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In this paper we present an average-case analysis of closed lambda terms with restricted values of De Bruijn indices in
the size model where each occurrence of a variable contributes one to the size. Given a fixed integer k, a lambda term
in which all De Bruijn indices are bounded by k has the following shape: It starts with k De Bruijn levels, forming
the so-called hat of the term, to which some number of k-colored Motzkin trees are attached. By means of singularity
analysis, we show that the size of this hat is constant on average and that the average number of De Bruijn levels of
k-colored Motzkin trees of size n is asymptotically Θ(

√
n). Combining these two facts, we conclude that, for all

k ≥ 1, the maximal non-empty De Bruijn level in a lambda term with De Bruijn indices at most k and of size n is,
on average, also of order

√
n. On this basis, we provide the average unary profile of such lambda terms.

Keywords: profile of lambda terms, singularity analysis, lambda terms with restrictions

1 Introduction
The last decade has seen an abundance of studies on a quantitative analysis of objects originating from
logic and computability theory. From a combinatorial viewpoint, these objects provide intriguing asymp-
totic and stochastic problems related to counting them and an average-case analysis of their parameters.
One of these are lambda terms, central objects of lambda calculus, which are investigated in this paper.
Due to a simple combinatorial specification of lambda terms, no knowledge concerning lambda calculus is
required to understand statements and proofs of the presented theorems. For more information on lambda
calculus we refer a curious reader to Barendregt (1984).

In the literature one can find several different ways to define the size of a lambda term. In this paper
we adapt the definition that is probably the most intuitive for combinatorialists, namely every constructor
in a term (i.e., each variable, abstraction, and application) contributes one to the term size. This size
model gives rise to a challenging and still open problem on the asymptotics of the sequence of the number
of closed terms of a given size (for a thorough discussion see Bodini et al. (2013)). The encountered
difficulties lead Bodini et al. (2018) to study restricted classes of terms, namely terms with a bounded
number of De Bruijn levels and terms with bounded De Bruijn indices (precise definitions of these notions
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are provided in Section 2). Gittenberger and Larcher (2018) studied some statistical properties of lambda
terms with a bounded number of De Bruijn levels. Their results, exhibiting a change in the distribution of
leaves within terms, shed some light on reasons for the strange behaviour of the counting sequences.

While the problem of counting terms of a given size is also open for the model where variables do not
contribute to the size, David et al. (2013) provided some results concerning typical parameters of closed
lambda terms with no additional restrictions. The applied methods, however, seem not to work in the case
of the size of each variable being one.

Another way of measuring terms consists in taking into account the reference depth of each variable,
i.e., the number of abstractions enclosing it. This approach was motivated by Tromp (2007) and further
studied by Grygiel and Lescanne (2015); Bendkowski et al. (2016) with the main focus on enumeration
of terms and Bendkowski et al. (2019) describing average values of several parameters in terms.

In this paper, in a similar vein to the work by Gittenberger and Larcher (2018), we perform an average-
case analysis of lambda terms with bounded De Bruijn indices. This class has a significantly weaker
restriction compared to restricting the number of De Bruijn levels. On the basis of an empirical inves-
tigation on existing Haskell programs and their lambda calculus counterparts, we claim that imposing
a bound on De Bruijn indices seems natural, as their values in the vast majority of programs remain small
and rarely exceed 20 (Berger (2019)). Our research is hence motivated by getting a better understanding
of the structure of lambda terms belonging to this class as well as explaining the structural discrepancies
between terms from the two discussed classes.

In the next section we describe lambda terms as combinatorial objects and introduce basic concepts used
throughout the paper. In Section 3 we discuss the shape of lambda terms with De Bruijn indices bounded
by k (which we call k-indexed lambda terms for brevity) and their decomposition into smaller structures,
that is the hat and some attached k-colored Motzkin trees. Our results concerning average sizes of these
substructures are presented in the two following sections: First, in Section 4, we show that the size of the
hat is constant on average and then, in Section 5, we prove that the average number of De Bruijn levels in
terms of size n is asymptotically of order

√
n. Section 6 contains the main result of this paper, namely the

average unary profile of k-indexed terms. Finally, in the last section, we recall the results by Gittenberger
and Larcher (2018) about the distribution of the total number of leaves in k-indexed terms and provide a
short conclusion and outlook.

2 Preliminaries
Let V be a countable set of variables. Lambda terms are defined by the following grammar:

T ::= V |
(
λV.T

)
|
(
T T

)
.

A term of the form
(
λx.M

)
is called an abstraction, while a term of the form

(
M N

)
is called an

application. For the sake of clarity, we omit some parentheses according to the standard convention, i.e.,
outermost parentheses are dropped, an application is left- and an abstraction right-associative. By Var(M)
we denote the set of all variables occurring in M . The set FV(M) of free variables in a term M is defined
recursively as follows:

FV(x) = x, FV(λx.M) = FV(M) \ {x}, FV(M N) = FV(M) ∪ FV(N).

A term M is called closed if it contains no free variables, i.e., when FV(M) = ∅.
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Lambda terms have a natural representation by means of finite enriched trees, i.e., rooted trees with
additional directed edges (pointers). In order to construct the corresponding enriched tree for a given
lambda term, first we construct a Motzkin tree, i.e., a plane rooted tree with each node of out-degree 0, 1,
or 2. In this tree each binary node corresponds to an application, each unary node to an abstraction, and
each leaf to a variable. Now, for every occurrence of a bound variable x, we add a directed edge from the
unary node corresponding to the particular abstraction, labelled with λx, to the variable. Therefore, each
unary node of the Motzkin tree carries (zero, one, or more) pointers to leaves taken from the subtree rooted
at this unary node; all leaves receiving a pointer from this unary node correspond to the same variable, and
each leaf receives at most one pointer. By tree(M) we denote the Motzkin tree obtained from a lambda
term M by removing all pointers (see Grygiel et al. (2013) for a more detailed description).

