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INTRODUCTION

The well-known equation-error approach for aircraft identification requires the estimation of derivatives from noisy measurement signals. That allows constructing an identification model linear with respect to the parameters, which can thus be estimated with a linear regression technique. 1 Brunot, October 23, 2018

The goal of this technical note is to suggest and evaluate techniques to estimate the derivatives used in robot identification. The usual approach in aircraft identification, based on polynomial interpolation, described in [START_REF] Morelli | Practical aspects of the equation-error method for aircraft parameter estimation[END_REF][START_REF] Klein | Aircraft system identification: theory and practice[END_REF]) is considered as well as a method combining finite differences and wavelet denoising. The two suggested techniques from robot identification are a combination of finite differences with a pre-filter and a Kalman filter with a random walk model. The former is the standard technique for industrial robot identification [START_REF] Gautier | Dynamic identification of robots with power model[END_REF] and the latter has recently proven to be a viable alternative [START_REF] Brunot | An instrumental variable method for robot identification based on time variable parameter estimation [special issue[END_REF].

For this note, the author considers the reduced order model of the Short Period Pitch Oscillation (SPPO) to be concise. Eq. ( 1) gives the linearized state equation corresponding to this mode and

(2) provides the measurement model, where v α , v q and v a z are measurement noises assumed to be white. For the reader unfamiliar with the flight dynamics notations, an appendix summarizes those used in this brief.
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From those equations, a formulation linear with respect to the parameters to be estimated, referred to as the identification model, can be derived:

y = y T 1 y T 2 y T 3 T = Xθ + ν (3)
where

• y i = vec (y i (t)) = y i (t 1 ) • • • y i (t N )
T is a (N × 1) vector of y i , with y 1 = αq m , y 2 = q and y 3 = a z m ; 2 Brunot, October 23, 2018

• θ = C Lα C Lq C Lδ e C mα C mq C mδ e
T is a (6 × 1) vector of unknown parameters;
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is the (3N × 6) observation matrix built with X α = vec (-qSα(t)), X q = vec -qS c 2V q(t) and X δ e = vec (-qSδ e (t)).

Based on (3), the parameters can be estimated straightforwardly with the Least-Squares (LS) method [START_REF] Klein | Aircraft system identification: theory and practice[END_REF]:

θ = X T X -1 X T y. (4) 
With (3), it appears the need to evaluate the derivatives α and q from the measurements coming from [START_REF]Example of α estimation -White-noise -Butterworth (dashed) and true noise-free signal (solid)[END_REF]. Angular accelerations are usually not measured, or else with poor quality. The pre-processing step must be accurately done in order to limit the distortions of the signals. That disqualifies the use of the finite difference formulas without any filtering, because it would amplify high frequency noise components: see e.g. [START_REF] Wood | Data smoothing and differentiation procedures in biomechanics[END_REF].

Two important aspects of this pre-processing must be noted. Firstly, in this note, only off-line identification is considered; i.e. the whole time series are available. Consequently, the possibility of using future data for the filtering is left opened. Secondly, the objective is to pre-filter only the signals α m , q m and a z m . Therefore, the pre-processing step cannot introduce any lag in the time series in order to use the derivatives along with unprocessed signals, like the elevator input for instance. In the following section, the pre-processing techniques compared in this note are summarized.

CONSIDERED NUMERICAL DIFFERENTIATION TECHNIQUES
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Filtered Finite Differences Technique

To avoid the noise amplification by Finite Differences (FD), the basic idea is to filter the data before, as described in [START_REF] Gautier | Dynamic identification of robots with power model[END_REF]). The measured signal x m is firstly filtered to obtain x.

From this filtered signal, the derivative can be calculated with FD. The filter type and its cut-off frequency, f c , must be selected such as x, ẋ ≈ (x, ẋ) in the range [0, f c ]. In robot identification, the filter is usually a Butterworth one and it is applied in both forward and reverse directions to avoid lag introduction. For robots, the rule of thumb for the cut-off frequency is f c ≥ 5 f dyn , where f dyn is the natural frequency of the highest mode of the system.

At first glance, the use of the Butterworth filter presents two drawbacks. Firstly, it does not separate the noise from the signal if the Fourier spectra overlap. Secondly, it requires a manual selection of the frequency range based on the practitioner knowledge. An alternative to avoid such limitations is the use of wavelets for signal denoising. In this method, the measured signal is decomposed into a set of generating wavelets functions. A threshold is used to delete the wavelet coefficients where the signal is smooth and keep the coefficients which are large enough. In this brief, the author uses the denoising function ThreshWave from the WaveLab Toolbox prior to FD: see e.g. [START_REF] Donoho | Adapting to unknown smoothness via wavelet shrinkage[END_REF]. The Toolbox can be downloaded via http://statweb.stanford.edu/ wavelab/.

