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In this paper we present an average-case analysis of closed lambda terms with restricted values of De Bruijn indices
in the model where each occurrence of a variable contributes one to the size. Given a fixed integer k, a lambda term
in which all De Bruijn indices are bounded by k has the following shape: It starts with k De Bruijn levels, forming
the so-called hat of the term, to which some number of k-colored Motzkin trees are attached. By means of analytic
combinatorics, we show that the size of this hat is constant on average and that the average number of De Bruijn
levels of k-colored Motzkin trees of size n is asymptotically Θ(

√
n). Combining these two facts, we conclude that

the maximal non-empty De Bruijn level in a lambda term with restrictions on De Bruijn indices and of size n is, on
average, also of order

√
n. On this basis, we provide the average unary profile of such lambda terms.

Keywords: profile of lambda terms, singularity analysis, lambda terms with restrictions

1 Introduction
The last decade has seen an abundance of studies which focus on enumeration of objects originating from
logic and computability theory. Seen from the combinatorial point of view, some of these objects provide
intriguing problems related to counting them and an average-case analysis of their parameters. One of
these are lambda terms, central objects of lambda calculus, which are investigated in this paper. Due to a
simple combinatorial specification of lambda terms, no knowledge concerning lambda calculus is required
to understand statements and proofs of the presented theorems. For more information on lambda calculus
we refer a curious reader to Barendregt (1984).

Before we outline the results obtained hitherto, as well as our contribution, let us first introduce some
basic notions.

Let V be a countable set of variables. Lambda terms are defined by the following grammar:

T ::= V |
(
λV.T

)
|
(
T T

)
.

A term of the form
(
λx.M

)
is called an abstraction, while a term of the form

(
M N

)
is called an

application. For the sake of clarity, we omit some parentheses according to the standard convention, i.e.,
∗This research has been supported by the Austrian Science Fund (FWF) grant SFB F50-03.
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outermost parentheses are dropped, an application is left- and an abstraction right-associative. By Var(M)
we denote the set of all variables occurring in M . The set FV(M) of free variables in a term M is defined
recursively as follows:

FV(x) = x, FV(λx.M) = FV(M) \ {x}, FV(M N) = FV(M) ∪ FV(N).

A term M is called closed if it contains no free variables, i.e., when FV(M) = ∅.
Lambda terms have a natural representation by means of enriched trees, i.e., rooted trees with additional

directed edges (pointers). In order to construct the corresponding enriched tree for a given lambda term,
first we construct a Motzkin tree, i.e., a plane rooted tree with each node of out-degree 0, 1, or 2. In this
tree each binary node corresponds to an application, each unary node to an abstraction, and each leaf to a
variable. Now, for every occurrence of a bound variable x, we add a directed edge from the unary node
corresponding to the particular abstraction, labelled with λx, to the variable. Therefore, each unary node
of the Motzkin tree carries (zero, one, or more) pointers to leaves taken from the subtree rooted at this
unary node; all leaves receiving a pointer from this unary node correspond to the same variable, and each
leaf receives at most one pointer. By tree(M) we denote the Motzkin tree obtained from a lambda term
M by removing all pointers (see Grygiel et al. (2013) for a more detailed description).

In what follows, we will be interested only in closed terms. Moreover, terms that are equal up to α-
conversion, i.e., up to renaming of bound variables, are considered equivalent. This allows us to apply
the De Bruijn notation for lambda terms, which consists in eliminating names of variables and replacing
them by positive integers indicating, in the tree representation, the number of unary nodes on the path
from a particular variable to its binder (see De Bruijn (1972)). In other words, instead of having the set V
of variables, we use the set {1, 2, 3, . . .} of De Bruijn indices, where an index n occurring in a term M
indicates that the n-th lambda lying on the path from the corresponding leaf to the root in tree(M) points
at this leaf. For every k ∈ N, we say that a lambda term is k-indexed if all of its De Bruijn indices belong
to the set {1, 2, . . . , k}.