In what follows, we will be interested only in closed terms. This means that every lambda term we
investigate is represented by some Motzkin tree enriched with pointers from unary nodes to leaves in such
a way that every leaf receives precisely one pointer. Moreover, terms that are equal up to α-conversion,
i.e., up to renaming of bound variables, are considered equivalent. This allows us to apply the De Bruijn
notation for lambda terms, which consists in eliminating names of variables and replacing them by positive
integers indicating, in the tree representation, the number of unary nodes on the path from a particular
variable to its binder. This representation was introduced by De Bruijn (1972), who used the notion of
reference depth. In other words, instead of having the set V of variables, we use the set {1, 2, 3, . . .} of De
Bruijn indices, where an index n occurring in a term M indicates that the n-th lambda (i.e., unary node)
lying on the path from the corresponding leaf to the root in tree(M) points at this leaf. For every k ∈ N,
we say that a lambda term is k-indexed if all of its De Bruijn indices belong to the set {1, 2, . . . , k}.

Let M be a lambda term and v be a vertex in tree(M). The unary height of v in tree(M), denoted by
h(v), is defined as the number of unary nodes on the path connecting v with the root of tree(M). For
every ` ∈ N, the `-th De Bruijn level of tree(M) is defined as the set of all vertices v in tree(M) such that
h(v) = `. Finally, by the unary profile of a lambda term we define the sequence of numbers of variables
in each De Bruijn level of the term.
Remark. De Bruijn (1972) introduced the notion of a level exclusively for variables. We extend this
concept for all nodes in enriched trees as well as for Motzkin trees, so that all internal nodes are also
covered. However, to avoid any confusion, we want to point out that the name De Bruijn level has also
been used in slightly different contexts in previous papers so far, as for example by Lescanne and Rouyer-
Degli (1995), who speak about subterms of a given term to be at the `-th level if they have ` unary nodes
above them and contain only indices at most `.

As an example let us consider the term λa.
((
λb.(λc.b)b

)
a
) (
λd.
(
(λe.d)d

)
(λf.fa)

)
(see Figure 1).

Its De Bruijn notation reads as λ
((
λ(λ2)1

)
1
) (
λ
(
(λ2)1

)
(λ13)

)
, and it has three non-empty De Bruijn

levels, of which only level 1 is connected. Notice that the 0-th De Bruijn level is empty, as the term is an
abstraction. Moreover, this term is k-indexed for every k ≥ 3.

In this paper the size of a lambda term is defined as the total number of its variables, abstractions, and
applications, i.e., for any variable x and lambda terms M and N the size is recursively defined as follows:

|x| = 1,

|λx.M | = 1 + |M |,
|M N | = 1 + |M |+ |N |.

Therefore, the size of a lambda term is equal to the number of all vertices in the corresponding tree. The
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1

Fig. 1: Left: The enriched tree of λa.
((
λb.(λc.b)b

)
a
) (
λd.

(
(λe.d)d

)
(λf.fa)

)
. Right: Its counterpart in the

De Bruijn notation (where all leaves are labeled with their respective De Bruijn indices) along with its decompo-
sition into De Bruijn levels.

term in Figure 1 is of size 19. It has 7 variables, 6 applications, and 6 abstractions.
Having defined the size of lambda terms, we can now look at lambda terms as at objects from a com-

binatorial class and hence apply standard combinatorial methodology. Given a combinatorial class A of
objects and its nonempty subclass An containing only the objects of A that are of size n, we assume the
uniform probability distribution over An, i.e., every object from An has the equal probability 1/|An| to
be chosen at random. A parameter χ on the classA is any function fromA to N. For example, the size of
a hat or the number of non-empty De Bruijn levels of lambda terms are possible instances of parameters.
Every parameter χ determines a discrete random variable χn defined over the discrete probability space
An as follows:

χn = P(χ = j) =
|An,j |
|An|

,

where An,j denotes the class of objects of size n for which the parameter χ is equal to j. This allows us
to speak about the expected value (also called average or mean) of the parameter χ for the fixed class. It
is well-known that the expected value can be computed by means of generating functions via the formula

E(χ) =
[zn]∂uA(z, u)u=1

[zn]A(z, 1)
,

where A(z, u) is the bivariate generating function associated with
(
|An,j |

)
n,j≥0.

3 Structure of lambda terms with bounded De Bruijn indices
In this section we want to illustrate the asymptotic shape of lambda terms with bounded De Bruijn indices
in a very general way, while it will be investigated more thoroughly in the subsequent sections.

In order to set up the generating function for closed lambda terms with bounded De Bruijn indices, we
proceed analogously to Bodini et al. (2018). For every k ≥ 1, let Gk be the class of k-indexed lambda
terms and letGk(z) be the corresponding generating function. In order to write down a formula forGk(z)
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we define the following auxiliary functions: For j ∈ {0, . . . , k}, let Gk,j be the class of unary-binary trees
such that every leaf v is labelled by a De Bruijn index m with 1 ≤ m ≤ min{h(v) + j, k}. Note that only
the terms in Gk,0 are necessarily closed, while this does not have to be the case for terms from Gk,j with
j ≥ 1. The classes Gk,j can be recursively specified, starting from a class Z of atoms, in the following
way:

Gk,k = k Z ] (Z × Gk,k × Gk,k) ] (Z × Gk,k) ,

Gk,j = j Z ] (Z × Gk,j × Gk,j) ] (Z × Gk,j+1) , for 0 ≤ j ≤ k − 1

Then the classes Gk and Gk,0 are isomorphic and hence their generating functions coincide. Thus, by
translating into generating functions, we directly get (cf. Bodini et al. (2018))

Gk(z) =
1−

√
Rk,k(z)

2z
, (1)

where

Rk,j(z) =


1− 2z − (4k − 1)z2, j = 0,

1− 2z − 2(2k − 3)z2 + 2z
√
Rk,0(z), j = 1,

1− 2z − 4(k − j)z2 + 2z
√
Rk,j−1(z), j > 1.