Polynomial Least-Squares Approximation

The polynomial interpolation over a sliding window is a solution for local smoothing of noisy time series, but it can also provide an estimate of the derivative. The principle is to fit a low-degree polynomial over successive sub-sets of adjacent data points. From the estimated local polynomials, the local derivative values can be estimated. The user must thus set the size of the window and the order of the polynomial. That method is often referred to as the Savitzky-Golay algorithm. For this brief, the implementation of the SIDPAC (System IDentication Programs for AirCraft) [START_REF] Morelli | System identification programs for aircraft (sidpac)[END_REF] is employed. This Toolbox can be downloaded via https://software.nasa.gov/software/LAR-16100-1. The deriv routine indeed provides an effective implementation of this method with default settings that gave good results in many practical cases of flight test data analysis.

4
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Time-Varying Parameter Estimation

An automatic alternative method that does not require a priori knowledge of the system bandwidth is based on a combination of the Kalman Filter and Fixed Interval Smoother (KF-FIS). This is described in chapter 4 of (Young 2011) and has been applied successfully to robot identification [START_REF] Brunot | An instrumental variable method for robot identification based on time variable parameter estimation [special issue[END_REF]). This same approach can be used in the present context by modeling the signal

x as a simple Integrated Random Walk (IRW) process described by a simple state equation of the form,
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x m (t i ) = x(t i ) + ξ (t i ),
where and ξ are, respectively, the process and measurement noise inputs; x and ẋ are the states to be estimated; ∆t is the fixed sampling period. The variances of the noises are regrouped in a single hyper-parameter, the Noise Variance Ratio (NVR):

nvr = var ( ) var (ξ) . ( 6 
)
This NVR is estimated thanks to a maximum likelihood optimization. The resulting KF-FIS algorithm yields the estimates x and ẋ that are required to construct the observation matrix. This Integrated Random Walk SMoothing (IRWSM) algorithm is coded as the routine irwsm in the CAP-TAIN Toolbox, which can be downloaded via http://captaintoolbox.co.uk. It should be stressed that, thanks to the maximum likelihood optimization, the practitioner does not have to provide any a priori knowledge.

Table 2 summarizes the considered methods for the estimation of the derivatives, which are divided in two steps. The first step consists in filtering the noisy signal without lag introduction.

The second step focuses on obtaining the derivative signal, which is relatively straightforward for the polynomial and IRWSM methods.

5
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RESULTS

Influence of the Sampling

For the numerical evaluation of the techniques, the T-2 aircraft model used in [START_REF] Grauer | A new formulation of the filter-error method for aerodynamic parameter estimation in turbulence[END_REF] is considered. The parameters and the noise levels are taken equal to the estimated values for Flight 15 in the previous reference. Still according to that reference, the aircraft is excited with a 10 s orthogonal phase-optimized multisine input with frequencies located between 0.2 Hz and 2.2 Hz whereas the data are sampled at 50 Hz for analysis and modeling. In practice, the mkmsswp function of the SIDPAC is used to generate the elevator deflection. In addition, 1 s and 2 s of zero excitation are added respectively before and after the perturbation [START_REF] Klein | Aircraft system identification: theory and practice[END_REF].

Regarding the FD, we use a 4 th order Butterworth filter with a cut-off frequency f c = 2 f dyn = 4.4 Hz. For the wavelet denoising, ThreshWave is used with the default parameters and hard thresholding. As explained in Section 2, deriv is used with default settings for the polynomial approximation. Concerning the IRWSM technique, the routines of the CAPTAIN are self-contained.

In a first time, the influence of the sampling time is investigated. To avoid any combination of two problems, the identification is performed without noise. In this case, the IRWSM approach is not considered since it would mean the nvr is infinite. Table 3 summarizes the LS estimates and their relative errors, defined by (7) where x s is the noise-free/true vector and x is its estimate. At the regular sampling frequency (F s = 50 Hz), the estimates appear to be slightly biased whereas there is no noise. Those discrepancies come from the error in the derivative estimation; see Table 4 that gives the relative errors of the derivatives. This preliminary test shows that the estimation is very sensitive to any distortion in the derivative estimation and that it is preferable to have the largest sampling frequency possible. Furthermore, it illustrates the bottom line of what can be observed with noisy data.

