in detail, with the determination of generating index
sets and bases for each of them: for RST (n) in Section 3 for ST (n) in Section ] and for
DST(n) in Section 5} For any positive integer n, a certain correspondence between the
vector spaces E§G(n) and DST (2n—1) is established and bases of £E5G(n) and PRSG(n)
are given in Section [} In Section [7], we deal with symmetric generalized Pascal triangles,
that are binary triangles which point up and always with the same local rule. Finally,
open problems on generalizations of symmetric binary triangles are proposed in Section [§]

2 Preliminary results

We introduce, in this section, the notions of generating index sets of Steinhaus triangles
and of derived and antiderived binary sequences.



2.1 Generating index sets

Let n be a positive integer. We denote by V(n) the index set of Steinhaus triangles of
size n, that is,

V(n)={(,j) eN* | 1<i<j<n}.
A subset G of V(n) is said to be a generating index set of ST (n) if the knowledge of the
values a; ;, for all (7, j) € G, uniquely determines the whole Steinhaus triangle (a; ;)1<i<j<ns

e., if the linear map
¢  ST(n) — {0,1}°
(@ijh<ician = (@ig)agec

is an isomorphism. Since dim ST (n) = n, we deduce that the cardinality of a generating

index set of ST (n) is always n. From ({]), it is clear that the set of top row indices of a
Steinhaus triangle of size n, that is,

Gy ={(1,1),(1,2),...,(1,n)},

is a generating index set of ST (n). Note that 7, ~1(S) = V.S, for all S € {0,1}°". It
follows that the set GG is a generating index set of ST (n) if and only if the linear map
mgome, L {0,119 — {0,1} is an isomorphism. For instance, the 16 generating index
sets of ST (3) (4 up to the action of the dihedral group Ds) are depicted in Figure[6, where
a disk is either black if its position is in the generating index set or white otherwise.

TN

{(1,1),(1,2),(1,3)} {(1,1),(2,2),(3,3)}
{(1,1),(1,2),(2.3)} {(1,2), ,(2,2)} ,(2,3)} {(1,2),(2,3),(3.3)}
{(1,1),(1,2),(3,3)} {1,3),(2,2), (3,3)} {(1,1),(1,3),(2,3)} {(1,2),(1,3),(3,3)} {(1,1),(1,3),(2,2)} {(1,1),(2,3),(3,3)}

{(1,2).(2.2).(2.3)}

Figure 6: Generating index sets of ST (3)

Since the sets of right side indices,

G.={(1,n),(2,n),...,(n,n)},



and left side indices,

G ={(1,1),(2,2),...,(n,n)},
of a Steinhaus triangle V of size n can be seen as the sets of top row indices of the Steinhaus
triangles r (V) and 72 (V), respectively, it follows that G, and G; are generating index
sets of ST (n) too. Therefore, each element of a Steinhaus triangle can be expressed in
function of the terms of its first row, of its right side or of its left side.

For any non-negative integers a and b such that b < a, the binomial coefficient (Z)
is the coefficient of the monomial X? in the polynomial expansion of the binomial power
(14+X)®. It corresponds to the number of ways to choose b elements in a set of a elements.
Here, we extend this notation by supposing that (Z) = 0, for all integers b such that b < 0
or b > a. For this generalization, the Pascal identity

a\ (a-—1 n a—1
b)  \b-1 b
holds, for all positive integers a and all integers b.

Lemma 2.1. Let (a;;)1<i<j<n be a binary Steinhaus triangle of size n. Then, we have

(i1 o~ (n—] (i
0 = (j - k) = (k ) ) = (k ) ) aex (mod 2),
k=1 k=1 k=1
for all integers 1,7 such that 1 < i < j < n.

Proof. As for (1]), by induction on ¢ and using the local rule (LR). m

Proposition 2.2. Let G = {(i1, 1), (i2,J2), - - -, (in, Jn)} be a subset of V(n) whose car-
dinality is |G| = n. Then, the set G is a generating index set of ST (n) if and only if

det(Mg) = 1 mod 2, where
i — 1
9= (G 21) e
Ik =) ) 1ckien

)

for all k € {1,...,n}. It follows that

7TGO7TG1_1(S> ES.MGt (mod 2)7

for all S € {0, 1}G1. Finally, the linear map 7g o g, ~! is an isomorphism if and only if

det(Mg) = 1 mod 2. O

The notion of generating index sets and the result of Proposition appear in a more
general context in [5, [6], where it is also proved that the set of generating index sets of
ST (n) define a matroid called the Pascal matroid modulo 2. Note that a generating index
set is simply called a generating set in [5] [0].

The definition of generating index sets can be extended to any linear subspace V of
ST(n). A subset G of V(n) is said to be a generating indez set of V if the linear map

G 1% —  {0,1}¢
(@igh<icien — (aig)agec
is an isomorphism. Note that |G| = dimV, for any generating index set G of V. In this

paper, we consider generating index sets of the linear subspaces RST (n), HST (n) and
DST (n), for all non-negative integers n.



2.2 Derived and antiderived sequences

Let S = (a;),,<, be a sequence of 0’s and 1’s of length n.
The derived sequence OS of S is the sequence

9S8 = (aj + aj1 mod 2), ., (2)

of length n — 1, when n > 2, and the empty sequence, when n < 1. The iterated derived
sequences 'S of S are recursively defined by 9'S = 9(9°~15), for all i > 1, with °S = S.
The Steinhaus triangle VS can then be seen as the collection (9°S),;.,_,, where, for
every i € {1,...,n}, the ith row of V.S corresponds to the derived sequence 9°~1S.

The set of binary sequences of length n can be seen as a vector space over Z/27 of
dimension n. Indeed, for two binary sequences S1 = (a;),;c, and S» = (b;),;c, of
the same length n > 1, their sum is the sequence S; + S; = (a; + bj)léjén of length n.
Therefore, it is clear that the derivation map 0 is linear, i.e., 9(S; + S2) = 051 + 9.5, for
all binary sequences S7 and S5 of same length.

Foranyi e {1,...,n+1} and any « € {0, 1}, the antiderived sequence of S = (a;)
whose ith term is x is the sequence fm S = (bj)1<j<nt1 of length n + 1 defined by

1<j<n

( i—1

x+Zak (mod 2) forje{l,...,i—1},
k=
bj =14 =z for j =1,
j-1
v+ Y ap (mod2) forje{i+1,. .. ,n+l1}
\ k=i

In a more concise way, we have

i—1 -1

bij=z+Y ar+ Y ar (mod ?2), (3)

k=1 k=1

for all j € {1,...,n+ 1}. Further, it is straightforward to obtain a fundamental theorem
of calculus.

For any non-negative integer n, the constant sequence of length n equal to x is denoted
by (x),. For n = 1, the sequence (z), is simply denoted (z).

Proposition 2.3. Let S = (aj)lgjgn be a binary sequence of length n. For any i €
{1,...,n+1} and any x € {0, 1}, we have that

i) 0(J,.9) =S,
i) [, (08) =5+ (a; +xmod 2),.

Proof. For , let [, = (0j)1cjcpsy and 9 <fMS> = (¢j)1<jcpn- By definition, from
and , we obtain that

i—1 j—1

i—1 j
cjzbj+bj+1z<x+ ar + ak>+<x+2ak+2ak>z% (mod 2),
k=1 k=1

k=1 k=1

for all j € {1,...,n}. Therefore 0 (f S) =GS.

%,T
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Now, for , let 05 = (bj);c;c,y and [, (0S) = (¢j); c,- By definition, from
and , we obtain that

i—1

1—1 7j—1
Cj E$+Zbk+ZbkE$+Z(ak+ak+1)+ (ak+ak+1)
k=1 k=1

k=1 1

<.
|
-

B
Il

=x+ (a1 +a;)+ (a1 +a;) = a; + (a; +2) (mod 2),
for all j € {1,...,n}. Therefore [ (9S) =S+ (a; +z mod 2),. O

A similar result has been obtained for infinite binary sequences in [25]. It follows that
every binary sequence S of length n admits only two different antiderived sequences, that
are, the sequences inS and fz S for some i € {1,...,n + 1}. Moreover, it is easy to

see that [ S+ [, S = (1),. For example, the sequence S = (0100) admits the two
antiderived sequences (00111) and (11000).

3 Rotationally symmetric Steinhaus triangles

In this section, after characterizing rotationally symmetric Steinhaus triangles, we deter-
mine, for all non-negative integers n, generating index sets and bases of RST (n).

3.1 Characterizations of RS7T (n)

First, by definition of the automorphism r, we have

" (<ai,j)1<i<j<n> = (@j-irtn-i+1)1cician = Vi) 1gjen

for any Steinhaus triangle (a;;),<;c;c, = V(a1;),;c,- Therefore, a Steinhaus triangle
(@i,j)1<ic j<p 1S Totationally symmetric if and only if its first row (a1;) and its right

1<g<n
side (@jn), <<, correspond.

Proposition 3.1. The Steinhaus triangle (a; ;)

only if (al,j)lgjgn = (ajm)lgjén'

L<icj<n 1S rotationally symmetric if and

For two binary sequences S; = (ay,as,...,a,,) and Sy = (b1, bs, ..., b,,) of length n,
and ns, respectively, we denote by Sy - Sy the concatenated sequence of length nq + no
defined by Sy - Sy = (ay, a9, ..., an,,01,b9,...,bp,).

Let H be the linear map that assigns, to each Steinhaus triangle of order n > 3, its
subtriangle of order n — 3 obtained by removing its first row and its left and right sides,
that is,

H: ST(n) — ST(n—3)

(ai,j)lgigjgn — (a1+i,2+j>1<i<j<n73

Note that the linear map H is surjective. Indeed, for any V.S € ST (n — 3), it is easy
to verify that VS = H(V.S) if and only if S is one of the eight sequences of the form
S = (x1)- [, 5 - (x2), where 21,2, € {0,1} and [ S’ is one of the two antiderived
sequences of 5. Examples of a Steinhaus triangle VS and its subtriangle H (V.S) are
depicted in Figure [7]
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Figure 7: H(V(1011110)) = V(1000)

we denote by o(9) its sum o(S) = >, a;,

For any binary sequence S = (a;), <i<n’ 1

i.e., the number of ones in S, and by 05(S) its sum modulo 2.

For any positive integer n > 3, by definition of RST (n) and H, it is clear that
H(RST(n)) C RST (n — 3). The precise relationship between a rotationally symmetric
Steinhaus triangle V.S and its subtriangle H (V.S) is given in the following

Proposition 3.2. Let S be a finite binary sequence of length n > 3. The Steinhaus trian-
gle VS is rotationally symmetric if and only if H(VS) = V.S’ is rotationally symmetric
and S = (02 (5")) - [;, 5"+ (02(5")), for some i € {1,...,n—2} and some x € {0,1}.

Proposition appears in [4] in a more general context. For the convenience of the
reader, a proof is given here.