Let M be a lambda term and v be a vertex in tree(M). The unary height of v in tree(M), denoted by
h(v), is defined as the number of unary nodes on the path connecting v with the root of tree(M). For
every ` ∈ N, the `-th De Bruijn level of tree(M) is defined as the set of all vertices v in tree(M) such that
h(v) = `.
Remark. De Bruijn (1972) introduced the notion of a level exclusively for variables. We adopt this concept
for all kinds of nodes in enriched trees as well as for Motzkin trees. However, to avoid any confusion, we
want to point out that the name De Bruijn level has also been used in different contexts in previous papers
so far.

As an example let us consider the term λa.
((
λb.(λc.b)b

)
a
) (
λd.
(
(λe.d)d

)
(λf.fa)

)
(see Figure 1).

Its De Bruijn notation reads as λ
((
λ(λ2)1

)
1
) (
λ
(
(λ2)1

)
(λ13)

)
, and it has three non-empty De Bruijn

levels, which are not necessarily connected. Notice that the 0-th De Bruijn level is empty, as the term is
in the form of an abstraction. Moreover, this term is k-indexed for every k ≥ 3.

In this paper the size of a lambda term is defined as the total number of its variables, abstractions, and
applications, i.e., for any variable x and lambda terms M and N the size is defined as follows:

|x| = 1,

|λx.M | = 1 + |M |,
|M N | = 1 + |M |+ |N |.
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Fig. 1: The enriched tree of λa.
((
λb.(λc.b)b

)
a
) (
λd.

(
(λe.d)d

)
(λf.fa)

)
and its decomposition into De Bruijn

levels.

Therefore, the size of a lambda term is equal to the number of all vertices in the corresponding tree. The
term in Figure 1 is of size 19. It has 7 variables, 6 applications, and 6 abstractions.

Different size models have been studied in the literature. The model studied within this paper provides
a challenging and still open problem on the asymptotics of the sequence of the number of terms of a given
size (for a thorough discussion see Bodini et al. (2013)). The encountered difficulties lead Bodini et al.
(2018) to study restricted classes of terms, namely terms with a bounded number of De Bruijn levels
and terms with bounded De Bruijn indices. Gittenberger and Larcher (2018) studied some statistical
properties of lambda terms with bounded number of De Bruijn levels. Their results, exhibiting a change
in the distribution of leaves within terms, shed some light on reasons for the strange behaviour of the
counting sequences.

While the counting problem is also open for the model where variables do not contribute to the size,
David et al. (2013) provided some results concerning typical parameters of closed lambda terms with no
additional restrictions. The applied methods, however, seem not to work in the case of the size of each
variable being one.

Another way of measuring terms consists in taking into account the depth of each variable, i.e., the
number of abstractions enclosing it. This approach was motivated by Tromp (2007) and further studied
by Grygiel and Lescanne (2015); Bendkowski et al. (2016) (with the main focus on enumeration of terms)
and Bendkowski et al. (accepted) (describing average values of several parameters in terms).

In this paper, in a similar vein to the work by Gittenberger and Larcher (2018), we perform an average-
case analysis of lambda terms with bounded De Bruijn indices. Clearly, this class has a significantly
weaker restriction compared to restricting the number of De Bruijn levels. On the basis of an empirical
investigation on existing Haskell programs and their lambda calculus counterparts, we claim that imposing
a bound on De Bruijn indices seems natural, as their values in the vast majority of programs remain small
and rarely exceed 20 (Berger (2019)). Our research is hence motivated by getting a better understanding
of the structure of lambda terms belonging to this class as well as explaining the structural discrepancies
between terms from the two discussed classes.
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2 Structure of lambda terms with bounded De Bruijn indices
In this section we want to illustrate the asymptotic shape of lambda terms with bounded De Bruijn indices
in a very general way, while it will be investigated more thoroughly in the subsequent sections.

In order to set up the generating function for lambda terms with bounded De Bruijn indices we proceed
analogously to Bodini et al. (2018). For every k ≥ 1, let Gk be the class of k-indexed lambda terms and
let Gk(z) be the corresponding generating function. Furthermore, for i ∈ {0, . . . , k}, let Gk,i be the class
of unary-binary trees such that every leaf v can be labelled in min{h(v) + i, k} ways. The classes Gk,i
can be recursively specified, starting from a class Z of atoms, in the following way:

Gk,k = k Z ] (Z × Gk,k × Gk,k) ] (Z × Gk,k) ,

Gk,i = i Z ] (Z × Gk,i × Gk,i) ] (Z × Gk,i+1) .