Bodini et al. (2018, Lemma 5.4) proved that the dominant singularity of Gk(z) comes from the in-
nermost radicand, i.e., Rk,0(z), and is equal to ρk = 1

2
√
k+1

. Furthermore, they provide an asymptotic
estimate of the n-th coefficient of Gk(z). Before showing this estimate let us define an auxiliary sequence
(cj)j≥1 via

c1 = 5 and cj = 4j − 1 + 2
√
cj−1 for j ≥ 2, (2)

and constants Cj,k with j ≥ 1 and k ≥ j via

Cj,k =

k∏
s=j

1√
cs
. (3)

These numbers appear both in the announced estimate and throughout this paper. The first values of
(ck)k≥1 and (Cj,k)j≥k are listed in Table 1.

Lemma 3.1 (Bodini et al. (2018, Theorem 5.6)). For any fixed k ≥ 1, letGk(z) be the generating function
of the class of k-indexed lambda terms. Then

[zn]Gk(z) ∼ C1,kk
1/4

2
√
πρk

n−3/2ρ−nk ,

where ρk = 1
2
√
k+1

and C1,k is defined as in (3).

Remark. In (Bodini et al., 2018, Lemma 5.7) the authors showed the asymptotic decrease of the constant
in Lemma 3.1, reading as

C1,kk
1/4

2
√
πρk

∼ C 1

2ke
√
k

√
(2k +

√
k)k1/4

(k − 1)!

(
1 +O

(
1√
k

))
, as k →∞,

with a constant C that does not depend on k.
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k ck C1,k C2,k C3,k C4,k

1 5.00000000 0.4472135954

2 11.47213595 0.1320361509 0.2952418088

3 17.77410834 0.0313183551 0.0700299709 0.2371953050

4 23.43187010 0.0064698687 0.0144670662 0.0490007371 0.2065839250

5 28.68129539 0.0012080811 0.0027013514 0.0091496237 0.0385742191

6 33.71098415 0.0002080704 0.0004652596 0.0015758596 0.0066437216

7 38.61223220 0.0000334848 0.0000748743 0.0002536034 0.0010691754

8 43.42774834 0.0000050812 0.0000113619 0.0000384832 0.0001622426

9 48.17994664 0.0000007320 0.0000016369 0.0000055442 0.0000233740

10 52.88235522 0.0000001007 0.0000002251 0.0000007624 0.0000032142

Tab. 1: First values of the sequences (ck)k≥1 and (Cj,k)k≥j for j ∈ {1, 2, 3, 4}.

The result from Lemma 3.1 already gives us a hint that lambda terms with bounded De Bruijn indices
behave somewhat treelike. However, in order to get a better intuition why this is the case and how exactly
these terms look like, we set up the generating function Gk(z) in a different manner, which reflects
another way of looking at how the corresponding terms are constructed. Instead of interpreting a lambda
term belonging to that class as a structure that involves iterated unary-binary trees, we consider it to be
built of leaf-labelled binary trees that are glued together via unary nodes (cf. Figure 2). Thereby, the
labels of the leaves correspond to the respective De Bruijn indices. Obviously, this implies that within the
whole tree each of the labels belongs to the set {1, . . . , k}. However, in the first k − 1 De Bruijn levels
(excluding the 0-th level, which contains no variables) we have a stronger restriction. Since we consider
only closed terms, no label (i.e., no De Bruijn index) can exceed the De Bruijn level the respective leaf is
located in. Thus, with B(z, w) denoting the bivariate generating function of binary trees where z marks
the size (i.e., the total number of nodes) and w marks the number of leaves, and with Mk(z) denoting the
generating function of Motzkin trees where each leaf can be labelled in k ways (k-colored Motzkin trees
in short), we get

Gk(z) = B
(
z,B

(
z, 1 +B

(
z, 2 + . . .+B

(
z, k − 1 +Mk(z)

)
. . .
)))

, (4)

where

B(z, w) =
1−
√

1− 4wz2

2z
and Mk(z) =

1− z −
√

(1− z)2 − 4kz2

2z
. (5)

Now, let us give an interpretation of Equation (4). Each tree representing a lambda term starts with
a binary tree, in which all the leaves are replaced by unary nodes to which we add further binary trees.
This is necessary for a lambda term to be closed. These newly added binary trees represent the first
De Bruijn level. Next, there are two possibilities for each leaf in this level: Either it receives the label 1 or,
alternatively, it is replaced with a unary node with a new binary tree attached, which belongs to the next
De Bruijn level. In this level the leaves can already be labelled with two different labels (namely 1 or 2),
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or they can be replaced with unary nodes with new binary trees attached. Starting from the k-th De Bruijn
level, the number of possible labellings for the leaves does not increase anymore. Thus, we finally get
B(z, k+B(z, k+B(z, k+ . . .))), which is exactly the generating function Mk(z) of k-colored Motzkin
trees given in (5).

Therefore, the enriched tree corresponding to a k-indexed lambda term is constructed as follows (cf.
Figure 2):

• It starts with the hat consisting of all De Bruijn levels from 0 to k − 1 along with all unary nodes
from the k-th level;

• To this hat structure we attach k-colored Motzkin trees via unary nodes.

Remark. Note that the glued binary trees in Equation (4) constitute the hat of the structure, to which we
attach the (comparatively large) k-colored Motzkin trees.

We emphasize at this point that the generating functions defined in (1) and (4) describe indeed the exact
same function. The reason to choose the latter way of representing the function Gk(z) in this paper is that
it gives direct access to the De Bruijn levels, which is advantageous for our purposes.