Proof. Let VS = (a;;)1<i<j<n € ST (n) such that VS = H(VS) = (144245 )1<i<j<n—3 €
RST (n—3). Since V5’ is rotationally symmetric, its top row (asg ;)s<j<n—1, its right side
(@i n—1)a<i<n—2 and the reverse of its left side (an—in—i+1)2<ic<n—2 correspond by Propo-
sition [3.1] Moreover, since (a1;)o<j<n—1, (@in)2<icn—1 a0d (Qp_ip1n—it1)2<i<n—1 are an-
tiderived sequences of the sequences (as;)s<j<n—1, (@in—1)2<i<n—2 and (@n—in—i+1)2<i<n—2;
respectively, we deduce that they correspond if and only if there exist i1, € {2,...,n—1}
such that ai;, = a;,, and a1, = Gp_iyt1m—ip+1. SiNCE G171 = a12 + a2 mod 2 and
a1 5 = A1 -1 + a2, mod 2, it follows from Proposition again that the Steinhaus trian-
gle VS is rotationally symmetric if and only if a1; = a1, = a1 2 + a1 ,—1 mod 2. Finally,

using the local rule , we have that

n—1 n—1
g (S/) = Z a2, j = Z a1,5—1 + Q1,5 =a1.2 + a1n—1 (HlOd 2)
j=3 j=3
This completes the proof. n

3.2 Generating index sets of RST (n)

We are now ready to determine generating index sets of the linear subspace of rotationally
symmetric Steinhaus triangles, for every non-negative integer n.

Theorem 3.3. Let n be a non-negative integer. The set

Gp— {(z’,ji) ‘ i e {1 gJ +51,(nmod3)}},

where j; € {2i,...,n—1i} foralli € {1,..., \_%J} andj%z = 2”;1 when n = 1 mod 3, is
a generating index set of RST (n).

11



Proof. By induction on n.

For n = 0 and n = 2, it is clear that () and V(00) are the only rotationally symmetric
Steinhaus triangles of sizes 0 and 2. Therefore, the empty set ) is a generating index set
of RST(0) and RST(2). For n = 1, the Steinhaus triangles V(0) and V(1) are both
rotationally symmetric and thus the set {(1,1)} is a generating index set of RST (1).

Suppose now that the result is true for the sets of rotationally symmetric Steinhaus
triangles of size strictly lesser than n > 3. Let m = L%J + 01, (n mod 3)- We consider the
subset H (Gr) C V(n — 3) defined by

H(Gr)={(i—1,j; —2) |i€{2,...,m}}
and the linear maps f; and f> defined by

fi: RST (n) — {0,1} x RST (n —3)
VS = (aij)i<i<jsn (a1,5,, H(V.S))

and

fa: {0,1} xRST(n—-3) — {0,1}™
(1‘, VS/) — (ZE) - TH(GR) (VS,)

Then, for any (a;;)i<i<j<n € RST (n), we have

fofi ((aig)i<icj<n) = f2(arjy, (@11i244)1<i<i<n—3)
= (a1j,) - Ta(GR) ((@14i24)1<i<j<n—3)
= (a1,5,) - (ai7ji)2<z<m
= (@iji)1<cicm = Tar ((@ij)1<i<j<n) -

Therefore f5f; = mg,. From Proposition we know that f; is an isomorphism whose
inverse is defined by f, ™' (x,VS') = V((UQ(S’)) : fjrle’ : (UQ(S’))), for all (z,VS’) €
{0,1} x RST (n — 3). Moreover, since we have

and 2(i—1)<ji—2<(n—3)—(i—1),

and j, —2=

when n = 1 mod 3, the set H(GRg) is a generating index set of RST (n — 3) by induction
hypothesis. Therefore my(¢,,) and thus f, are isomorphisms. Finally, since the linear map
ey = faf1 is an isomorphism, the set G is a generating index set of RST (n). O

Corollary 3.4. Let n be a non-negative integer. The set

Gp = {(zn— {gJ) i e {1 LgJ +517(nmod3>}}

is a generating index set of RST (n).

Proof. From Theorem , since 2t < n — L%J < n—zqforall e {1,..., ng} and

n—L%Jzzngrlwhennzlmod?). ]

Since the dimension of RST (n) corresponds to the cardinality of a generating index
set G, it is straightforward to obtain the following

Corollary 3.5. dim RST (n) = | 2| + 61,(n mod 3), for all non-negative integers n.

12



3.3 Bases of RST(n)

In the end of this section, using the generating index sets Gg introduced before, we
determine bases of the linear subspace of rotationally symmetric Steinhaus triangles.

First, we consider the linear map p : ST (n) — RST (n) defined by p = r*+r+idsr(n),
for all non-negative integers n. Obviously, this map is surjective since p(V) = V, for all
V € RST(n). Moreover, as detailed below, all the terms of p (V) can be expressed in
function of these of V.

Proposition 3.6. For all (a;;), ;c;c, € ST(n), we have

P <(ai,j)1<i<j<n> = (@ij + @j—it1n-i+1 + An—jt1nti—j mod 2)1§z<j<n :

Proof. First, by definition of r, we know that

r ((ai,j)1<igj<n) = (aj*iJrl,nfiJrl)lgz‘gjgnu

for all (ai;), ;cjc, € ST(n). Thus, we obtain

r’ <(“id)1<i<a‘<n) =r <(aj—i+1’"—i+1)1<i<j<n> = (@n—jtintiojrcicjen
for all (ai;),<;c;c, € ST(n). The result follows. O
For any non-negative integer n, let U,, be the Steinhaus triangle of size n defined by
Up=p(V(1)n).
It is clear that Uy = 0, U; = V(1), Uy = V(00) and U,, = V(011 ---110) for n > 3, since
Up=p(V(1)n) =V(1--1) + V(10---0) + V(0---01) = V((1---1) 4 (10---0) + (0-- - 01)),

for all positive integers n. The Steinhaus triangles U, are depicted in Figure [§] for the

first few values of n. Moreover, an explicit formula for the terms of U, is given in the

following

OOBA)
1000

(00

NoY
LA

Figure 8: U, forn € {1,...,6}

Proposition 3.7. For any non-negative integer n, we have

Un = (57;71 + 5i,j + 5]'7” mod 2>1<i<j<n .

13



Proof. First, if we denote V(1), = (ai;),c;cjc, and Up = p(V(1)n) = (bij))cicjcnr W
know from Proposition that

bij = i+ @j—it1n—it1 + Gnjrinri—j (mod 2),

for all integers ¢ and j such that 1 < i < j < n. Moreover, it is clear that 9'(1),, = (0),,_,
for all i € {1,...,n —1}. Therefore, V(1), = (1), <,  This leads to

bij =0in+0jiv11+0njy11  (mod 2),

for all integers ¢ and j such that 1 < ¢ < j < n. Finally, since 6; ;411 = 0;; and
On—jt1,1 = 0;n, the result follows. O

Corollary 3.8. H(U,,) = V(0),,_3, for all positive integers n > 3.

Proof. Let U, = (ai ), <j<n- By definition of H and Proposition , we obtain that

H(Un) = (@i+1,j+2) 1 cicjen—3 = (Oit11 + Git1j42 + i, mod 2), ;i 5= V(0)5—s.
O

For any non-negative integer k£ such that 3k < n, we consider the iterated operator

H*=HH---H: ST(n)  — ST (n — 3k)
k times (aij)icicjen > (Qhtikts)1<i<j<n—3k

Using the operators H* and the generating index set G, we obtain a family of bases of
RST (n), for all non-negative integers n.

Theorem 3.9. Let n and m be non-negative integers such that m = L%J + 01, (n mod 3)-
For every k € {0,...,m — 1}, let Vi € RST(n) such that H* (V}) = U, _sx. Then, the
set {Vo, ..., Vim_1} is a basis of RST (n).

The proof is based on the following

Lemma 3.10. Let V = (a;;)1<icjen € ST(n) such that H* (V) = U,_3;, for some
ke{0,...,[%2] —1}. Then,

|1 fori=k+1,
in-2] =) 0 forie{k+2,..., %]},

Moreover, when n = 1 mod 3, ZfH'-%J (V)=U; = (1), then Q|| | = 1.
3

+1,n— Lg

Proof of Lemma[3.10, Let k € {0, ..., ng — 1}. By definition of H* and Proposition ,
we deduce that

(ak+i,2k+j)1gigjgn73k = H* (V) =Up3x = <5i,1 + 5z‘,j + 5j,n—3k; mod 2)1@'@@173]; . (4)

Since k < ng — 1, we have

2k+1<2L%J—1<n—{gJ <n-—k.

14



It follows from that

ai,n—m = ak-i—(i—k:)v?k-&-(n—tgj—?k) = i*’al+5i—k,n—ng—%j”sn—tgj_zk,n_sk (mod 2), (5)

3
for all integers ¢ such that 1 <i—k <n — L%J —2k,ie, k+1<i<n— L%J — k. Since
k< L%J — 1, we obtain that
Op | 2| b3k = Ok 2] =0 (6)

Moreover, this leads to

=[5 -kna 3] 15 (3

and
O |2 ]2k = Qi |2 % =0, (7)

for all integers 7 < L%J Therefore, for all i € {k +1,..., [%J }, we obtain from , @
and that

;o L%J = 0j—k1 = 5i,k:+1-

This completes the proof when k € {O, ey L%J — 1}.
Finally, when n = 1 mod 3, it is clear that

n—1

(=02 = B3 (9) = (angp ) = (o) a1 3)-
This completes the proof. n
Proof of Theorem[3.9. We consider the set

Gri={(in- {%J) )ie{1,2,...,m}}.

For any k € {0,...,m — 1}, since H* (V};) = U, _sy, it follows from Lemma that

6 (Vi) = (%, ..., %,1,0,...,0).
k m—k—1

Therefore, the set {m¢, (Vi) | k€ {0,...,m —1}} is a basis of {0,1}°". Finally, since
Ggr is a generating index set of RST (n) by Corollary , we conclude that the set
{Vi | k€{0,...,m —1}} is a basis of RST (n). O

Since U,—3r, = p ((1)n—3x) by definition, for all non-negative integers n and k such that
3k < n, this leads to the following

Corollary 3.11. Let n and m be non-negative integers such that m = L%J + 01,(n mod 3) -
For every k € {0,...,m — 1}, let Sy, be a binary sequence of length n such that O*Sy =
(1)p—. Then, the set {p(VSo),...,p(VSn_1)} is a basis of RST(n).

Proof. Let k € {0,...,m — 1}. First, by definition of the linear map p, we know that
p(VS) € RST (n). Moreover, since 0%Sy = (1),,_y, it follows that

H* (p (VSk)) = p (H* (VSk) = p(V(D)n-st) = Un—sp-

Therefore, from Theorem 3.9} the set {p (V.Sk) | k € {0,...,m — 1}} is a basis of RST (n).
[
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Binomial coefficients (Z) have been defined before for any non-negative integer a and
any integer b. Now, we extend this definition for negative integers a. For any integers a
and b, let ( ) denote the integers recursively defined by

e ()=1foralacZ,

When « is non-negative, it corresponds with the previous definition. Moreover, for any
negative integer a, the following equality holds

a\ [0 for b < 0,
b) L (=D forb>0.