Then the classes Gk and Gk,0 are isomorphic and hence their generating functions coincide. Thus, by
translating into generating functions, we directly get (cf. Bodini et al. (2018))

Gk(z) =
1−

√
Rk,k(z)

2z
,

where

Rk,i(z) =


1− 2z − (4k − 1)z2, i = 0,

1− 2z − (4k − 6)z2 + 2z
√
Rk,0(z), i = 1,

1− 2z − 4(k − i)z2 + 2z
√
Rk,i−1(z), i > 1.

Bodini et al. (2018, Lemma 5.4) proved that the dominant singularity of Gk(z) comes from the in-
nermost radicand, i.e., Rk,0(z), and is equal to ρk = 1

2
√
k+1

. Furthermore, they provide an asymptotic
estimate of the n-th coefficient of Gk(z). Before showing this estimate let us define an auxiliary sequence
(ci)i≥1:

c1 = 5 and ci = 4i− 5 +
√
ci−1 for i ≥ 2 (1)

and constants Ci,k with i ≥ 1 and k ≥ i:

Ci,k =

k∏
s=i

1√
cs
. (2)

These numbers appear both in the announced estimate and throughout this paper. The first values of
(ck)k≥1 and (Ci,k)i≥k are listed in Table 1.

Lemma 2.1 (Bodini et al. (2018, Theorem 5.6)). For any fixed k ≥ 1, letGk(z) be the generating function
of the class of k-indexed lambda terms. Then

[zn]Gk(z) ∼ C1,kk
1/4

2
√
πρk

n−3/2ρ−nk ,

where C1,k is defined as in (2).
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k ck C1,k C2,k C3,k C4,k

1 5.000000000 0.4472135954

2 5.236067977 0.1954395076 0.4370160245

3 9.288245611 0.0641276779 0.1433938471 0.3281203412

4 14.04766232 0.0171097429 0.0382585483 0.0875449552 0.2668074612

5 18.74802112 0.0039515344 0.0088358996 0.0202187084 0.0616197956

6 23.32989851 0.0008181055 0.0018293396 0.0041859784 0.0127574486

7 27.83010336 0.0001550786 0.0003467663 0.0007934866 0.0024182791

8 32.27542448 0.0000272970 0.0000610381 0.0001396701 0.0004256674

9 36.68114640 0.0000045070 0.0000100781 0.0000230612 0.0000702828

10 41.05649622 0.0000007034 0.0000015729 0.0000035991 0.0000109688

Tab. 1: First values of the sequences (ck)k≥1 and (Ci,k)k≥i for i ∈ {1, 2, 3, 4}.

This result already gives us a hint that lambda terms with bounded De Bruijn indices behave somewhat
treelike. However, in order to get a better intuition why this is the case and how exactly these terms look
like, we set up the generating function Gk(z) in a different way: Instead of interpreting a lambda term
belonging to that class as a structure that involves iterated unary-binary trees, we consider it to be built of
leaf-labelled binary trees that are glued together via unary nodes (cf. Figure 2). Thereby, the labels of the
leaves correspond to the respective De Bruijn indices. Obviously, this implies that within the whole tree
each of the labels belongs to the set {1, . . . , k}. However, in the first k − 1 De Bruijn levels (excluding
the 0-th level, which contains no variables) we have a stronger restriction. Since we consider only closed
terms, no label (i.e., no De Bruijn index) can exceed the De Bruijn level the respective leaf is located in.
Thus, with B(z, w) denoting the bivariate generating function of binary trees where z marks the size (i.e.,
the total number of nodes) and w marks the number of leaves, and with Mk(z) denoting the generating
function of Motzkin trees where each leaf can be labelled in k ways (k-colored Motzkin trees in short),
we get

Gk(z) = B
(
z,B

(
z, 1 +B

(
z, 2 + . . .+B

(
z, k − 1 +Mk(z)

)
. . .
)))

, (3)

where

B(z, w) =
1−
√

1− 4wz2

2z
and Mk(z) =

1− z −
√

(1− z)2 − 4kz2

2z
. (4)