In the subsequent sections we investigate the structure of these terms in more detail. We prove that,
for a fixed k ≥ 1, the hat of a k-indexed lambda term is on average of constant size and that the average
number of De Bruijn levels of a term of size n is asymptotically

√
n. Finally, we provide its unary profile.

1

1

1

2

2

2

23

3

3

2

1
3

2

1

2

223

3

1

2

the hat

3-colored Motzkin treesa term from G3

Fig. 2: A lambda term from G3 decomposed into the hat and three subterms represented by 3-colored Motzkin trees.

4 Average size of a hat
In this section we focus on the size of the hat of k-indexed lambda terms. We prove that the average size
of a hat is asymptotically constant, i.e., it does not depend on the size of a term. This implies that on
average the number of k-colored Motzkin trees in the decomposition described in the previous section is
also constant.
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Theorem 4.1. For k ≥ 1, let Xn,k be the size of the hat of a random k-indexed lambda term of size n.
Then, as n tends to infinity,

EXn,k = 1+

k−2∑
j=0

√
ck−j+4(k+

√
k−1)

k∑
j=1

C1,j+

k−2∑
j=0

(
1 + 2

√
k + 4j −√ck−j−1

) k∑
m=k−j

Ck−j,m+o(1)

with (cj)j≥1 and Cj,k defined in (2) and (3).

Proof: To prove this theorem we use the well-known approach of marking the parameter of interest in
the generating function with a second variable u and then investigating the bivariate generating function.
Remember that throughout this whole paper the quantity k is a fixed constant which is independent of
n, and thus when expanding the radicands Rk,j the uniformity of the error terms in k is not an issue.
Moreover, as a further consequence, the set of singularities of the generating function Gk(z) is finite,
since the radicand Rk,j is singular if and only if one of the radicands Rk,j−1, Rk,j−2, . . ., Rk,0, is zero.
Thus, there exists a δ > 0 such that ρk is the only singularity for |z| < ρk+δ and therefore all requirements
for the use of singularity are fulfilled.

So, letGk(z, u) be the generating function for k-indexed lambda terms with z marking the size of terms
and u marking the size of their hats. The average size of a hat is hence given by

EXn,k =
[zn]∂Gk(z,u)∂u |u=1

[zn]Gk(z)
.

Since we want to mark by u all the nodes that belong to the hat, we get

Gk(z, u) = B
(
zu,B

(
zu, 1 +B

(
zu, 2 + . . .+B

(
zu, k − 1 +Mk(z)

)
. . .
)))

,

where B(z, w) is the function defined in (5). This gives

Gk(z, u) =
1−

√
Rk,k(z, u)

2zu

where

Rk,j(z, u) =


1− 2z − (4k − 1)z2, j = 0,

1− 2zu2 − 2(2k − 3)z2u2 + 2zu2
√
Rk,0(z, u), j = 1,

1− 2zu− 4(k − j)z2u2 + 2zu
√
Rk,j−1(z, u), j > 1.

Therefore, the derivatives can also be recursively defined via

∂Rk,j(z, u)

∂u

∣∣∣
u=1

=


0, j = 0,

−4z − 4(2k − 3)z2 + 4z
√
Rk,0(z, 1), j = 1,

−2z − 8(k − j)z2 + 2z
√
Rk,j−1(z, 1) + z√

Rk,j−1(z,1)

∂Rk,j−1(z,u)
∂u

∣∣∣
u=1

, j > 1,
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and we get

∂Gk(z, u)

∂u

∣∣∣
u=1

=

√
Rk,k(z, 1)− 1

2z
− 1

4z
√
Rk,k(z, 1)

· ∂Rk,k(z, u)

∂u

∣∣∣
u=1

=

√
Rk,k(z, 1)− 1

2z
+

k−2∑
j=0

zj(1 + 4jz −
√
Rk,k−j−1(z, 1))

2
∏k
m=k−j

√
Rk,m(z, 1)

+
zk−1

(
1 + (2k − 3)z −

√
Rk,0(z, 1)

)∏k
m=1

√
Rk,m(z, 1)

.

(6)

Expanding the radicands Rk,j around z = ρk yields (see Bodini et al. (2018))

Rk,j(ρk(1− ε), 1) =

{
4ρk
√
kε+O(|ε|2), j = 0,

cjρ
2
k + dk,j

√
ε+O(|ε|), j > 0

where ε ∈ C \ R− and |ε| → 0 and with dk,j = 4C1,j−1ρ
3/2
k k1/4.

Hence, we have

√
Rk,j

(
ρk(1− ε), 1

)
=

{
2
√
ρkk

1/4
√
ε+O(|ε|3/2), j = 0,

√
cjρk + bk,j

√
ε+O(|ε|), j > 0

with

bk,j =
dk,j

2ρk
√
cj

= 2C1,j−1
√
ρkk

1/4. (7)

Plugging this into Equation (6) gives

∂Gk(ρk(1− ε), u)

∂u

∣∣∣
u=1

=

√
ckρk + bk,k

√
ε− 1

2ρk
+

k−2∑
j=0

ρjk
(
1 + 4jρk −√ck−j−1ρk − bk−j−1

√
ε
)

2
∏k
m=k−j

(√
cmρk + bk,m

√
ε
)

+
ρk−1k (1 + (2k − 3)ρk − 2

√
ρkk

1/4
√
ε)∏k

m=1

(√
cmρk + bk,m

√
ε
) + O

(
|ε|
)

= Ak − Bk
√
ε + O

(
|ε|
)
,

where Ak and Bk are constants depending on k with

Bk = C1,k

(
k1/4ρ

−1/2
k +

1 + (2k − 3)ρk
ρ2k

k∑
m=1

bk,m√
cm

)

+
1

2ρ2k

k−2∑
j=0

Ck−j,k

(
bk,k−j

√
ck−jρk + (1 + 4jρk − ρk

√
ck−j−1)

k∑
m=k−j

bk,m√
cm

)
.
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Since Ak is not important for the result, we skip computing its exact value. By inserting (7) into the
formula for Bk and after some simplifications, we obtain

Bk =
C1,kk

1/4

√
ρk

1 +

k−2∑
j=0

√
ck−j + 4(k +

√
k − 1)

k∑
j=1

C1,j +

k−2∑
j=0

(
1 + 2

√
k + 4j −√ck−j−1

) k∑
m=k−j

Ck−j,m

 .