In this paper, we mainly consider the infinite Pascal matriz modulo 2, that is, the doubly

indexed sequence ((‘;)2) e where (‘;)2 is the value of (7) mod 2. The first few values

of this doubly infinite sequence are shown in Figure |§|7 where the terms (8)2 are in blue,

a
0
0
b

=0, for all b € N*,

— (@D 4+ (%Y, for all a,b € Z.

for all integers a, and the terms (2)2 are in red, for all positive integers b.

For any integers k and [, let S/(:z) be the subsequence of length n of the kth column of
the infinite Pascal matrix modulo 2 defined by

o= ()= (@, ) ()
o k 2/ 1<j<n k2’ k 27 7 k 2

RS

For instance, the sequence Sé@ = ((j§1)2)1<j<7 = (0001010) appears in yellow in Fig-

ure [9] Since we retrieve the local rule (LR]) in the infinite Pascal matrix modulo 2, it is
straightforward to obtain the following

Proposition 3.12. Let k and [ be two integers and let n be a positive integer. Then,

| S l+j—1
o8y =Sy =
k,l k—i,l E— , lgjgnfi’

foralli e {0,...,n—1} and

[+ —i
st — '
VS ((k +1-— Z)z) 1<i<j<n

For instance, the Steinhaus triangle VS%%_10 = V(0000110) appears in green in Figure @
We are now ready for giving explicit bases of RST (n), for every non-negative integer

n, using Corollary [3.11{ with binary sequences S,(:l).

Theorem 3.13. Let n and m be non-negative integers such that m = L%J +01,(n mod 3)- For
any integers ly, ..., L1, the set {p (VS&?}) - (VS(n > } is a basis of RST (n).

m—1,0,,

Moreover, we have

(n) b+~ tn—j beti-1 d
_ 2
forall k € {0,...,m —1}.
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Proof. By Proposition |3.12] we know that 8"38 i, = S(Onlkk ((l"’“_l)Q)1<

0 \jgn_k

for all k € {0,...,m — 1}. It follows from Corollary [3.11] that the set

{p(vsf)) [kefo....m=-1}}

is a basis of RST(n). Moreover, the formula of p (VS%S) given in (8) directly comes
from Proposition and Proposition [3.6] O

= (1)n—k7

Remark. For any integer [y, we have p (VS&%) =p(V(1),) =U,.

For instance, for n = 10 and [y = [; = [, = I3 = 0, we obtain

Elos p(VSiY)

0| (I111111111) | V, = V(011111110
[ (0101010101) | ¥V, = V(1001010111)
2| (0011001100) | V, = V(0001001000)
3 (0001000100) | V5 = V(0010001100)

All the rotationally symmetric Steinhaus triangles of size 10 are depicted in Figure [I0]
where the elements of the basis {Vy, Vi, Vi, V3} are in red and, for every V € RST(10),
the coordinate vector (xg, 21, xg, x3) of V = 20V + 21 V1 + 22 Vs + x3V3 is given.

4 Horizontally symmetric Steinhaus triangles

In this section, we characterize the horizontally symmetric Steinhaus triangles and we
give a generating index set of HST (n). This permits us to obtain bases of HST (n), for
all non-negative integers n.

4.1 Characterizations of HST (n)

A binary sequence S = (a;),;,, is said to be symmetric if a,—;41 = a;, for all j €
{1,...,n}. For instance, the sequence (010010010) is symmetric. As shown in the follow-
ing result, the symmetry is preserved under the derivation process.

Proposition 4.1. The binary sequence S is symmetric if and only if S is symmetric
and 02(0S) = 0.

Proof. Let S = and 05 = (b;),;.,,_;- Then, by definition of 9, we have

(aj)lgjgn
bi + bn-1)—it1 = bi + b (9)
= (ai + ai+1) + (CLn_Z‘ + an—i+1> (IHOd 2)
= (i + p—it1) + (Aix1 + Gn(iy1)41),

for all i € {1,...,n — 1}. Moreover, the sum o(05) satisfies

n—1 n—1
o(0S) = Z b, = Z (a; +a;41) = a1 +a, (mod 2). (10)
=1 i=1

First, if S is symmetric, we deduce from @ that 0S is also symmetric and from that
0(0S) is even. Conversely, if we suppose that 0S5 is symmetric of even sum o (95), we
know from that a; = a,. Using this equality and @), we can prove, by induction on
i, that a; = an_;11, for all i € {1,...,n}. This completes the proof. ]
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Remark. Tt is natural to ask if there exists a similar result for the case where 05 is
symmetric and ¢(9S) is odd. It is known that the binary sequence S = (a;)i<j<n 18
antisymmetric, i.e., a,—j41 = a; + 1 mod 2 for all ¢ € {1,...,n}, if and only if 95 is
symmetric and o9 (0S) = 1. Note that antisymmetric binary sequences only exist for odd
lengths.

It follows that the horizontal symmetry of a Steinhaus triangle is only related to the
symmetry of its first row.

Proposition 4.2. The Steinhaus triangle VS is horizontally symmetric if and only if the
sequence S is symmetric.

Proof. First, it is clear that if V.S is horizontally symmetric, then S is a symmetric
sequence. Conversely, if we suppose that S is symmetric, we know from Proposition
that the iterated derived sequences 9'S are symmetric, for all i € {0, ...,n—1}. Therefore,
the Steinhaus triangle V' is horizontally symmetric. m

Now, we show that the horizontal symmetry of a Steinhaus triangle only depends on
the values of middle terms of its rows of odd lengths.

Proposition 4.3. The Steinhaus triangle (a,»7j)1<i<j<n, of size m, is horizontally symmet-

ric if and only if ap—2in—i =0, for all i € {0, cee L%J — 1}.

The proof is based on the following lemma which is straightforward from the definition
of a symmetric sequence.

Lemma 4.4. Let S = (ay,as,...,a,) be a symmetric binary sequence of length n. Then,

0 if n is even,

72(5) = { (ntt if n is odd.

Proof of Proposition[{.5 First, suppose that the Steinhaus triangle VS = (a;,), ci<j<n
of size n is horizontally symmetric. Then, since the iterated derived sequences 0'S =
(@i+1,j);11< <, are symmetric, for all 2 € {0,...,n—1}, we know from Proposition that
09 (0'S) =0, for all i € {1,...,n — 1}. Moreover, for any i € {1,2,...,n}, the sequence
0"'S is of length i. It follows from Lemma that a,_9in—i = 09 (8”*(2”1)5’) = 0, for
alli € {0,...,[%] —1}.

Conversely, suppose that a,_g;,—; = 0, for all i € {0, ey L%J — 1}. We proceed by
induction on n. For n = 1, the result is clear since any Steinhaus triangle of size n = 1 is
horizontally symmetric. Suppose that the result is true for any Steinhaus triangle of size
strictly lesser than n. We consider the subtriangle VOS = (ai+17j+1>1<i<j<n71 of size n —1.
Since the identities a4 (n—1)—2i,14+(n-1)—i = 0 hold, for all 7 € {O, cee L”;lj — 1}, it follows
that VS is horizontally symmetric by induction hypothesis. Therefore, the sequence 9'S
is symmetric, for all i € {1,...,n—1}. If nis odd, then S is symmetric and o (0S) = 0
by Lemma. Otherwise, if n is even, then 95 is symmetric and o3 (9S) = agz 41 =0
by Lemma [1.4] again. It follows from Proposition [I.1 that S symmetric. Therefore, in any

case, the Steinhaus triangle V.S is horizontally symmetric by Proposition [£.2] O
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4.2 Generating index set of HS7 (n)

Proposition 4.5. Let n be a non-negative integer. The set

uom {0 1 P [2T1)

is a generating index set of HST (n).

Proof. From Proposition we deduce that HST (n) is isomorphic to the vector space

of symmetric binary sequences of length n. Obviously, a symmetric sequence of length n

is entirely determined by its bw first terms. m

Since the dimension of HST (n) corresponds to the cardinality of the generating index
set G, it is straightforward to obtain the following

Corollary 4.6. dim HST (n) = [2], for all non-negative integers n.

4.3 Bases of HST (n)

Let n be a positive integer. For any positive integer k € {1,...,n}, we denote by E,ﬁ”)

the binary sequence of length n consisting only of zeroes, except at position k. In other

words, we have
0
(G0
J=k)s2) 1<jen

for all £ € {1,...,n}. Since we retrieve the local rule (LR)) of the infinite Pascal matrix

modulo 2, we obtain that
—1
J—Fk/, 1<i<j<n

X

for all integers k € {1,...,n}.

Proposition 4.7. Let n be a positive integer. Then, the set {Vl, e V(ﬂ} s a basis of
HST (n), where

— 1 1—1
~v(EM+E™,. ) = ((" d2
Vk v( k _I_ nkarl) j _ k + ] —n + k _ 1 mo Lici )

<igg<n
n 1—1
o= ()
J 2 /2/ 1<i<j<n
when n is odd.

Proof. First, by definition, it is clear that Vi, € HST (n), for all k € {1, e (%1 } Now,
we consider the set Gy := {(1,j) ‘ jE {1, ce (%1}} Since

ren (Vi) = EL 2D,

for all k € {1, . [%W }, it follows that the set {ﬂ'GH (V1) .. Tay (V[ﬂﬂ} is a basis

of {0, 1Y%, Moreover, since G is a generating index set of HST (n) by Proposition ,
we conclude that the set {Vl, . ’V(ﬂ } is a basis of HST (n). O
2
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In the end of this section, we show that the generating index set Gy also permits us

to obtain a basis from the sequences S,Sll) = ((l%—l)z) 1<j<n introduced in Section .

Lemma 4 8 Let k and n be two positive integers of same parity. Then, the n length

sequence Skl 1s symmetric for | = % Moreover, the k + 2 middle terms of Sk ko are
of the form (x-+-%100---001 % - ).
k

Proof. Suppose that k and n are of same parity, i.e., [ = ’“‘T" is an integer. Let S,(;?l) =
(aj)Kjgn with a; = (l+] 1) for all j € {1,...,n}. Since (‘;)2 = (b_z_l)Q, for any integers
a and b such that b > 0, it follows that

<kf+(ng+n1> G:(ﬂf+nj)5 (ﬂf+j1>

An—j+1 = = = = aj,
k 2 k 2 k 2

for all j € {1,...,n}. Therefore, the sequence S l is symmetric for [ = 2 . Moreover,
the k + 2 middle terms of Sk’l are (];)2, for j € {—1,...,k}, where (; )2 = (k)Q =1 and
(2)2 =0, for all j € {0,...,k — 1}, since k > 1. This completes the proof. ]

Theorem 4.9. Let n be a non-negative integer. The set {Vl, e ,V(ﬂ} s a basis of
2

HST (n), where
o B —k+j—i
Vi = VSn_zk,_k - ((n —2k+1- Z)2) 1<z<j<n7

for all k € {1, e [%J }, and VnTJrl = V(1),, when n is odd.