Now, let us give an interpretation of Equation (3). Each tree representing a lambda term starts with
a binary tree, in which all the leaves are replaced by unary nodes to which we add further binary trees.
This is necessary for a lambda term to be closed. These newly added binary trees represent the first
De Bruijn level. Next, there are two possibilities for each leaf in this level: Either it receives the label 1 or,
alternatively, it is replaced with a unary node with a new binary tree attached, which belongs to the next
De Bruijn level. In this level the leaves can already be labelled with two different labels (namely 1 or 2),
or they can be replaced with unary nodes with new binary trees attached. Starting from the k-th De Bruijn
level, the number of possible labellings for the leaves does not increase anymore. Thus, we finally get
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B(z, k+B(z, k+B(z, k+ . . .))), which is exactly the generating function Mk(z) of k-colored Motzkin
trees given in (4).

Therefore, the enriched tree corresponding to a k-indexed lambda term is constructed as follows (cf.
Figure 2):

• It starts with the hat consisting of all De Bruijn levels from 0 to k − 1 along with all unary nodes
from the k-th level;

• To this hat structure we attach k-colored Motzkin trees via unary nodes.

1

1

1

2

2

2

23

3

3

2

1
3

2

1

2

223

3

1

2

the hat

3-colored Motzkin treesa term from G3

Fig. 2: A lambda term from G3 decomposed into the hat and three subterms represented by 3-colored Motzkin trees.

Remark. Note that the glued binary trees in Equation (3) constitute the hat of the structure, to which we
attach the (comparatively large) k-colored Motzkin trees.

In the subsequent sections we investigate the structure of these terms in more detail. We prove that,
for a fixed k ≥ 1, the hat of a k-indexed lambda term is on average of constant size and that the average
number of De Bruijn levels of a term of size n is asymptotically

√
n. Finally, we provide its unary profile.

3 Average size of a hat
In this section we focus on the size of the hat of k-indexed lambda terms. We prove that the average size
of a hat is asymptotically constant, i.e., it does not depend on the size of a term. This implies that on
average the number of k-colored Motzkin trees in the decomposition described in the previous section is
also constant.

Theorem 3.1. For k ≥ 1, let χk be the size of the hat of a lambda term where all De Bruijn indices are
at most k. Then, as n tends to infinity,

EGk,n(χk) = k + 4(k +
√
k − 1)

k∑
i=1

C1,i√
ci

+

k−2∑
i=0

(
1 + 2

√
k + 4i−√ck−i−1

) k∑
j=k−i

Ck−i,j√
cj

+ o(1)
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with (ci)i≥1 and Ci,k defined in (1) and (2).

Proof: Let Gk(z, u) be the generating function for k-indexed lambda terms with z marking the size of
terms and u marking the size of their hats. The average size of a hat is hence given by

EGk,n(χk) =
[zn]∂Gk(z,u)∂u |u=1

[zn]Gk(z)
.

Since we want to mark by u all the nodes that belong to the hat, we get

Gk(z, u) = B
(
zu,B

(
zu, 1 +B

(
zu, 2 + . . .+B

(
zu, k − 1 +Mk(z)

)
. . .
)))

,

where B(z, w) is the function defined in (4). This gives

Gk(z, u) =
1−

√
Rk,k(z, u)

2zu

where

Rk,i(z, u) =


1− 2z − (4k − 1)z2, i = 0,

1− 2zu2 − (4k − 6)z2u2 + 2zu2
√
Rk,0(z, u), i = 1,

1− 2zu− 4(k − i)z2u2 + 2zu
√
Rk,i−1(z, u), i > 1.

Therefore, the derivatives can also be recursively defined via

∂Rk,i(z, u)

∂u

∣∣∣
u=1

=


0, i = 0,

−4z − 4(2k − 3)z2 + 4z
√
Rk,0(z, 1) + z√

Rk,0(z,1)

∂Rk,0(z,u)
∂u

∣∣∣
u=1

, i = 1,

−2z − 8(k − i)z2 + 2z
√
Rk,i−1(z, 1) + z√

Rk,i−1(z,1)

∂Rk,i−1(z,u)
∂u

∣∣∣
u=1

, i > 1,

and we get

∂Gk(z, u)

∂u

∣∣∣
u=1

=

√
Rk,k(z, 1)− 1

2z
− 1

4z
√
Rk,k(z, 1)

· ∂Rk,k(z,u)
∂u

∣∣∣
u=1

=

√
Rk,k(z, 1)− 1

2z
+

k−2∑
i=0

zi(1 + 4iz −
√
Rk,k−i−1(z, 1))

2
∏k
j=k−i

√
Rk,j(z, 1)

+
zk−1

(
1 + (2k − 3)z −

√
Rk,0(z, 1)

)∏k
j=1

√
Rk,j(z, 1)

.