(8)
By singularity analysis applied to

∂Gk(z, u)

∂u

∣∣∣
u=1

= Ak −Bk
√

1− z

ρk
+O

(∣∣∣1− z

ρk

∣∣∣),
we immediately obtain, as n tends to infinity,

[zn]
∂Gk(z, u)

∂u

∣∣∣
u=1
∼ Bk

2
√
π
ρ−nk n−3/2.

Finally, by (8) and Lemma 3.1, we get

EXn,k = 1+

k−2∑
j=0

√
ck−j+4(k+

√
k−1)

k∑
j=1

C1,j+

k−2∑
j=0

(
1 + 2

√
k + 4j −√ck−j−1

) k∑
m=k−j

Ck−j,m+o
(
1
)
.

In Figure 3 we list average sizes of hats of k-indexed lambda terms for k up to 10.

1 2 3 4 5 6 7 8 9 10

2.7888 5.3187 7.6761 9.9443 12.1554 14.3260 16.4660 18.5816 20.6774 22.7565

Fig. 3: Average size of the hat (bottom row) for k ∈ {1, . . . , 10} (top row).

Since the hat of a k-indexed lambda term, for any k ≥ 1, is constant on average, such a term has on
average a finite number of unary nodes in the k-th De Bruijn level. Therefore, we arrive at the following
conclusion.

Corollary 4.2. For every k ≥ 1, the average number of k-colored Motzkin trees in the decomposition
(see the description in the end of Section 3) of k-indexed lambda terms is constant.

5 Average number of De Bruijn levels
In order to determine the average number of De Bruijn levels of k-indexed lambda terms, we first compute
the average number of De Bruijn levels of k-colored Motzkin trees. To this end, we use the following result
by Drmota et al. (2014). The notation A(z) � B(z) used therein means that [zn]A(z) ≤ [zn]B(z) for
every n ≥ 0.
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Lemma 5.1 (Drmota et al. (2014, Lemma 1.4)). Suppose that F (z, t) is an analytic function at (z, t) =
(0, 0) such that the equation T (z) = F (z, T (z)) has a solution T (z) that is analytic at z = 0 and has
non-negative Taylor coefficients. Suppose that T (z) has a square-root singularity at z = z0 and can
be continued to a region {z ∈ C : |z| < z0 + ε} \ [z0,∞) for some ε > 0, such that Ft(z0, t0) = 1,
Fz(z0, t0) 6= 0, and Ftt(z0, t0) 6= 0, where t0 = T (z0).

Let T [0](z) be a power series with 0 � T [0](z) � T (z) such that T [0](z) is analytic at z = z0, and let
T [k](z), k ≥ 1 be iteratively defined by

T [k](z) = F (z, T [k−1](z)).

Assume that T [k−1](z) � T [k](z) � T (z).
Let Hn be an integer valued random variable that is defined by

P{Hn ≤ k} =
[zn]T [k](z)

[zn]T (z)

for those n with [zn]T (z) > 0. Then

EHn ∼
√

2πn

z0Fz(z0, t0)Ftt(z0, t0)
.

Lemma 5.2. The average number of De Bruijn levels of a k-colored Motzkin tree of size n is asymptoti-
cally equal to √

πn

2k +
√
k
.

Proof: For k ≥ 1 and h ≥ 0, the generating function M [h]
k (z) of k-colored Motzkin trees with at most h

De Bruijn levels fulfills

M
[h+1]
k (z) = kz + zM

[h]
k (z) + z

(
M

[h+1]
k (z)

)2
,

and hence

M
[h+1]
k (z) =

1−
√

1− 4kz2 − 4z2M
[h]
k (z)

2z
.

Let us fix k ≥ 1 and define Fk(z, t) := 1−
√
1−4kz2−4z2t

2z . Let us notice that Fk(z, t) satisfies the
assumptions of Lemma 5.1. Indeed, the function Mk(z), with a square-root singularity at z = ρk =

1
1+2
√
k

, is a solution of Fk(z,Mk(z)) = Mk(z) fulfilling all necessary conditions. Furthermore, the

function M [0]
k (z) enumerates all k-colored Motzkin trees with only one (the 0-th) De Bruijn level. These

trees are binary trees with k possible labels for each node, thus M [0]
k (z) = 1−

√
1−4kz2
2z . As M [0]

k (z) has
its dominant singularity at z = 1

2
√
k

, it is analytic at z = 1
1+2
√
k

. Moreover, by a purely combinatorial

argument, M [h]
k (z) �M [h+1]

k (z) �Mk(z) for every h ≥ 0. Finally, since F
(
z,M

[h]
k (z)

)
= M

[h+1]
k (z),

we can apply Lemma 5.1. We have Mk(ρk) =
√
k and

∂Fk(z, t)

∂z

∣∣∣
(z,t)=(ρk,

√
k)

=
(
1 + 2

√
k
)2√

k and
∂2Fk(z, t)

∂t2

∣∣∣
(z,t)=(ρk,

√
k)

= 2,
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thus the average number of De Brujin levels of k-colored Motzkin trees is asymptotically equal to√√√√ 2πn
1

1+2
√
k
·
(
1 + 2

√
k
)2√

k · 2
=

√
πn

2k +
√
k
.

Corollary 5.3. For every k ≥ 1, the average number of De Bruijn levels of a k-indexed lambda term of
size n is Θ(

√
n).