Proof. First, we know from Lemma that the sequence ng_)% i 1s symmetric, for

all k € {1, o ng} Obviously, when n is odd, the constant sequence (1), is also
symmetric. Therefore Vj, € HST (n), for all k € {1,...,[%2]}, by Proposition Now,
we consider the set Gy = { (1,7) } J€ {1 [ﬂ }} By Lemma again, we know

that the n — 2k 4 2 middle terms ofS 2k _,, are of the form (%---%x100---001x---x)

and thus
TGy (Vk) - (*7 ok, 1,0, 70)7
S Tl
for all k € {1,...,|%|}. Moreover, ¢, (VHTH> = 7ng, (V(1),) = (1,1,...,1), when n

is odd. Therefore, the set {ﬂ'GH (Vi) } ke {1, ce [%W }} is a basis of {0, 1}GH. Finally,
since Gy is a generating index set of HS7 (n) by Proposition we conclude that the

set {Vl, ey V[ﬂ] } is a basis of HST (n). O

Remark. When n is even, we have Vn = VS(()?EE = V(1),. Therefore, V[E] =V(1),, for
all integers n.

For instance, for n = 7, we obtain
Vi = VS 7, = V(1000001), WV, = ng 75 =V(0100010),
V3 = VSL_3 = V(1010101), V, = V(1111111).

All the horizontally symmetric Steinhaus triangles of size 7 are depicted in Figure [L1]
where the elements of the basis {Vy, Vs, V3, V4 } are in red and, for every V € HST(7),
the coordinate vector (xy, z9,x3,24) of V = 21V) + 25V + 23V5 + 24V} is given.
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Figure 11: The 16 triangles of ST (7) where the 4 red triangles form a basis
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5 Dihedrally symmetric Steinhaus triangles

In this section, after characterizing dihedrally symmetric Steinhaus triangles, we deter-
mine, for all non-negative integers n, generating index sets and a basis of DST (n).

5.1 Characterizations of DST (n)

We begin by showing that the dihedral symmetry of a Steinhaus triangle is only related
to the symmetry of its first row and of its right and left sides.

Proposition 5.1. The Steinhaus triangle V is dihedrally symmetric if and only if two of
the three Steinhaus triangles V, v (V) and r* (V) are horizontally symmetric.

Proof. Directly comes from the fact that the automorphisms h and hr are generators of
Ds. First, if V is dihedrally symmetric, then V = r (V) = 72 (V). Since a dihedrally
symmetric triangle is also horizontally symmetric, the result follows.

Suppose now that the Steinhaus triangles V and r (V) are horizontally symmetric. It
follows that h (V) =V and hr (V) = r (V). Combining these identities with the relations
r¥ = h? = hrhr = ids7(»), we obtain that

V=r(r(V)) =r*(hr(V))
=72h(r(V))=hr(r(V))=hr*(V)=7rh(V)=7r(h(V)) =1 (V).

We conclude that the Steinhaus triangle V is dihedrally symmetric since it is horizontally
symmetric and rotationally symmetric. If the two horizontally symmetric Steinhaus trian-
gles are r? (V) and V, or r (V) and r2 (V), we can show by the same way that the triangles
r? (V) or r (V) are dihedrally symmetric, since r (r? (V)) = V and r (r (V)) = r?(V), re-
spectively. In any case, we obtain that the Steinhaus triangle V = r (V) = r?(V) is

dihedrally symmetric. O
Corollary 5.2. The Steinhaus triangle V.S = (ai7j)1<i<j<n is dihedrally symmetric if and
only if two of the three sequences, its first row (a17j)1<j<n’ its right side (ajvn)lgjgn or its

left side (a; ;) are symmetric.

1<j<n’

Proof. Directly comes from Proposition [5.1] since, by Proposition we know that the
Steinhaus triangles V.S, r (VS) and r? (VS) are horizontally symmetric if and only if the
sequences (a1,5); s (@n))<jc, and (a;;),;c, are symmetric, respectively. O

Proposition also permits us to show that the dihedral symmetry of a Steinhaus
triangle only depends on the values of middle terms of its rows, its columns or its diagonals
of odd lengths.

Corollary 5.3. The Steinhaus triangle V.S = (am)1< <j<n 18 dihedrally symmetric iof and

only if two of the three sets {an_gm_i}i € {O, cee ﬂ] —Ti}}, {ai72i_1‘i € {1, e ng }}
and {am_iH!i € {1, e L%J }} are sets of zeroes.

Proof. From Proposition [£.3] we know that the Steinhaus triangles V.S, r(VS) and
r? (VS) are horizontally symmetric if and only if Ap—2in—; = O0foralli € {0, e L%J — 1},
a;2i—1 = 0 for all 7 € {1, ey L%J} and a;,—;41 = 0 forall ¢ € {1, ce LgJ }, respectively.
Finally, by Proposition [5.1], the Steinhaus triangle VS is dihedrally symmetric if and only
if two of the three Steinhaus triangles V.S, r (VS) and r? (V.9) are horizontally symmetric.
This completes the proof. n
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For any positive integer n > 3, by definition of DST (n) and H, it is clear that
H(DST(n)) € DST(n — 3). The precise relationship between a dihedrally symmetric
Steinhaus triangle VS and its subtriangle H (V.5) is given in the following

Proposition 5.4. Let S be a binary sequence of length n > 3. The Steinhaus triangle V.S
is dihedrally symmetric if and only if H(VS) = VS’ is dihedrally symmetric, oo (S") =0
and S = (0)- [ S (0), for some i € {1,...,n—2} and some x € {0,1}.

Proposition appears in [4] in a more general context. For the convenience of the
reader, a proof is given here.

Proof. Let VS = (aij)1<icj<n € ST (n) such that V.S = H(VS) = (a14i9+j)1<i<j<n—3 €
DST (n— 3). From Proposition [3.2] Proposition and Proposition we deduce that
the Steinhaus triangle V.S is dihedrally symmetric if and only if a1 = a1, = 02(5"), IS
is symmetric and oy (0S) = 0. Since V.S’ € DST (n — 3), the sequence S’ is symmetric.
Therefore the sequence 95 is symmetric if and only if as; = as,. Moreover, it is clear
that o (0S) = 0 (5') + ag1 + az,, mod 2. We claim that a17 = a1, = 02(5’), 95 is
symmetric and o9 (05) = 0 if and only if a1; = a1, = 02(5) = 0. First, suppose
that a1; = a1, = 02(5"), 05 is symmetric and o9 (0S) = 0. Since 05 is symmetric, it
follows that as; = ag,, and thus oy (S') = 02 (05) = 0. Conversely, suppose that a1 =
arn, = 09(5") = 0. Since S’ is symmetric and o9 (S') = 0, we know from Proposition
that its antiderived sequence fm S’ is symmetric too. Moreover, we have a;1 = a1,,. It
follows that the sequence S is éymmetric and, by Proposition again, we obtain that
the sequence 0S5 is symmetric and o3 (0S) = 0. This completes the proof. O

For any non-negative integer n, the set of dihedrally symmetric Steinhaus triangles
VS of size n with o(S) even is denoted by DSTo(n). It is clear that DSTo(n) is a linear
subspace of DST (n). Moreover, the vector space DST (n) can be expressed in function
of its linear subspace DSTo(n).

Proposition 5.5. Let n be a non-negative integer. Then, we have

DSTo(n) for n even,

DST(n) = { DSTo(n) U (DSTo(n) +U,) forn odd,

where L is the disjoint union of two sets.

Proof. For any symmetric sequence S = (a;), <j<n of length n, we know from Lemma
that 02(S) = 0 when n is even and 05(S) = angr when nis odd. It follows that DST(n) =
DSTo(n), for n even. If n is odd, then we consider U, = p((1),). It is clear that
U, € DST(n) and is generated from a sequence of odd sum, for all odd numbers n.
Since V.S € DST (n) with o9(S) = 1 if and only if VS + U,, € DSTo(n), it follows that
DST(n) =DSTo(n) U (DSTo(n)+ U,), when n is odd. O

Using Lemma [4.4] it is straightforward to obtain from Propositon [5.4] the following

Corollary 5.6. Let S be a binary sequence of length n > 3. For n even, the Steinhaus
triangle V.S is in DSTo(n) if and only if H(V.S) = VS is in DSTo(n —3) and S =
0) - [ .S -(0), for some i € {1,....,n — 2} and some xz € {0,1}. For n odd, the
Steinhaus triangle V.S is in DSTo(n) if and only if H(VS) = V.S is in DSTo(n—3) and
S =(0)- f%lpS’ -(0).
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5.2 Generating index sets of DST (n)

We begin this subsection by giving, from Corollary [5.6] generating index sets of DST(n),
for all non-negative integers n.

Theorem 5.7. Let n and m be non-negative integers such that m = L%J + 04,(n mod 6)-
For every integer i € {1 L J}, let j; € {2i,...,n—1i}. Then, the set

{(2Z+17j2i+1) | S {07"‘7m_ 1}}7

when n 1s even, or
Gp, = {(2i,72:) | i € {1,...,m}},

when n is odd, is a generating index set of DSTo(n).

Proof. By induction on n.

For n € {0,1,2}, it is clear that V(0), is the only element of DST((n). Therefore the
empty set ) is a generating set of DSTy(n), for these values of n.

Suppose now that the result is true for any size strictly lesser than n > 3. Let
m = L J + 04,(n mod 6)- We distinguish two cases following the parity of n.

Case 1. Suppose first that n is odd. We consider the subset H (Gp,) C V(n — 3) defined
by
H(Gp,) ={(2i —1,j2: —2) | i € {1,...,m}}

and the linear maps f; and f; defined by

fi: DSTo(n) — DSTy(n —3)
VS s H(VS)

and
fg : DST()(TL — 3) — {0, 1}m
Vs — WH(GDO) (VS,)

Then, for any (a;;)i<i<j<n € DSTo(n), we have

fofi ((aij)icicjcn) = fo((@1yi21))1<icicn—3)

=~ TH(Gp,) ((@14i,245)1<i<j<n—3)

= (42ij2:)1<icm = TGp, ((@i)1<i<j<n) -

X

Therefore f5fi = 7y, From Corollary we know that f; is an isomorphism whose
inverse is defined by f, ™' (VS') = V((O) Jar S (O)), for all V.S" € DSTo(n — 3).
o

Moreover, since we have
22i — 1) < jo —2< (n—3)— (2i — 1),

foralli € {1,...,m},and m = | 2| = | 223 | 4+ 84 (4,_3 mod 6) When n is odd, the set H (Gp,)
is a generating index set of DSTo(n — 3) by induction hypothesis. Therefore, f; is an
isomorphism. Finally, since the linear map ng,, = f2f1 is an isomorphism, the set Gp,
is a generating index set of DST((n) in this case.
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Case 2. Suppose now that n is even. We consider the subset H (Gp,) C V(n — 3) defined
by
H(Gp,) = {(2, jois1 —2) | i € {1,...,m — 1}}

and the linear maps f; and f; defined by

fi: DSTo(n) — {0,1} x DSTo(n — 3)
VS = (aij)i<icisn +— (a1,5,, H(VS))

and
fo: {0,1} x DSTo(n —3) — {0,1}™
(x,VS) — () - TH(Gpy) (VS

Then, for any (a; ;)i<i<j<n € DSTo(n), we have
faf1 ((aig)icicj<n) = f2 (a1, (a14i2+45)1<i<j<n—3)
= (a) - WH(GDO) ((@14i2+5)1<i<j<n—3)
= (al,ﬁ) ) <a’27;+17j2i+1)1<i<m_1

= (a2i+1,j2¢+1)ogigm,1 = 7TGD0 ((%,j)léiéjén)'

Therefore fof1 = mg,,,. From Corollary we know that f; is an isomorphism whose
inverse is defined by f, ! (z,VS') = V((O) - S’ (O)), for all (z,VS’) € {0,1} x

ji—Lz
DSTo(n — 3). Moreover, since we have

4i < Joip1 —2 < (n—3) — 24,

forallie {1,...,m—1},and m —1 = L%J + 04, (nmod6) — 1 = L“T_SJ when n is even, the

set H(Gp,) is a generating index set of DST((n — 3) by induction hypothesis. Therefore
WH(GDO) and thus f, are isomorphisms. Finally, since the linear map TGp, = fof1 is an

isomorphism, the set Gp, is a generating index set of DSTy(n) in this case.