(5)

Expanding the radicands Rk,i around z = ρk yields

Rk,i(ρk(1− ε), 1) =

{
4ρk
√
kε+O(|ε|2), i = 0,

ciρ
2
k + dk,i

√
ε+O(|ε|), i > 0

where ε ∈ C \ R− and |ε| → 0 and with dk,m = 4C1,m−1ρ
3/2
k k1/4.
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Hence, we have √
Rk,i

(
ρk(1− ε), 1

)
=

{
2
√
ρkk

1/4
√
ε+O(|ε|), i = 0,

√
ciρk + bk,i

√
ε+O(|ε|), i > 0

with

bk,i =
dk,i

2ρk
√
ci

= 2C1,m
√
ρkk

1/4. (6)

Plugging this into Equation (5) gives

∂Gk(ρk(1− ε), u)

∂u

∣∣∣
u=1

=

√
ckρk + bk,k

√
ε− 1

2ρk
+

k−2∑
i=0

ρik
(
1 + 4iρk −√ck−i−1ρk − bk−i−1

√
ε
)

2
∏k
j=k−i

(√
cjρk + bk,j

√
ε
)

+
ρk−1k (1 + (2k − 3)ρk − 2

√
ρkk

1/4
√
ε)∏k

j=1

(√
cjρk + bk,j

√
ε
) + O

(
|ε|
)

= Ak − Bk
√
ε + O

(
|ε|
)
,

where Ak and Bk are constants depending on k with

Bk = C1,k

(
k1/4ρ

−1/2
k +

1 + (2k − 3)ρk
ρ2k

k∑
j=1

bk,j√
cj

)

+
1

2ρ2k

k−2∑
i=0

Ck−i,k

(
bk,k−i

√
ck−iρk + (1 + 4iρk − ρk

√
ck−i−1)

k∑
j=k−i

bk,j√
cj

)
.

Since Ak is not important for the result, we skip computing its exact value. By inserting (6) into the
formula for Bk and after some simplifications, we obtain

Bk =
C1,kk

1/4

√
ρk

k + 4(k +
√
k − 1)

k∑
i=1

C1,i√
ci

+

k−2∑
i=0

(
1 + 2

√
k + 4i−√ck−i−1

) k∑
j=k−i

Ck−i,j√
cj

 .

(7)
By singularity analysis applied to

∂Gk(z, u)

∂u

∣∣∣
u=1

= Ak −Bk
√

1− z

ρk
+O

(∣∣∣1− z

ρk

∣∣∣),
we immediately obtain, as n tends to inifity,

[zn]
∂Gk(z, u)

∂u

∣∣∣
u=1
∼ Bk

2
√
π
ρnkn

−3/2.

Finally, by (7) and Lemma 2.1, we get

EGk,n(χk) = k + 4(k +
√
k − 1)

k∑
i=1

C1,i√
ci

+

k−2∑
i=0

(
1 + 2

√
k + 4i−√ck−i−1

) k∑
j=k−i

Ck−i,j√
cj

+ o
(
1
)
.
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In Figure 3 we list average sizes of hats of k-indexed lambda terms for k greater than or equal to 10 and
plot the corresponding values for k up to 100.

k average size of the hat

1 1.800000000

2 4.446622384

3 7.385408309

4 10.51026254

5 13.79082737

6 17.20768058

7 20.74428425

8 24.38681564

9 28.12399439

10 31.94661874

k

av
er
ag
e
si
ze

of
th
e
h
at

20 40 60 80 100

100

200

300

400

Fig. 3: Average size of the hat for k ∈ {1, . . . , 10} (table) and for k ∈ {1, . . . , 100} (plot).