Proof: By Corollary 4.2, the number of k-colored Motzkin trees in the decomposition of lambda terms
is constant on average. Therefore, the size of a largest such tree in the decomposition of a k-indexed
lambda term of size n is asymptotically Θ(n). Since the average number of De Bruijn levels of k-colored
Motzkin trees of size asymptotic to n is Θ(

√
n), the same is true for k-indexed lambda terms, which

have just k levels more than a longest (in terms of De Bruijn levels) k-colored Motzkin tree in their
decomposition.

6 Unary profile
In this section, we determine the mean unary profile of a random lambda term of some large size, i.e., the
asymptotic number of variables in each De Bruijn level of the term.

In the forthcoming proof, we will make use of the following technical results.

Lemma 6.1 (Gittenberger (1999, Lemma 3.4)). Let γ be a Hankel contour truncated at K ∈ R+, i.e.,
<t ≤ K for all t ∈ γ. Then we have, for α, β > 0,

1

2πi

∫
γ

e−α
√
−t−βtdt =

αβ
−3
2

2
√
π

exp

(
−α

2

4β

)
+O

(
1

β
e−Kβ

)
.

Lemma 6.2. Let ε > 0 and γ =
{
ρk

(
1 + t+i

n

)
: t ∈ [log2 n, nε)

}
with ρk = 1

2
√
k+1

. Then

max
z∈γ

∣∣∣∣∣
√

1− 2z − (4k − 1)z2

z

∣∣∣∣∣ = O
(

log n√
n

)
.

Proof: The closer to ρk an argument of the function γ 3 z 7→
√

1−2z−(4k−1)z2
z is, the greater its modulus

gets. Thus, we set z = ρk

(
1 + log2 n

n + i
n

)
, which is the closest point to ρk on γ, and we get√

1− 2z − (4k − 1)z2

z
=

√
a+ ib

ρk

(
1 + log2 n

n + i
n

)
with a ∼ −4

√
kρk

log2 n
n and b ∼ −4

√
kρk

1
n . Plugging in the asymptotic formulas for a and b directly

yields the desired result.

Now we are in the position to prove the main theorem of this section.
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Theorem 6.3. Let α > 0 be a fixed real number. The expected number of variables at De Bruijn level
bα√nc in a k-indexed lambda term of size n is asymptotically equal to

2α exp
(
−α2(2k +

√
k)
)√

n.

Proof: To prove this theorem we use again the approach that we mark the parameter of interest and inves-
tigate the thereby obtained bivariate generating function. However, in this case we have to face a different
problem that arises due to the fact that we want to mark the number of leaves in a level ` proportional
to
√
n, while n tends to infinity, leading to infinitely many nested radicals. Thus, we cannot apply the

transfer theorems directly in order to get the asymptotics for the coefficients of the generating functions,
but instead we write the coefficients by means of Cauchy’s integral formula and use a suitable integration
contour. Fortunately, we will be able to show that solely finitely many of the occurring radicands are
different, while the great majority describes the exact same function, which then provides simplifications
that allow us to calculate the integral along the chosen curve asymptotically.

So, first let Uk,`(z, u) be the bivariate generating function for k-indexed terms with z marking the size
and u marking the number of leaves in the (k + `)-th De Bruijn level, where ` ≥ 1. Then we have

Uk,`(z, u) = B
(
z,B

(
z, 1+B

(
z, 2+. . .+B

(
z, k +B(z, k +B(. . . B︸ ︷︷ ︸

` occurrences ofB

(z, k+B(z, ku+Mk(z)))))
)
. . .
)))

.

Applying formulas for B(z, w) and Mk(z) given in (5) yields

Uk,`(z, u) =
1−

√
Qk,k+`(z, u)

2z

where

Qk,i(z, u) =


1− 2z − (4k − 1)z2, j = 0,

1− 2z − (4ku− 2)z2 + 2z
√
Qk,0(z, u), j = 1,

1− 2z − 4kz2 + 2z
√
Qk,j−1(z, u), j ∈ {2, . . . , `},

1− 2z − 4(k − j + `)z2 + 2z
√
Qk,j−1(z, u), j ∈ {`+ 1, . . . , `+ k}.

Furthermore, we have

∂Qk,j(z, u)

∂u
=


0, j = 0,

−4kz2, j = 1,
−4kzj+1∏j−1

m=1

√
Qk,m(z,u)

, j > 1,

and hence
∂Uk,`(z, u)

∂u
=

kzk+`∏k+`
m=1

√
Qk,m(z, u)

.
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Given the De Bruijn level ` = bα√nc with α > 0, we are interested in estimating

[zn]
∂Uk,`(z,u)

∂u

∣∣∣
u=1

[zn]Gk(z)
.

In order to make further computations easier, let us notice that
∣∣√Qk,j(z, 1)

∣∣ =
∣∣z +

√
Qk,0(z, 1)

∣∣ for
j ∈ {1, . . . , `}, i.e., all these radicands describe the same function. Indeed, let us first notice that the
above holds for j = 1, since

Qk,1(z, 1) = Qk,0(z, 1) + z2 + 2z
√
Qk,0(z, 1) =

(√
Qk,0(z, 1) + z

)2
.

Next, by (5), we can notice that x = Mk(z) is a solution of the equation x = B(z, k + x). Therefore, in
particular,

B(z, k +B(z, k +Mk(z)))) = B(z, k +Mk(z)),

which gives us
√
Qk,1(z, 1) =

√
Qk,2(z, 1). By iteration we obtain the result for j ∈ {3, . . . , `}.