RelErr (x) = x s -x x s (7) 6 
Brunot, October 23, 2018

Influence of the White Noise

In this part, the techniques are evaluated with added white noises on the outputs. According to [START_REF] Grauer | A new formulation of the filter-error method for aerodynamic parameter estimation in turbulence[END_REF], the measurement noise standard deviations are σ v α = 0.232 deg, σ v q = 0.274 deg/s and σ v az = 0.045 g in the case of severe turbulence. The sampling frequency is 50 Hz and 500 Monte Carlo Simulations (MCS) with independent noise sequences are run.

Table 5 gives the mean LS estimates, their standard deviations and their relative errors. The mean relative errors of the derivatives can be found in Table 4. It appears that the IRWSM technique has more difficulties to provide accurate estimates compared with other techniques whereas the estimation of the derivatives is not especially biased. That can be explained by the error on the estimation of q that leads to a biased C mq , which has a large influence in the computation of the relative error of θ. Such an estimation error can be attributed to the sampling frequency. The random walk model of the IRWSM technique indeed assumes that the states are slowly varying.

In the present case, the system's dynamics should be too close to the sampling rate. That was confirmed by a test with F s = 500 Hz. All the results are not shown for clarity but the relative error fell to 2.32% for the IRWSM estimated parameters. The polynomial technique provides a better estimation of the derivatives than the Wavelet technique. However, its LS estimates are less accurate than those of the Butterworth and Wavelet techniques. The Wavelet technique provides appropriate LS estimates. Nonetheless, its large relative errors for the derivatives reflect non-negligible oscillations in the time history: see Fig. 1 for an illustration. For comparison, the corresponding Butterworth estimated derivative is given in Fig. 2 to illustrate an appropriate estimation of α.

Finally, the Butterworth technique seems to be the most effective by looking at the relative errors of the derivatives and the final LS estimates.

The careful reader would have noticed that the relative errors are larger for the estimation of α whereas the related parameters (C Lα , C Lq and C Lδ e ) do not seem too impacted during the LS estimation. That is likely due to the fact those parameters are also estimated through a z m which is not deteriorated by a differentiation. An important lesson to be noted is that, with this model, simple rules cannot be inferred to link the quality of the derivatives estimation and the one of the 7 Brunot, October 23, 2018 aerodynamic parameters.

Influence of the Colored Noise

The techniques are now evaluated with colored noise. According to [START_REF] Morelli | Aircraft dynamic modeling in turbulence[END_REF], it is adequate to confine 80% of the noise power in the input frequency range. Consequently, a Finite Impulse Response filter is designed with an unitary gain below 4 Hz to colored the white noise used in the previous part.

The LS results are presented in Table 6 and the mean relative errors of the derivatives estimation are given in Table 4. First of all, some of the IRWSM estimates were removed due to their nonfeasibility (X rank deficient or C mq > 0). Despite this, the IRWSM estimated parameters are not satisfactory. That is likely due to the bad estimation of q. Besides the limitation seen in the previous part, the colored noise violates the assumptions of the Kalman filter. The Butterworth and Wavelet techniques equivalently perform with respect to the LS and derivatives estimation.

The polynomial technique results are also far from inadmissible. Except the IRWSM technique, the other ones seem robust to the colored aspect of the noise. Their results are indeed close to the bottom line found in Table 3. In fact, due to the filter design, the overall energy of the noise is less important than in the white noise case.

CONCLUSION

In this brief paper, several numerical differentiation techniques used in robot identification have been compared on an aircraft parameter estimation problem. The least-squares estimation method indeed requires the knowledge of unmeasured signals that must be reconstructed via a numerical differentiation technique. All the considered methods rely on freely available Toolboxes and are tractable in a few seconds on a standard computer. Monte Carlo simulations were run and have

shown that:

• Sample rate is critical to have a derivative estimation accurate enough;

• IRWSM technique for estimating system parameters does not seem appropriate due to a sampling frequency too close to the system's dynamics; 8 Brunot, October 23, 2018

• The polynomial approximation provides satisfactory derivative estimates, leading to satisfactory estimated parameters, although finite differences coupled to an appropriate filtering can be a serious contender;

• The wavelet denoising applied to the measured signal appears to be an interesting solution that could be further investigated in order to estimate the derivative directly from the Wavelet transform;

• A Butterworth filter correctly tuned is an effective solution to estimate the derivative and thus the parameters, especially with known excitation spectra.