Since the hat of a k-indexed lambda term, for any k ≥ 1, is constant on average, such a term has on
average a finite number of unary nodes in the k-th De Bruijn level. Therefore, we can conclude what
follows.

Corollary 3.2. For every k ≥ 1, the average number of k-colored Motzkin trees in the decomposition
(see page 6) of k-indexed lambda terms is constant.

4 Average number of De Bruijn levels
In order to determine the average number of De Bruijn levels of k-indexed lambda terms, we first compute
the average number of De Bruijn levels of k-colored Motzkin trees. To this end, we use the following result
by Drmota et al. (2014). The notation A(z) � B(z) used therein means that [zn]A(z) ≤ [zn]B(z) for
every n ≥ 0.

Lemma 4.1 (Drmota et al. (2014, Lemma 1.4)). Suppose that F (z, t) is an analytic function at (z, t) =
(0, 0) such that the equation T (z) = F (z, T (z)) has a solution T (z) that is analytic at z = 0 and has
non-negative Taylor coefficients. Suppose that T (z) has a square-root singularity at z = z0 and can
be continued to a region {z ∈ C : |z| < z0 + ε} \ [z0,∞) for some ε > 0, such that Ft(z0, t0) = 1,
Fz(z0, t0) 6= 0, and Ftt(z0, t0) 6= 0, where t0 = T (z0).
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Let T [0](z) be a power series with 0 � T [0](z) � T (z) such that T [0](z) is analytic at z = z0, and let
T [k](z), k ≥ 1 be iteratively defined by

T [k](z) = F (z, T [k−1](z)).

Assume that T [k−1](z) � T [k](z) � T (z).
Let Hn be an integer valued random variable that is defined by

P{Hn ≤ k} =
[zn]T [k](z)

[zn]T (z)

for those n with [zn]T (z) > 0. Then

EHn ∼
√

2πn

z0Fz(z0, t0)Ftt(z0, t0)
.

Lemma 4.2. The average number of De Bruijn levels of a k-colored Motzkin tree of size n is asymptoti-
cally equal to √

πn

2k +
√
k
.

Proof: For k ≥ 1 and h ≥ 0, the generating function M [h]
k (z) of k-colored Motzkin trees with at most h

De Bruijn levels fulfills

M
[h+1]
k (z) = kz + zM

[h]
k (z) + z

(
M

[h+1]
k (z)

)2
,

and hence

M
[h+1]
k (z) =

1−
√

1− 4kz2 − 4z2M
[h]
k (z)

2z
.

Let us fix k ≥ 1 and define Fk(z, t) := 1−
√
1−4kz2−4z2t

2z . Let us notice that Fk(z, t) satisfies the
assumptions of Lemma 4.1. Indeed, the function Mk(z), with a square-root singularity at z = ρk =

1
1+2
√
k

, is a solution of Fk(z,Mk(z)) = Mk(z) fulfilling all necessary conditions. Furthermore, the

function M [0]
k (z) enumerates all k-colored Motzkin trees with only one (the 0-th) De Bruijn level. These

trees are binary trees with k possible labels for each node, thus M [0]
k (z) = 1−

√
1−4kz2
2z . As M [0]

k (z) has
its dominant singularity at z = 1

2
√
k

, it is analytic at z = 1
1+2
√
k

. Moreover, by a purely combinatorial

argument, M [h]
k (z) �M [h+1]

k (z) �Mk(z) for every h ≥ 0. Finally, since F
(
z,M

[h]
k (z)

)
= M

[h+1]
k (z),

we can apply Lemma 4.1. We have Mk(ρk) =
√
k and

∂Fk(z, t)

∂z

∣∣∣
(z,t)=(ρk,

√
k)

=
(
1 + 2

√
k
)2√

k and
∂2Fk(z, t)

∂t2

∣∣∣
(z,t)=(ρk,

√
k)

= 2,

thus the average number of De Brujin levels of k-colored Motzkin trees is asymptotically equal to√√√√ 2πn
1

1+2
√
k
·
(
1 + 2

√
k
)2√

k · 2
=

√
πn

2k +
√
k
.
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Corollary 4.3. For every k ≥ 1, the average number of De Bruijn levels of a k-indexed lambda term of
size n is Θ(

√
n).