This completes the proof. O

Since the dimension of DST o(n) corresponds to the cardinality of the generating index
set G p,, it is easy to obtain the following

Corollary 5.8. dimDST(n) = L%J + 04,(n mod 6), for all non-negative integers n.

Using Proposition [5.5] and Theorem [5.7, we are now ready to give a generating index
set of DST (n), for all non-negative integers n.

Theorem 5.9. Let n and m be non-negative integers such that m = L"T%J + 01,(n mod 6) -
For every integer i € {1, . \_%J }, let j; € {2i,...,n—1i}. Then, the set

Gp ={(2i+1,j941) | 1 €{0,...,m—1}},

when n is even, or

Gp ={(1,j1)}U{(24,jo) | 1 € {1,...,m —1}},

when n is odd, is a generating index set of DST (n).
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Proof. First, suppose that n is even. We know, from Proposition that DST (n) =
DSTo(n). Moreover, since m = L"THJ = L%J + 04,(n mod ) When n is even, it follows from
Theorem 5.7 that

GD = GDO = {(22+1,]21+1> | 1€ {0,...,TTL— 1}}

is a generating index set of DST (n) in this case.

Suppose now that n is odd. From Proposition[5.5 we know that DST (n) = DSTo(n)U
(DSTo(n) + U,). Therefore {(1,71)} UGp, is a generating set of DST (n), where Gp, is
a generating index set of DST(n). Moreover, since m—1 = L"Tﬁj +01,(nmod6) — 1 = \_%J
when n is odd, it follows from Theorem that

Gp={(1,j1)}UGp, ={(1,51)} U{(24,72:) | i € {1,...,m —1}}
is a generating index set of DST (n) in this case. This completes the proof. O

Corollary 5.10. Let n and m be non-negative integers such that m = VT%J +01,(n mod 6)-

The set
GD:{<2i—i—1,n— gJ) ‘iE{O,...,m—l}},

when n is even, or

Go={(1n= )} o= [2]) |0,

when n is odd, is a generating index set of DST (n).

Proof. From Theorem since 2t < n — \_%J <n—1, foralle e {1, ce \_%J } ]

Since the dimension of DST (n) corresponds to the cardinality of the generating index
set Gp, it is straightforward to obtain the following

Corollary 5.11. dimDST (n) = L”TJ“O’J + 01,(n mod 6), for all non-negative integers n.

5.3 Basis of DST(n)

First, using the operators H* and the generating index sets G'p introduced before, we
obtain a family of bases of DST (n), for all non-negative integers n.

Theorem 5.12. Let n and m be non-negative integers such that m = L"TJF?’J + 01, (1 mod 6) -
For every k € {0,..., 2] — 1}, let Vi € DST(n) such that H* (Vi) = U,_s,. Then, the

set

{Vor | k€ {0,...,m—1}},

when n is even, or
{Vo} U{Varsa [ £ €{0,...,m —2}},
when n is odd, is a basis of DST (n).

Remark. Vy = U, in the previous result.
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Proof. Suppose first that n is even. We consider the set

GD:{<2i+1,n—gJ> ‘iE{O,...,m—l}}.

Let kK € {0,...,m —1}. For Vy; = (a;,)
Lemma [3.10] that

1<icj<n SINCE H? (Vo) = Un_gr, it follows from

[ 1 fori=2k+1,
in-12] T 0 forie {2k+2,...,[%|}.

Moreover, it is clear that 2m — 1 < L%J and thus

TGp (ng) = (*,...,*,1,0,...,0).
k m—k—1

Therefore the set {rg, (Vor) | k € {0,...,m —1}} is a basis of {0,1}°”. Finally, since
Gp is a generating index set of DST (n) by Corollary [5.10, we conclude that

{ng | kE{O,...,m—l}}

is a basis of DST (n) in this case.
Suppose now that n is odd. The proof is similar to the even case by considering the
generating index set

o= (1= (3D} o{in- 5] [re rnm ),

from Corollary and since
[ren (Vo)} U {may (Varsr) | K € {0,...om —2}}
is a basis of {0,1}” using Lemma m This implies that the set
{Vot U{Vops1 | E€{0,...,m —2}}
is a basis of DST (n) in this case. This completes the proof. m

Now, we consider the restriction of the linear map p on the linear subspace HST (n),
i.e., the linear map pjys7(,) @ HST(n) — DST(n) defined by p = r* + 7 + id,, for
all non-negative integers n. Obviously, this map is surjective since p(V) = V, for all
V € DST(n). Since U,_sx = p((1),—3x) by definition, for all non-negative integers n and
k such that 3k < n, this leads to the following

Corollary 5.13. Let n and m be non-negative integers such that m = L"TJ“?’J +01,(n mod 6) -
For every k € {O, cee L%J — 1}, let Sy be a symmetric binary sequence of length n such
that O*Sy = (1),_x. Then, the set

{p(VSy%) | k€ {0,...,m —1}},

when n is even, or

(P (VS0)} U {p (V) | ke {0.....m— 2}].
when n is odd, is a basis of DST (n).
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Remark. p(VSy) = p(V(1),) = U, in the previous result.

Proof. Let k € {0, cee L%J — 1}. First, since Sy is symmetric, we know from Proposi-

tion 4.2/ that V.S, € HST (n) and thus p (VSy) € DST (n), by definition of p. Moreover,
since 9%Sy, = (1),,_p, it follows that

HE (0 (VSk)) = p (H* (VSh) = p (V(1)nst) = Up_ss-

Therefore, the result directly comes from Theorem by considering the dihedrally
symmetric Steinhaus triangles Vi, = p (V.Si). O

We end this section by giving an explicit basis of DS7 (n) in terms of the n-length

binary sequences
. I4+5—1
= (),
27 1<ji<n

Theorem 5.14. Let n and m be non-negative integers such that m = L”TJFP’J + 01, (n mod 6)-
For every k € {0, ey L%J — 1} of same parity than n, let

k—n . . k+n ; k—n ;
_ m \_((=z ti—¢ 2 J 5ot 9
Vi p<vsk7’%"> ((k+1—z’>+(k+i—j>+<k+j—n)m0d 1<i<y

<i<jsn

for all integers k and [.

Then, the set
{VQk | ke {0,...,m—1}},

when n is even, or
{Un}U{VQk-‘rl | ke{077m_2}}7
when n is odd, is a basis of DST(n).

Proof. Let k € {0, cee [ﬂj — 1} of same parity of n. First, we know from Lemma

3
l(:,)c%n is symmetric. Moreover, by Proposition [3.12, we have

that the sequence S

oF (S(n) > _ gk _ (D)n_g.

k,Eon 0,552
We conclude the proof by using Corollary |5.13| with the sequences Sy = S](Cn,)c;n, for all
)
ke {O, o L%J — 1} of same parity of n, and Sy = (1),, when n is odd. ]

Corollary 5.15. Let n and m be non-negative integers such that m = L%J + 04,(n mod 6) -
For every k € {0, cee L%J — 1} of same parity than n, let

k—n : : k+n : k—n ;
— (n) >: R =2 IR I
vi= o (VS/L. ((k+1—i Teri—g) T\ kin ) ) L

AV

Then, the set
{ng | ke {O,...,m—l}},

when n is even, or
{v2k+1 ‘ ke {07Jm_1}}7

when n is odd, is a basis of DSTo(n).
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Proof. From Theorem since we have that DST (n) = DST((n), when n is even, and

DST(n) = DSTo(n) U (DSTo(n) + Uy,), when n is odd, by Proposition [5.5] O
For instance, for n = 22, we obtain
k ng,l)c—ll P (ngjl)c—n)
O (1111111111111111111111) | Vo = V(0111111111111111111110)
1] (1100110011001100110011) | Vo = V(0110110011001100110110)
2| (1000011110000111100001) | V4 = V(0111111110000111111110)
3 | (0000001100000011000000) | Vs = V(0000000100000010000000)

All the dihedrally symmetric Steinhaus triangles of size 22 are depicted in Figure [12]
where the elements of the basis {Vy, Vi, Vi, Vs } are in red and, for every V € DST (22),
the coordinate vector (xg, z2, x4, 26) of V = 20V + 22V + 24V, + 26V is given.

X
A4

(1,0,1,1) (0,1,1,1) (1,1,1,1)

Figure 12: The 16 triangles of DST (22) where the 4 red triangles form a basis
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6 Parity-regular Steinhaus graphs

of length n, we denote by ir(S) the interlacing
of

For any binary sequence S = (a;),;,
of the sequence S and its reversed sequence, that is, the sequence ir(S) = (b;)
length 2n defined by

1<j<2n

b2j71 = a; and sz = Qp—j+1,

for all j € {1,...,n}. For instance, for S = (101000), we have r(S) = (100010010001).
For any positive integer n, we consider the linear map

6: SG(n) — ST(2n—-1)
G(S) — an’oir(S)

Note that the Steinhaus triangle V.S € ST (n — 1) is then a subtriangle of §(G (5)) €
ST(2n — 1). Indeed, for the sequence S = (a;), ., , and the Steinhaus triangle
0(G(9)) = anp ir(S) = (@i;)1<icjcon_1> the Steinhaus triangle V.S is simply the subtri-
angle (a2iv2j)1<i<j<n—1’ since as9; = a;, for all j € {1,...,n — 1}, by definition of §, and,
using the local rule , we have

225 = 2i—1,2j—1+ 02125 = A2—22j—2+202i—22j—1+02—22j = A2—22j—2+a2-22; (mod 2),

for all integers ¢ and j such that 2 <7 < j < n — 1. For instance, for the sequence S =
(101000), the Steinhaus triangle (G (S)) is depicted in Figure [L3| where the subtriangle
VS appears in red.
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©
S
O
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=
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=
(©);
=
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=
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©
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(=)
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4@» <
Feeo
46» 46» 4
Fe=-S8
46» 46» 4@» <
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4@» 4@» 46» 46» <
recEEEoses
4@» <e> 4@» 4@» 4@» 4
So=0==c=c-0
2-£=0-e-0.0
2ESECESscE
2E=Sesces
2eSecEce
SE=cees
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25= ¢
=6
2eS
<€
<{

Figure 13: The Steinhaus triangle 6(G (101000)) where V(101000) appears in red

By definition of the linear map ir, we know that the sequence ir(S) is symmetric and
oy (ir(S)) = 0. It follows from Proposition [4.1] that the sequence [  ir(S) is symmetric
too. Therefore, using Proposition [4.2] we have

0(G(S)) =V, ir(S) € HST(2n — 1),

for all G (S) € SG(n). Moreover, using Lemma and since the middle term of the
sequence [ ir(S) is 0 by definition, we obtain that

o) (fn,() ir(S)) =0,
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for any sequence S of length n — 1.