NOTATION

The following symbols are used in this paper: 

a z = normal acceleration [m.s -2 ] C L = lift

  force coefficient C m = pitching moment coefficient c = mean aerodynamic chord [m] g = gravitational acceleration [m.s -2 ] I yy = pitch moment of inertia [kg.m 2 ] m = mass [kg] N = number of sample q = body-axis pitch rate [rad/s] q = dynamic pressure [kg.m -1 .s -2 ] S = wing reference area [m 2 ] t = time [s] V = true airspeed [m.s -1 ] α = angle of attack [rad]δ e = elevator deflection[rad] 

Fig. 1 .Fig. 2 .

 12 Fig. 1. Example of α estimation -White-noise -Wavelet (dashed) and true noise-free signal (solid)

TABLE 2 .

 2 Summary table of the considered methods

		Butterworth	Wavelet	Polynomial	IRWSM
	Filtering	Butterworth filter	Wavelet denoising	Polynomial interpolation	Kalman filter & Fixed interval smoother
	Differentiation	Finite Differences	Finite Differences	Estimated derivative of the polynomial	Estimated state derivative

TABLE 3

 3 

				. θ -Noise-free case			
				F s = 50 Hz			F s = 500 Hz	
	θ	True Value Butterworth Wavelet Polynomial Butterworth Wavelet Polynomial
	C Lα	3.828	3.827	3.827	3.825	3.828	3.828	3.828
	C Lq	16.39	16.45	16.51	16.78	16.38	16.39	16.39
	C Lδ e	0.125	0.125	0.125	0.125	0.125	0.125	0.125
	C mα	-1.437	-1.429	-1.430	-1.416	-1.437	-1.437	-1.437
	C mq	-44.76	-44.09	-44.19	-42.98	-44.61	-44.75	-44.74
	C mδ e	-1.722	-1.699	-1.702	-1.666	-1.718	-1.722	-1.721
		RelErr( θ)	1.41%	1.22%	3.82%	0.31%	0.01%	0.04%

TABLE 4 .

 4 Derivatives relative errors

	Technique Noise-free (50Hz) Noise-free (500Hz) White noise Colored noise
	Wavelet α Butterworth Polynomial	0.70% 0.53% 1.78%	0.49% 0.01% 0.02%	22.7% 98.3% 60.8%	17.5% 19.9% 18.2%
	IRWSM	-	-	21.4%	23.4%
	Wavelet q Butterworth Polynomial	2.05 % 1.11% 2.83%	1.94% 0.02% 0.04%	3.76% 14.7% 8.90%	3.18% 2.98% 3.97%
	IRWSM	-	-	15.7%	189%

TABLE 5 .

 5 White-noise case -500 MCS -Mean estimated parameters and standard deviations

	θ	True Value Butterworth	Wavelet	Polynomial	IRWSM
	C Lα	3.828	3.796 (0.054) 3.711 (0.055) 3.634 (0.051) 3.824 (0.054)
	C Lq	16.39	17.24 (3.722) 18.56 (3.733) 20.85 (3.648) 18.14 (3.679)
	C Lδ e	0.125	0.129 (0.062) 0.134 (0.062) 0.145 (0.061) 0.148 (0.062)
	C mα	-1.437	-1.418 (0.013) -1.388 (0.014) -1.346 (0.012) -1.396 (0.013)
	C mq	-44.76	-44.30 (0.969) -45.11 (0.978) -44.27 (0.919) -54.54 (0.951)
	C mδ e	-1.722	-1.700 (0.017) -1.711 (0.016) -1.672 (0.016) -1.758 (0.016)
		RelErr( θ)	2.01%	4.60%	9.39%	20.8%

TABLE 6 .

 6 Colored-noise case -500 MCS -Mean estimated parameters and standard deviations

	θ	True Value Butterworth	Wavelet	Polynomial	IRWSM *
	C Lα	3.828	3.801 (0.055) 3.799 (0.055) 3.797 (0.055) 3.828 (0.055)
	C Lq	16.39	17.11 (3.750) 17.16 (3.749) 17.44 (3.747) 18.86 (3.696)
	C Lδ e	0.125	0.126 (0.064) 0.126 (0.064) 0.126 (0.064) 0.166 (0.063)
	C mα	-1.437	-1.420 (0.013) -1.420 (0.013) -1.406 (0.013) -1.406 (0.194)
	C mq	-44.76	-44.28 (0.965) -44.39 (0.964) -43.18 (0.955) -49.95 (56.53)
	C mδ e	-1.722	-1.700 (0.016) -1.703 (0.016) -1.667 (0.016) -1.728 (0.238)
		RelErr( θ)	1.80%	1.78%	3.96%	12.0%
					

* : mean over 465 correct MCS

and practitioner. Springer Berlin Heidelberg, 2nd edition.
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