Proof: By Corollary 3.2, the number of k-colored Motzkin trees in the decomposition of lambda terms
is constant on average. Therefore, the size of a largest such a tree in the decomposition of a k-indexed
lambda term of size n is asymptotically Θ(n). Since the average number of De Bruijn levels of k-colored
Motzkin trees of size asymptotic to n is Θ(

√
n), the same is true for k-indexed lambda terms, which

have just k levels more than a longest (in terms of De Bruijn levels) k-colored Motzkin tree in their
decomposition.

5 Unary profile
By the unary profile of a lambda term we mean the sequence of numbers of variables in each De Bruijn
level of the term. In this section, we determine the mean unary profile of a random lambda term of some
large size.

In the forthcoming proof, we will make use of the following technical results.

Lemma 5.1 (Gittenberger (1999, Lemma 3.4)). Let γ be a Hankel contour truncated atK. Then we have,
for α, β > 0,

1

2πi

∫
γ

e−α
√
−t−βtdt =

αβ
−3
2

2
√
π

exp

(
−α

2

4β

)
+O

(
1

β
e−Kβ

)
.

Lemma 5.2. Let ε > 0 and γ =
{
ρk

(
1 + t+i

n

)
: t ∈ [log2 n, nε)

}
. Then

max
z∈γ

∣∣∣∣∣
√

1− 2z − (4k − 1)z2

z

∣∣∣∣∣ = O
(

log n√
n

)
.

Proof: The closer to ρk an argument of the function γ 3 z 7→
√

1−2z−(4k−1)z2
z is, the greater its modulus

gets. Thus, we set z = ρk

(
1 + log2 n

n + i
n

)
, which is the closest point to ρk on γ, and we get√

1− 2z − (4k − 1)z2

z
=

√
a+ ib

ρk

(
1 + log2 n

n + i
n

)
with a ∼ −4

√
kρk

log2 n
n and b ∼ −4

√
kρk

1
n . Plugging in the asymptotic formulas for a and b directly

yields the desired result.

Now we are in the position to prove the main theorem of this section.

Theorem 5.3. Let κ > 0 be a fixed real number. The expected number of variables at De Bruijn level
bκ√nc in a k-indexed lambda term of size n is asymptotically equal to

2κ exp
(
−κ2(2k +

√
k)
)√

n.
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Proof: Let Uk,`(z, u) be the bivariate generating function for k-indexed terms with z marking the size
and u marking the number of leaves in the (k + `)-th De Bruijn level, where ` ≥ 1. Then we have

Uk,`(z, u) = B
(
z,B

(
z, 1+B

(
z, 2+. . .+B

(
z, k +B(z, k +B(. . . B︸ ︷︷ ︸

` occurrences ofB

(z, k+B(z, ku+Mk(z)))))
)
. . .
)))

.

Applying formulas for B(z, w) and Mk(z) given in (4) yields

Uk,`(z, u) =
1−

√
Rk,k+`(z, u)

2z

where

Rk,i(z, u) =


1− 2z − (4k − 1)z2, i = 0,

1− 2z − (4ku− 2)z2 + 2z
√
Rk,0(z, u), i = 1,

1− 2z − 4kz2 + 2z
√
Rk,i−1(z, u), i ∈ {2, . . . , `},

1− 2z − 4(k − i+ `)z2 + 2z
√
Rk,i−1(z, u), i ∈ {`+ 1, . . . , `+ k}.

Furthermore, we have

∂Rk,i(z, u)

∂u
=


0, i = 0,

−4kz2, i = 1,
−4kzi+1∏i−1

j=1

√
Rk,j(z,u)

, i > 1,

and hence
∂Uk,`(z, u)

∂u
=

zk+`∏k+`
j=1

√
Rk,j(z, u)

.

Given the De Bruijn level ` = bκ√nc with κ > 0, we are interested in estimating

[zn]
∂Uk,`(z,u)

∂u

∣∣∣
u=1

[zn]Gk(z)
.

In order to make further computations easier, let us notice that
∣∣√Rk,j(z, 1)

∣∣ =
∣∣z +

√
Rk,0(z, 1)

∣∣
for j ∈ {1, . . . , `}, i.e., all these radicands describe the same function. Indeed, let us first notice that the
above holds for j = 1, since

Rk,1(z, 1) = Rk,0(z, 1) + z2 + 2z
√
Rk,0(z, 1) =

(√
Rk,0(z, 1) + z

)2
.