For z = ρk
(
1 + t

n

)
we get the expansions

√
Qk,j(z, 1) =


2k1/4ρ

1/2
k

√
−t/n+O(|t|/n), j = 0,

ρk + 2k1/4ρ
1/2
k

√
−t/n+O(|t|/n), j ∈ {1, . . . , `},

√
cj−`ρk + bj−`

√
−t/n+O(|t|/n), j ∈ {`+ 1, . . . , `+ k},

(9)

where (cj)j≥1 and (bk,j)k,j≥1 are as before (see (2) and (7)).
Let ε > 0. We have

[zn]
∂Uk,`(z, u)

∂u

∣∣∣
u=1

=
k

2πi

∫
γ

zk+`−n−1∏k+`
j=1

√
Qk,j(z, 1)

dz,

where as an integration path we choose a truncated Hankel contour γ1 ∪ γ2 ∪ γ3 encircling the dominant
singularity ρk and a circular arc γ4:

γ1 =

{
z = ρk

(
1 +

t

n

)
: t = e−iθ, θ ∈ [−π/2, π/2]

}
∪
{
z = ρk

(
1 +

t± i
n

)
: t ∈ (0, log2 n)

}
,

γ2 =

{
z = ρk

(
1 +

t+ i

n

)
: t ∈ [log2 n, nε)

}
,

γ3 =

{
z = ρk

(
1 +

t− i
n

)
: t ∈ [log2 n, nε)

}
,

γ4 =

{
z : |z| = ρk

∣∣∣1 + ε+
i

n

∣∣∣,<(z) ≤ ρk
(

1 + ε
)}

.

We start by estimating the integral along γ1. To this end, we apply the substitution z = ρk(1 + t/n),
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ρk
log2 n
n

ρk

ρkε

ρk
n

γ1

γ2

γ3

γ4

Fig. 4: Contour of integration: γ1 plotted with a solid line, γ2 and γ3 with dashed lines, and γ4 with a dotted line.

where γ̃1 denotes the transformed curve and we use the expansions given in (9):

∫
γ1

zk+`−n−1∏k+`
j=1

√
Qk,j(z, 1)

dz

=
ρk+`−nk

n

∫
γ̃1

(
1 +

t

n

)−n+k+`( 1

ρk + 2k1/4ρ
1/2
k

√
−t/n+O(|t|/n)

)` k∏
j=1

1
√
cjρk + bk,j

√
−t/n+O(|t|/n)

dt

=
ρk+`−nk

n

∫
γ̃1

e−t
(

1 +
t

n

)k+`( 1

ρk + 2k1/4ρ
1/2
k

√
−t/n

)` k∏
j=1

1
√
cjρk + bk,j

√
−t/n

(
1 +O

( |t|
n

))
dt

=
ρk−nk

n

∫
γ̃1

e−t
(

1 +
t

n

)k+α√n( 1

1 + 2k1/4ρ
−1/2
k

√
−t/n

)α√n k∏
j=1

1
√
cjρk + bk,j

√
−t/n

(
1 +O

( |t|
n

))
dt

=
ρk−nk

n

∫
γ̃1

e
−t− 2αk1/4√

ρk

√
−t
(

1 +
αt√
n

)(
1− 2α

√
kt

ρk
√
n

)
k∏
j=1

1
√
cjρk + bk,j

√
−t/n

(
1 +O

( |t|
n

))
dt

=
C1,k

n
ρ−nk

∫
γ̃1

e
−t− 2αk1/4√

ρk

√
−t
(

1 +
αt√
n

)(
1− 2α

√
kt

ρk
√
n

)1−
√−t
ρk
√
n

k∑
j=1

bk,j√
cj

(1 +O
( |t|
n

))
dt

=
C1,k

n
ρ−nk

∫
γ̃1

e
−t− 2αk1/4√

ρk

√
−t

1 +
1

ρk
√
n

αt(ρk − 2
√
k)−

√
−t

k∑
j=1

bk,j√
cj

(1 +O
( |t|
n

))
dt

=
C1,k

n
ρ−nk

∫
γ̃1

e
−t− 2αk1/4√

ρk

√
−t
(

1 +O
( |t|√

n

))
dt.
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Now, by applying Lemma 6.1, we get that the integral above can be further estimated to result in∫
γ1

zk+`−n−1∏k+`
j=1

√
Qk,j(z, 1)

dz =
C1,k

n
ρ−nk

∫
γ̂1

e
−t− 2αk1/4√

ρk

√
−t
dt+O

( ρ−nk
n3/2

)
=
αk1/4C1,k√

πρkn
ρ−nk exp

(
−α2(2k +

√
k)
)

+O
( ρ−nk
n3/2

)
.

(10)

What is left to show is that the integrals along γj for j ∈ {2, 3, 4} are all of order o
(
ρ−nk n−3/2

)
and

hence the whole asymptotic contribution comes from integration along γ1. In order to do so, we estimate
the integrand with its maximum along the respective curve for all cases. For the sake of conciseness we
present the precise calculations in the appendix.

Now, by (10), we get

[zn]
∂Uk,`(z, u)

∂u

∣∣∣
u=1

=
αk5/4C1,k√

πρkn
ρ−nk exp

(
−α2(2k +

√
k)
)

+O
( ρ−nk
n3/2

)
.

Finally, combining this result and the asymptotic behavior of the sequence enumerating all k-indexed
terms, we obtain that the expected number of leaves at the level bα√nc is given by

[zn]
∂Uk,`(z,u)

∂u

∣∣∣
u=1

[zn]Gk(z)
∼

αk5/4C1,k√
πρkn

ρ−nk exp
(
− α2(2k +

√
k)
)

k1/4C1,k

2
√
πρk

n−3/2ρ−nk

= 2kα exp
(
−α2(2k +

√
k)
)√

n.