The main result of this section is to show that the restriction of # to the linear sub-
space of even Steinhaus graphs £SG(n) induces an isomorphism between £SG(n) and
DSTo(2n — 1), for all positive integers n.

Theorem 6.1. Let S be a binary sequence of length n—1 > 0. Then, the Steinhaus graph
G (S) is even if and only if the Steinhaus triangle 6 (G (S)) is dihedrally symmetric.

The proof is based on the following

Lemma 6.2. Let S be a binary sequence of lengthn —1 > 0. Let v; denote the ith vertex
of the Steinhaus graph G (S5), for alli € {1,...,n}, and let 6 (G (5)) = (bij)1cicjcon 1 €
HST (2n —1). Then,

deg(vy) = b11  (mod 2)

and, for any i € {2,...,n}, if the (2i — 2)-th column Coi—s = (bj2i-2), ;cp;_o of 0 (G (S))
18 symmetric, then
deg(v;) = b;2;—1 (mod 2).

Proof of Lemma[6.4. We consider the adjacency matrix M (S) = (ai;),, ;<, of the Stein-
haus graph G (S). We already know that the upper-triangular part of M (S5), i.e., the
Steinhaus triangle VS = (ai;),;;,. corresponds to the subtriangle (b2i2;);;cjc,
of 8 (G (5)). In other words, we have a; ; = by;2j_o, for all integers i and j such that
1 <7<y <n. Then,

deg(vy) Zalj Zbggj 2 = 252237 (11)

7j=2
degvz Zajl+ Zaz] Zb2j2’b 2+ Zb212j 2_262322 2+Zb2123a 12
Jj=i+1 j=i+1
for all i € {2,...,n—1}, and
n—1
deg(vy,) —Za]n Zb2j2n 2 (13)
7j=1
We claim that
n+i—1
me 25 — Z b2137 (14>
j=2

for all i € {1,...,n — 1}. Since 6 (G (9)) is horizontally symmetric, we know that its ith
row R; = (bi);cjco,_, is symmetric, for all ¢ € {1,...,2n —1}. Let i € {1,...,n —1}.
Since the sequence Ry; is symmetric of even length 2(n — @) with by; ; = ba; 2n—142i—j, for
all j € {2i,...,2n — 1}, we obtain the following identities by dividing in half o(Ry;) in
two different ways

2n—1 n—1 n—1 n—1 n—1 n—1
o(Ry) = E by j = E bai 25 + E baijt1 = E bai 2 + E b2ion—1+42i—(2j+1) = 2 E bai 25,
j=2i j=i j=i j=i j=i J=t
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and

2n—1 n+i1—1 2n—1 n+i—1 2n—1 n+i—1

R2’L Zsz] ZbZZ]+Zb21j Zb21]+zb222n 1+2i— ]_sz%]

j=2 =2 j=n+1 j=2 j=n+1 Jj=2

Combining these two identities, the claim ((14)) is proved.
Using and the local rule, we deduce from that

n—1 n
deg Ul Z b2 25 — Z bgj = Z bl,j—1+b1,j) = Zbl’j+z bLj = b171+b1’n (mod 2)
j=2 j=1 j=2

(15)
Now, let i € {2,...,n} and suppose that the column Cy;_5 of even size 2i— 2 is symmetric.
Then, as for ((14)), using a double counting of o(Cy;_2), we obtain the following identity

i1 2i—2
Z baj2i—2 = Z bj2i—2- (16)
j=1 j=i

Using , and the local rule, we deduce from that

n+i—1
degvz Zb2]21 2+Zb212] 26]22 2+ Zsz]
Jj=21
2i—2 n+i—1
= Z(bj,%—l + bjt12i-1) + Z (bai-1,j-1 + bai1)
Jj=t Jj=21
2i—1 n+i— n+i—1
_ZbJQZ 1+ij2z 1+ ZbQZ 1]+Zb21 1,5
Jj=t+1 j=2i—1 j=2

= bigi—1 + b2ic12i-1 + baim12i-1 + boi—1mric1 = bigic1 + b2im1p4io1 (mod 2),
(17)
ifie{2,...,n— 1}, and from that

2n—2 2n—2

deg(vy,) ZbQJQTL 2 = ZbJZn 2 = Z ion—1 + bj41.2n-1) (18)

2n—2 2n—1
= g bjon—1+ E bjon—1 = bpan—1 + bapn_12,—1 (mod 2).

Since 6 (G (S)) is horizontally symmetric, we know that ba,_1_9;2,-1—; = 0, for all
i €{0,...,n— 2}, by Proposition . Moreover, by definition of 6(G (S)) = V[  ir(S)
we have that b, = 0. Therefore, we have

b2i+1,n+i = O, for all i € {O, e, = 1} (19)

Finally, by combining ([15)), and with (19)), the result of Lemmal6.2]is proved. O
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Proof of Theorem [6.1] First, suppose that 6 (G (S)) is dihedrally symmetric. Then, the
Steinhaus triangle 7 (0 (G (S))) = 0 (G (S)) is horizontally symmetric and the column C;
of 0 (G (5)) is symmetric, for all i € {1,...,2n — 1}. It follows from Lemma [6.2] that

deg(vi) = bi’gi,1 (mod 2),

foralli € {1,...,n}. Since 6 (G (9)) is dihedrally symmetric, we know from Corollary
that b 9,1 =0, for all i € {1,...,n — 1}. Moreover, since 0 (G (S)) € DSTo(2n — 1), we
have by, 9,1 = b1, = 0. Therefore, for every i € {1,...,n}, the vertex v; is of even degree
and the Steinhaus graph G (.9) is even.

Conversely, suppose that the Steinhaus graph G (S) is even. We prove, by induction
on 4, that all the columns C; of 6 (G (5)) are symmetric. From Lemma [6.2, we know
that by = deg(vy) mod 2. Since deg(vy) is even, it follows that b;; = 0. Moreover, since
bao = b1 1+ by 2 = b2 mod 2, we have that b; o = by 5. Therefore, the columns C and Cs
are symmetric. Suppose now that the columns C}, (s, ..., Cy; are symmetric, for some
ie{l,...,n—1}. First, since Cy; is symmetric of even length, we know from Lemma
that o9 (Cy;) = 0. Therefore, since 0Cy; 11 = Cy;, it follows from Propositionthat Cois1
is symmetric. Moreover, since Cy; is symmetric and the vertex v;,; is of even degree, we
obtain by Lemma [6.2] that

bit192i+1 = deg(viy1) =0 (mod 2).

Since b;+12i+1 = 0, we obtain from Lemma that o9 (Coy1) = 0. Therefore, when
i < n—1, since 0Cy 9 = (9,1, using Proposition again, we have that Cy; o is
symmetric. This concludes the proof that all the columns C; of 6 (G (S)) are symmetric.
Obviously, it follows that the Steinhaus triangle r (6 (G (9))) is horizontally symmetric.
Finally, since the triangles 6 (G (S)) and r (6 (G (.5))) are horizontally symmetric, we know
from Proposition [5.1] that 6 (G (.5)) is dihedrally symmetric. O

Corollary 6.3. For any positive integer n, the restriction
Olesgn) : ESG(n) — DSTo(2n — 1)
1S an tsomorphism.
Proof. Let n be a positive integer. We consider the linear map
Y: DSTo(2n—1) —> ESG(n)
(ai,j)1<i<j<2n—1 — G (@2,2j)1<j<n—1

We know from Theoremthat the linear maps 9|53g(n) and 1) are well defined. Moreover,
it is easy to verify that 1 o 0|e¢sgm) = idesgm) and Olesgm) © ¥ = idpsy,(2n—1)- This
completes the proof. O

This new result permits us to obtain the following two corollaries that were first proved
in [16].

Corollary 6.4. dimESG(n) = L”T_IJ, for all positive integers n.

Proof. Since the vector space £SG(n) is isomorphic to DSTo(2n — 1) by Corollary [6.3)]
we deduce from Corollary [5.8| that

2n — 1 o — 1 1
dimESG(n) = dimDSTo(2n — 1) = L n6 J + 04,2n—1 mod 6) = { n6 J = {n 3 J ;
for all positive integers n. m
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Corollary 6.5. The Steinhaus matriz M (S) associated to an even Steinhaus graph G (.S)
is doubly symmetric, i.e., all the diagonals of M (S) are symmetric.

Remark. This was a key result in the first proof of the formula dim£8G(n) = |2 | in

[16]. Another simple proof of this result can also be found in [10].

Proof. Let S be a binary sequence of length n — 1 whose associated Steinhaus graph
G (S) is even. In other words, we want to prove that the Steinhaus triangle 12 (VS) is
horizontally symmetric. Let 6 (G (S)) = (bij)1<icjcon_1- Since (G (5)) € DSTo(2n —1)
by Theorem [6.1] it follows that 72 (6 (G (S))) is horizontally symmetric. Therefore, the
diagonal D; = (bjit))1<jcon__; is symmetric, for all i € {0,...,2n — 2}. It follows that

bjit+j = ban—i—jon—j, (20)
forall j€{l,....2n —1 —i} and for all i € {0,...,2n — 2}. Let VS = (i), ;cjcn 1
As already seen, 1t corresponds to the subtmangle VS = (b2iz2j), <j<n-1 of (G (S))

1<ig
Therefore, we have a; ; = by; 25, for all integers ¢ and j such that 1 <+
i €40,. — 2}. From ((20]), we obtain that

Qj it = ij,2i+2j = 62n72i72j,2n72j = bZ(n—i—j),2(n—j) = Op—i—jn—j,

forall j € {1,...,n—1—1}. We conclude that the diagonal (a;;+;),c;c, 1,
for all 7 € {0,...,n—2}, and the Steinhaus triangle r? (V.9) is horizontally symmetric. [J

is symmetric,

Using Theorem and the results of Section [5 we are now ready for giving a basis
of ES§G(n), for all positive integers n.

Theorem 6.6. Let n be a positive integer. The set

{@/JP (VSQZLHIIE n+1> ‘ ke {O,..., Ln; 1J - 1}}

is a basis of ESG(n), where @Z)p( Sgﬁnﬂllz n+1> = G (Sk) with

k—n+25—-1 k+n—2j k—n+2
S, = + . + , mod 2 ;
2k 2k —25+3 2k —2n+2j +2 1<j<n—1

forallk € {0,..., |25 —1}.

Proof. Let n be a positive integer. From Corollary [5.15, we know that

{ (vsgﬁllk n+1> ‘ ke {o V;lJ —1}}

is a basis of DSTy(2n — 1), where p (VS;:HIZ n+1> is the triangle

k—mn+1+47—1 k+n—j k—n-+1i
. + S+ ) mod 2 ;
2k +2 —1 2k+1+4+1i—7 2k+2+j5—2n 1<i<j<2n—1

RS

for all k € {0,...,[25%] — 1}. It follows, by Corollary that

{wp (vs;"k 1,1+1> ' ke {o V;lJ - 1}}
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is a basis of £SG(n). Since ¢ ((a;;)) = G ((a2,2j)1gjgn—1)v we conclude that

vp (V8GN ) = G (S,

with
k—n+25—-1 k+n—2j k—n+2
Si = d?2
; (( ok )+ (2k—2j+3) + (2k—2n+2j+2) mo )stnl’
forallkG{O,l,...,L”T_lJ—l}. O

For instance, for n = 12, we obtain

(23) (23) (23)
Sokt1,k-11 p (vs%—i-l,k—ll) ¥ (P <VS2k+1,k—11>>
(10101010101010101010101) | V(01101010101010101010110) | G; = G (11111111110)

(01000100010001000100010) | V(00010100010001000101000) | G2 = G (01101010110)
(10000010100000101000001) | V(01111110100000101111110) | G = G (10011001000)

N = O oy

All the even Steinhaus graphs of order 12 are depicted in Figure[14] where the elements
of the basis {G1, Gy, Gs} are in red and, for every G € £5G(12), the coordinate vector
(1,9, 23) of G = 21G1 + 2G5 + x3G3 is given.

We end this section by giving a basis of the linear subspace PRSG(n) of parity-regular
Steinhaus graphs, for all positive integers n. By definition, we know that PRSG(n) =
ESG(n) UOSG(n), where OSG(n) is the set of odd Steinhaus graphs of order n, for all
positive integers n. As already remarked, it is clear that OSG(n) = (), when n is odd.
For n even, we obtain the following

Proposition 6.7. For any positive integer n,
OS8G(2n) = ESG(2n) + G ((0)2,—2 - (1)) .
The proof is based on the following lemma, where the linear map ¢ is defined by

t: 8G(2n) — SG(2n)
G(S) — G(5+(0)2m—2-(1))

for all positive integers n.

Lemma 6.8. For any positive integer n, the Steinhaus graph G (S) of order 2n is even
if and only if « (G (9)) is odd.

Proof of Lemma [6.8 We consider the respective adjacency matrices M (S) = (a,;), <ij<on
of G(S) and M (S + (0)2n—2 + (1)) = (bij)1; jcon Of ¢t (G (S)). Then .it is easy to see that

bij = a;; forall1 <i<j<2n—1,
bion = Gion+1 (mod2) foralll<i<2n—1,

since the sequence S + (0)a,-2 - (1) only differs by the last term from the sequence S. It
follows that

2n 2n
degG(S) (v1) = Z 15 = Z bin+1= degL(G(S)) (v1) +1 (mod 2),
j=2 j=2
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degg sy (vi) Zagri‘ Z azj—zb“—i- Z bij + 1= deg, sy (vi) +1 (mod 2),

Jj=i+1 Jj=t+1
foralle{Q,..., 2n — 1}, and

2n—1 2n—1

deggs) (v2n) = Z Qjon = Z bion +2n — 1 = deg,g(s)) (v2n) +1  (mod 2),
i=1

=1

where degg gy (vi) and deg, sy (vi) are the degrees of the ith vertex of the Steinhaus
graphs G (S) and ¢ (G (S5)), respectively, for all i € {1,...,2n}. Since degg g (vi) =
deg,(g(sy) (vi) + 1 mod 2, for all i € {1,...,2n}, the result follows. O

Proof of Proposition[6.7. From Lemma [6.8] it is clear that ¢ induces an involution on
PRSG(2n) with OSG(2n) = +(ESG(2n)) = ES5G(2n) + G ((0)2,—2 - (1)), for all positive

integers n. 0
It immediately follows that, for any positive integer n, we have
PRSG(2n — 1) =ESG(2n — 1) (21)

and

PRSG(2n) = £8G(2n) U (ESG(2n) + G ((0)2n_z - (1)) . (22)

Therefore, we retrieve the following
Proposition 6.9. dim PRSG(n) = L"T’lj + 00,(n mod 2), for all positive integers n.
Combining the identities and with Theorem , we obtain the following

Theorem 6.10. Let n be a positive integer. The set

{wp (vs;illk M) ' ke {o V;lJ - 1}}

when n is odd, or the set

(@ (s ) fun (w880 0) | re o |25 <1}

when n is even, is a basis of PRSG(n), where p <VS§€T12_R+1> = G (Sg) with

k—n+25—1 k+n—2j k—n+2
_ 42
S (( ok )+ (2k—2j+3) * <2k—2n+2j+2) o )KKM’

forallkG{O,...,[”T_lj —1}.

For instance, for n = 12, we obtain

Go = G (00000000001), G; =G (11111111110), G» = G (01101010110), G5 = G (10011001000).

All the parity-regular Steinhaus graphs of order 12 are depicted in Figure for even
graphs and in Figure [15| for odd ones, where the elements of the basis {Gg, G1, G2, G5}
are in red and, for every G € PRSG(12), the coordinate vector (zg,x1, 22, x3) of G =
oGy + 1G1 + 122Gy + x3G5 is given ((x1, x9, x3) when 2o = 0 in Figure .
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7 Symmetric generalized Pascal triangles

Another kind of binary triangles with a similar definition than Steinhaus triangles can be
considered. A generalized Pascal triangle of size n is a triangle A = (a;;)1<j<i<n Of 0’s
and 1’s verifying the local rule , ie., a;; = aj_1j-1 + a,—1,; mod 2, for all integers
i,j such that 2 < j < i < n. A generalized Pascal triangle (a;;)1<j<i<n 1S completely
determined by its left side L = (a;1)1<i<n and its right side R = (a;;)1<i<n- Therefore, we
denote by A (L, R) the generalized Pascal triangle generated from the sequences L and
R. The set of binary generalized Pascal triangles of size n is denoted by P7 (n). Since
the set of generalized Pascal triangles is closed under addition modulo 2, it follows that
PT(n) is a vector space over Z/27. An example of generalized Pascal triangle of size 5
is depicted in Figure [16]

Figure 16: The generalized Pascal triangle A ((11100), (11001))

Since a generalized Pascal triangle is uniquely determined by its left and right sides,
which have the same first term, the dimension of P7 (n) is 2n — 1, for all positive integers
n. Moreover, there exists a natural isomorphism between PT (n) and ST (2n — 1), for all
positive integers n. Indeed, as depicted in Figure [I7] a generalized Pascal triangle of size
n can be seen as a subtriangle of a Steinhaus triangle of size 2n — 1.

[CU000 0000
N0 07
XXX 0XLY

AN
\/

Figure 17: ~ (V(110010100)) = A ((11100), (11001))

For any positive integer n, let v be the linear map defined by
v ST2n-1) — PT(n
(aivj)lgiSjSanl — (ai,n—lﬂ‘)lg]‘gign

The linear map ~ is well defined since the generalized Pascal triangles and the Steinhaus
triangles share the same local rule (LR)).

Proposition 7.1. The linear map v : ST (2n — 1) — PT (n) is an isomorphism.

Proof. Let V = (i) ciciconq € ST(2n — 1) and A = v (V) = (@in-1+4j)1<;cicn,- The
linear map ~ is an isomorphism since the set G g of indices of the left and right sides of
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A= (a'i,n—1+j)1<j<i<n7 i'e'>
Grr=A{(,n) |ie{l,...;n}}U{(i,n—1+4+14) |ie€{2,...,n}}

is a generating index set of ST (2n —1). First, all the terms of the first row (a1,7), 5,
of V can be expressed in function of the elements of the left side (ain),,., and of the
right side (a;,_11:) of A. Indeed, for every j € {1,...,n}, we know from Lemma
that

1<i<n

n—j

("3 )owen (moa 2

k=0

and

n—

.

a1,2n—j

n— i
( L j)ak_i_l’n_t'_k (mOd 2)
k=0

Since G = {(1,j) | j€{1,...,2n—1}} is a generating index set of ST (2n — 1), we
conclude that G g is a generating index set of ST (2n — 1) too. Therefore, the linear map
v is an isomorphism. [

As for Steinhaus triangles, the action of the dihedral group D3 = (', k') on PT (n)
can be considered, where the automorphisms 7" and b’ of PT (n) are defined by

' PT(n) — PT(n)

(aijh<jcicn m (@najint1—i)1<i<i<n

and
h': PT(n) — PT(n)
(az‘,j)1<j<z<n L (ai,l—j+z‘)1<j<i<n
For instance, for L = (11100) and R = (11001) and for all g € Ds, the generalized Pascal
triangles g (A (L, R)) are depicted in Figure

A A
A\ LON AD\
@QA A0\ SO £
o Wooo s o é
(DN £
0 JONII 00 00 0@ 0
A(L, R) ( (L, R)) (AL, )) W (A (L, R)) ' (A )) r?W (A (L, R))

Figure 18: Action of D3 on A ((11100), (11001))

Proposition 7.2. For any positive integer n, we have
yr=r'y and ~vh=h".
Proof. First, we have
v (7“ ((aivj)1<i<j<2n71>> =7 <(aj—i+1,2n—i)1<i<j<2nfl> - (an+j—i72”—i)1<j<i<n
and

r! (7 <(ai7j)1<iéj<2n*1>> =7 ((ai7”_1+j)1<j<i<n> = (a”'*‘j—m”_i)léjéién?
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for all (a; ;) € ST (2n — 1). Moreover,

1<i<j<2n—1

v (h ((aiyj)lgigjgznA)) =7 <<ai727L—1—j+i)1<i<j<2n71> = (ai7n+i—j>lgj<i<n
and
W <7 <(ai’j)1<igj<2n71)> =N <(ai’"—1+j)1<g’<i<n> = (Gintij)1<jcicn
for all (i), <icjcon_1 € ST(2n —1). This completes the proof. O
A generalized Pascal triangle A of size n is said to be
e rotationally symmetric if ' (A) = A,
e horizontally symmetric if K'(A) = A,
o dihedrally symmetric if r'(A) = W' (A) = A.

The sets of horizontally symmetric, rotationally symmetric and dihedrally symmetric
generalized Pascal triangles of size n are denoted by HPT (n), RPT (n) and DPT (n),
respectively, for all non-negative integers n. In other words, the sets HPT (n), RPT (n)
and DPT (n) are simply the linear subspaces ker (h’ — z'de(n)), ker (’r’ — z'de(n)) and
ker (h’ — ide(n)) N ker (r’ — z'de(n)), respectively, where idpr(,) is the identity map on
PT (n), for all non-negative integers n. Examples of such triangles appear in Figure |19}

Figure 19: Triangles of HPT(5), RPT (5) and DPT(5).

It is now easy to see that a symmetric generalized Pascal triangles of size n corresponds
to a symmetric Steinhaus triangle of size 2n — 1, for all positive integers n.

Proposition 7.3. For any positive integer n, a steinhaus triangle V, of size 2n — 1,
is horizontally, rotationally, or dihedrally symmetric if and only if the generalized Pascal
triangle v (V), of size n, is horizontally, rotationally, or dihedrally symmetric, respectively.