7 Final remarks
The methods used to obtain the asymptotic mean of the size of the hat, as well as the asymptotic unary
profile, in principle also serve to calculate the variances of the respective random variables. However,
since calculations get rather involved when taking into account second derivatives, while the results will
be not very surprising due to the tree-like structure of the studied terms, we omitted them for the sake of
conciseness. Furthermore, by Theorem 6.3, we can observe that the expected unary profile of k-indexed
lambda terms looks like the density of a Rayleigh distribution. As this is typical for trees, we also decided
not to give a rigorous proof showing the distribution of the unary profile, since it would entail many pages
of technical calculations.

It seems that so far the distribution of the number of leaves in each De Bruijn level has not been
investigated, however, the total number of leaves within these terms, as well as their distribution, have
been studied asymptotically by Gittenberger and Larcher (2018).

Theorem 7.1 (Gittenberger and Larcher (2018), Theorem 1). Let Xn be the total number of variables in
a random closed lambda term of size n where the De Bruijn index of each variable is at most k. Then Xn

is asymptotically normally distributed with

EXn ∼
√
k

1 + 2
√
k
n and VXn ∼

√
k

2(1 + 2
√
k)2

n as n→∞.
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Since the number of binary nodes differs only by 1 from the number of leaves, and the remaining nodes
(that are neither binary nodes nor leaves) have to be unary nodes, we can state the following corollary.

Corollary 7.2. Let Yn be the total number of binary nodes in a random closed lambda term of size n with
De Bruijn index at most k, and let Zn be the total number of unary nodes, respectively. Then

EYn = EXn ∼
√
kρkn and EZn ∼ ρkn as n→∞,

with Xn being defined as in Theorem 7.1.

Remark. Thus, it is an immediate observation that on average each lambda binds
√
k leaves in lambda

terms with De Bruijn indices being at most k.
By calculating the asymptotic number of individual constructors that occur in k-colored Motzkin trees,

we get exactly the same results as in Theorem 7.1 (and therefore also as in Corollary 7.2). Furthermore,
the height and the profile of these k-colored Motzkin trees are also very similar to that of lambda terms
with De Bruijn indices at most k. Thus, k-indexed lambda terms are very much alike k-colored Motzkin
trees. However, their counting sequences differ significantly (by a factor C1,k/2) due to the restrictions
on labelling leaves in hats of the terms. So, there are way more k-colored Motzkin trees than k-indexed
lambda terms. Nevertheless the great majority of them exhibits the same structural properties.

This leads to the conjecture that the problem of generating random lambda terms could be solved by
means of generating random k-colored Motzkin trees and finding a suitable algorithm for repairing their
hats. The resulting generation would not be perfectly uniform, but potentially very close to the uniform
one and it would definitively be an interesting future topic to investigate.
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A Proof of Theorem 6.3
Here we show that the integrals along γj for j ∈ {2, 3, 4} are all of order o

(
ρ−nk n−3/2

)
and hence the

whole asymptotic contribution comes from integration along γ1.
First, let us consider the integral along γ4:∣∣∣∣∣
∫
γ4

zk+`−n−1∏k+`
j=1

√
Qk,j(z, 1)

dz

∣∣∣∣∣ ≤ (ρk(1 + ε))
k+bα

√
nc−n−1 |γ4|max

z∈γ4

∣∣∣∣∣ 1∏k+bα
√
nc

j=1

√
Qk,j(z, 1)

∣∣∣∣∣
≤ Cρ−nk (1 + ε)−n (ρk(1 + ε))

bα
√
nc

min
z∈γ4

∣∣∣∣√Qk,1(z, 1)

∣∣∣∣−bα
√
nc

,
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whereC is some positive constant. Here, (1+ε)−n contributes an exponential factor e−Dn with a positive

constant D, which compensates the factor minz∈γ4

∣∣∣√Qk,1(z, 1)
∣∣∣−bα√nc and thus guarantees

∫
γ4

zk+`−n−1∏k+`
j=1

√
Qk,j(z, 1)

dz = O
((
ρk(1− ε)−n

))
= o

(
ρ−nk n−3/2

)
.

Now, we estimate the integral along γ2. For some constant C > 0, we have

∣∣∣∣∣
∫
γ2

zk+`−n−1∏k+`
j=1

√
Qk,j(z, 1)

dz

∣∣∣∣∣ ≤ C
∣∣∣∣∣∣∣
∫ εn

log2 n

ρ
bα
√
nc−n

k

(
1 + t

n + i
n

)bα√nc−n√
Qk,1

(
ρk
(
1 + t

n + i
n

)
, 1
)bα√nc 1

n
dt

∣∣∣∣∣∣∣
≤ Cρ−nk

1

n
ρ
bα
√
nc

k max
γ2

∣∣∣∣∣ z√
Qk,1(z, 1)

∣∣∣∣∣
bα
√
nc ∫ εn

log2 n

(
1 +

t

n
+
i

n

)−n
dt.

Using the fact that
∣∣∣√Qk,1(z, 1)

∣∣∣ =
∣∣∣z +

√
Qk,0(z, 1)

∣∣∣ and by Lemma 6.2, we get that the maximum
contributes a factor

max
z∈γ2

∣∣∣∣∣ z√
Qk,1(z, 1)

∣∣∣∣∣
bα
√
nc

= max
z∈γ2

∣∣∣∣∣ 1

1 + 1
z

√
Qk,0(z, 1)

∣∣∣∣∣
bα
√
nc

=

(
1 + C̃

log n√
n

)bα√nc
∼ eC logn

for some positive constants C̃ and C > 0. The remaining integral can be estimated by∫ εn

log2 n

(
1 +

t

n
+
i

n

)−n
dt = O

(
e− log2 n

)
,

which finally gives us∣∣∣∣∣
∫
γ2

zk+`−n−1∏k+`
j=1

√
Qk,j(z, 1)

dz

∣∣∣∣∣ = O
(
ρ−nk

1

n
e− log2 n+C logn

)
= o

(
ρ−nk n−3/2

)
.

The estimate of the integral along γ3 works analogously.
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