Proof. From Propositions and [7.2] O

Corollary 7.4. The linear map ~y induces isomorphisms of HST (2n — 1) upon HPT (n),
RST (2n—1) upon RPT (n) and DST (2n—1) upon DPT (n), respectively, for all positive
mtegers n.

Proof. From Proposition [7.3] O

Using the isomorphism v and the results of the previous sections, we obtain the di-
mension and a basis for each linear subspace of symmetric generalized Pascal triangles of
size n, for all positive integers n.

Proposition 7.5. For any positive integer n, we have
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o dim HPT(n)

n,

o dim RPT(n)

2|21 +1,

5]

Proof. Let n be a positive integer. From Corollary [7.4] and Corollary [1.6] we obtain that

o dim DPT(n)

dim HPT(n) = dim HST(2n — 1) = F”Q_ ﬂ .

Moreover, from Corollary [7.4] and Corollary [3.5 we have
2n —1

dim RPT(W/) = dim RST(Z” - 1) = \‘ J + 51,(271—1 mod 3)

2n — 1 n—1
= 01 (n mo =2 1.
{ 3 JJr 1,( d 3) { 3 J+

Finally, from Corollary [7.4] and Corollary [5.11] we obtain

2 2
dimDPT (n) =dimDST (2n — 1) = n; J + 01,201 mod 6)

_n+1 iy _{ﬁ“
- 3 1,(n mod 3) — 31

This completes the proof. n

Theorem 7.6. Let n and m be positive integers such that m = 2 L"T_lj + 1. For any
integers lo, ..., l,_1, the set

{7,0 (VS,SZ_I)) ‘ ke{0,...,m— 1}}

is a basis of RPT (n), where

() = (R ) ) () )
for all k €{0,...,m —1}.
Proof. From Theorem [3.13 and Corollary [7.4] O
Theorem 7.7. Let n be a positive integer. The set

{v(sia) |k edlin =1} ULy (VD))

is a basis of HPT (n), where

B —k+7—14+n—-1
Y <V 2(n—k)—1,—k> 2(71 - k') —1 2/ 1<j<isn ’

forallk € {1,...,|2]|}, and v (V(1)2n_1) = A((1) - (0)p—1, (1) - (0)1)-
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Proof. From Theorem [4.9] and Corollary [7.4] O

Theorem 7.8. Let n and m be positive integers such that m = (%] Then, the set

(3 U2} U {p (S50 ) | B€ (00 om =2}

is a basis of DST(n), where v (Usp—1) = A((1) - (0)p—2 - (1),(1) - (0)p—2- (1)) and
(2n—1) _((Fkti—i k—j+1 k—n+i
1 (S5 = (<2ki+2> * <ij+2kn+2> * (2k+jn+1) mod 2)1@@@’
for all k € {0,...,m —2}.
Proof. From Theorem and Corollary [7.4] O

We end this section by giving bases obtained from Theorem for RPT(6), from
Theorem [7.7| for HPT (4) and from Theorem [7.8| for DPT (11).
For n =7 and kg = k; = ko = k3 = k4 = 0, we obtain the following basis

{’yp (vsgg’)) ’ ke {0, 1,2,3,4}}

of RPT(7), where

k S, p (vsﬁj?) ol (VSS,S’)

0 [ (1111111111111) | V(0111111111110) | Ay = A ((1000001), (1000001))
1] (0101010101010) | V(0001010101000) | A; = A ((0100010), (0100010))
2 | (0011001100110) | V(0101001100010) 2:A((1110101),(1010111))
3| (0001000100010) V(0100000101010) A((Ooooom),(omoooo))
4 (0000111100001) | V(1111011110001) A((1011001), (1001101))

All the rotationnaly symmetric generalized Pascal triangles of size 7 are depicted in Fig-
ure 20} where the elements of the basis {Ag, A1, Ay, Az, Ay} are in red and, for every A €
RPT(7), the coordinate vector (xg, x1, T2, T3, 4) of A = o Ag+x1 A1 +22A0+13A3+14Ay
is given.

For n = 4, we obtain the following basis

{7 (Sg—)%,—k) ‘ ke {1’273}} Uy (V(1)7)}

of HPT (4), where

7 7
k Sg—)%,—k P (ng—)%,—k)
1| (1000001) | Ay = A ((0001), (0001))

\)

w

(
(0100010) | Ay = A ((0011), (0011))
(1010101) | As = A ((0100), (0100))

and Ay, = v(V(1)7) = A((1000),(1000)). All the horizontally symmetric generalized
Pascal triangles of size 4 are depicted in Figure 21 where the elements of the ba-
sis {A1,As, Az, Ay} are in red and, for every T € HPT(4), the coordinate vector
(1,9, T3, 4) of A =21 A1 + 2oy + 23035 + 24y is given.
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Figure 20: The 32 triangles of RPT (7) where the 5 red triangles form a basis
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Figure 21: The 16 triangles of HPT (4) where the 4 red triangles form a basis

For n = 11, we obtain the following basis

{v(Ux)}U {'YP <vsgili1,k—1o> ‘ ke {0,1, 2}}

of DPT(11), where Ag = 7 (Us;) = A ((10000000001), (10000000001)) and

21 21 21
k S;klucfm P (vsékil,kfl()) P (ngk+)1,k71o)
0 | (010101010101010101010) | V(000101010101010101000) | A; = A ((01000000010), (01000000010))
1
2

(100010001000100010001) | V(011110001000100011110) | A = A ((00110001100), (00110001100))
(000001010000010100000) | V(000000010000010000000) | Ag = A ((00010001000), (00010001000))

All the dihedrally symmetric generalized Pascal triangles of size 11 are depicted in
Figure , where the elements of the basis {Ag, Ay, Ay, A3z} are in red and, for every
A € DPT(11), the coordinate vector (zg, x1,x2,x3) of A = x0A¢ + 2141 + 2905 + 2343
is given.

8 Generalizations and open problems
In this section, we propose to extend the study of symmetric binary Steinhaus triangles in
two directions: in higher dimension with the binary Steinhaus tetrahedra and for triangles

of numbers in Z/mZ with a local rule for which the set of triangles is closed under the
action of the dihedral group Dj.

8.1 Symmetric binary tetrahedra

A binary Steinhaus tetrahedron of size n is a tetrahedron (a’ivjvk)1<i<j<k<n of 0’s and 1’s
verifying the local rule
Wik = Wi-1j-1k-1 + Qi-1j-1k + a1k (mod 2), (LR2)
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Figure 22: The 16 triangles of DPT
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for all integers 7, j, k such that 2 < i < j < k < n. The set of Steinhaus tetrahedra of
size n is denoted by ST4(n). Since a Steinhaus tetrahedron (ai;r),<;c;jcp<, 15 uniquely
determined by its first row (aj ;) it follows that ST4(n) is a vector space over

1<j<k<n’

Z/27 of dimension (”;1) An example of Steinhaus tetrahedron of size 5 is depicted in

Figure 23]

@0

Y@Y @

Figure 23: A Steinhaus tetrahedron of size 5

The symmetry group of a regular tetrahedron is constituted by the identity, 11 ro-
tations (8 rotations by i%” around an axis passing through a vertex and the middle of
the opposite side and 3 rotations by 7 around an axis passing through the middle of two
opposite edges), 6 reflections and 6 rotoflections. This symmetry group is isomorphic to
S4 and the subset of rotations is a subgroup of order 12 isomorphic to Ajy.

From the local rule (LR2), for any Steinhaus tetrahedron 7" and for all g € Sy, it is

easy to see that g(7') is also a Steinhaus tetrahedron, of the same size.

Problem 8.1. For any subgroup G of S, and any non-negative integer n, we consider the
linear subspace of Steinhaus tetrahedra of size n defined by

ST.(n)¢ ={T € 8Ty(n) | Vg G,g(T)=T}.

The problem is then to characterize S'T4(n)G, to determine its dimension and a basis, for
all integers n and all subgroups G of S,.

8.2 Symmetric triangles in Z/mZ

Triangles similar to binary Steinhaus triangles can be considered for other kinds of num-
bers. In [4], the authors study triangles defined from quasigroups. A quasigroup (G, x)
is a finite set G with a binary operation x such that, for all a,b € G, there exist unique
x,y € G for which axx = b and yxa = b. A V, -configuration of size n is a triangle
(a;;)1<i<j<n of elements in (G, *) verifying the local rule

Q5 = Aj—15-1* Qj—1 5,

for all integers ¢, j such that 2 < i < j < n. For (G,*) = (Z/2Z,+), a V,-configuration
is simply a binary Steinhaus triangle.

A quasigroup (G, ) is said to be semisymmetric if yx (r xy) =z, for all z,y € G. It
is easy to see that, for a semisymmetric quasigroup (G, *), the set of V,-configurations is
closed under the 120 degrees rotation. Moreover, if (G, *) is a commutative quasigroup,
the set of V,-configurations is also closed under the horizontal reflection.

A V,-configuration is said to be rotationally symmetric if it is invariant under rotation
and is said to be dihedrally symmetric if it is invariant under rotation and horizontal
reflection (under the action of Ds).

49



The rotationally symmetric V,-configurations, for semisymmetric quasigroups, and
the dihedrally symmetric V,-configurations, for commutative semisymmetric quasigroups,
have been studied in [4]. Similar results than Propositions [3.2/and [5.4| are established and
the cardinality of sets of rotationnaly and dihedrally V,-configurations are given.

Theorem 8.2 (Theorem 3.4 in [4]). Let (G,*) be a semisymmetric quasigroup. The
number confr (n) of rotationally symmetric V .-configurations of size n is given by

el if n = 3k,
confr(n) = ¢ |G|F™ if n =3k +1,
IFix(*)||G* if n =3k +2,

where Fix(x) = {x € G | z xx = x}.

Theorem 8.3 (Theorem 3.16 in [4]). Let (G, *) be a commutative semisymmetric quasi-
group. The number confp(n) of dihedrally symmetric V.-configurations of size n is given

by

(1G)* if n = 6k,
lelian if n=06k+1,
) PG ifn =6k + 2,
confp(n) =4 gkt if n =6k +3,
lelian if n =6k + 4,
| [Fix()||G|* if n = 6k + 5,

where Fix(x) = {z € G | v ¥z = z}.

Suppose now that G = Z/mZ, with m > 2, and let x be the binary operation defined by
zxy = —(z+y), for all x,y € Z/mZ. Then, the quasigroup (Z/mZ,*) is commutative and
semisymmetric. We are interested in the study of the sets of rotationally symmetric V,-
configurations and of dihedrally symmetric V,-configurations of size n in (Z/mZ, x), that
we denote by RSC(z/mz,)(n) and DSC(z/mz.)(n), respectively. Examples of rotationally
and dihedrally symmetric V,-configurations of Z/6Z are depicted in Figure

Figure 24: Triangles in RSC 26z, (8) and DSC(z/6z.4)(8)

It is clear that RSC(z/mz,.)(n) and DSC(z/mz)(n) are submodule of the free Z/mZ-
module of V,-configurations.

Problem 8.4. Let m be a positive integer. For any positive integer n and each submodule
RSECz/mz(n) and DSCz/mz(n), determine its length and a generating set.
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