Next, by (4), we can notice that x = Mk(z) is a solution of the equation x = B(z, k + x). Therefore, in
particular,

B(z, k +B(z, k +Mk(z)))) = B(z, k +Mk(z)),

which gives us
√
Rk,1(z, 1) =

√
Rk,2(z, 1). By iteration we obtain the result for j ∈ {3, . . . , `}.
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For z = ρk
(
1 + t

n

)
we get the expansions

√
Rk,i(z, 1) =


2k1/4ρ

1/2
k

√
−t/n+O(|t|/n), i = 0,

ρk + 2k1/4ρ
1/2
k

√
−t/n+O(|t|/n), i ∈ {1, . . . , `},

√
ci−`ρk + bi−`

√
−t/n+O(|t|/n), i ∈ {`+ 1, . . . , `+ k},

(8)

where (ci)i≥1 and (bk,i)k,i≥1 are as before (see (1) and (6)).
Let ε > 0. We have

[zn]
∂Uk,`(z, u)

∂u

∣∣∣
u=1

=
1

2πi

∫
γ

zk+`−n−1∏k+`
j=1

√
Rk,j(z, 1)

dz,

where as an integration path we choose a truncated Hankel contour γ1 ∪ γ2 ∪ γ3 encircling the dominant
singularity ρk and a circular arc γ4:

γ1 =

{
z = ρk

(
1 +

t

n

)
: t = e−iθ, θ ∈ [−π/2, π/2]

}
∪
{
z = ρk

(
1 +

t± i
n

)
: t ∈ (0, log2 n)

}
,

γ2 =

{
z = ρk

(
1 +

t+ i

n

)
: t ∈ [log2 n, nε)

}
,

γ3 =

{
z = ρk

(
1 +

t− i
n

)
: t ∈ [log2 n, nε)

}
,

γ4 =

{
z : |z| = ρk

∣∣∣1 + ε+
i

n

∣∣∣,<(z) ≤ ρk
(

1 + ε
)}

.

ρk
log2 n
n

ρk

ρkε

ρk
n

γ1

γ2

γ3

γ4

Fig. 4: Contour of integration: γ1 plotted with a solid line, γ2 and γ3 with dashed lines, and γ4 with a dotted line.

We start by estimating the integral along γ1. To this end, we apply the substitution z = ρk(1 + t/n),
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where γ̃1 denotes the transformed curve and we use the expansions given in (8):∫
γ1

zk+`−n−1∏k+`
j=1

√
Rk,j(z, 1)

dz

=
ρk+`−nk

n

∫
γ̃1

(
1 +

t

n

)−n+k+`( 1

ρk + 2k1/4ρ
1/2
k

√
−t/n+O(|t|/n)

)` k∏
j=1

1
√
cjρk + bk,j

√
−t/n+O(|t|/n)

dt

=
ρk+`−nk

n

∫
γ̃1

e−t
(

1 +
t

n

)k+`( 1

ρk + 2k1/4ρ
1/2
k

√
−t/n

)` k∏
j=1

1
√
cjρk + bk,j

√
−t/n

(
1 +O

( |t|
n

))
dt

=
ρk−nk

n

∫
γ̃1

e−t
(

1 +
t

n

)k+κ√n( 1

1 + 2k1/4ρ
−1/2
k

√
−t/n

)κ√n k∏
j=1

1
√
cjρk + bk,j

√
−t/n

(
1 +O

( |t|
n

))
dt

=
ρk−nk

n

∫
γ̃1

e
−t− 2κk1/4√

ρk

√
−t
(

1 +
κt√
n

)(
1− 2κ

√
kt

ρk
√
n

)
k∏
j=1

1
√
cjρk + bk,j

√
−t/n

(
1 +O

( |t|
n

))
dt

=
C1,k

n
ρ−nk

∫
γ̃1

e
−t− 2κk1/4√

ρk

√
−t
(

1 +
κt√
n

)(
1− 2κ

√
kt

ρk
√
n

)1−
√−t
ρk
√
n

k∑
j=1

bk,j√
cj

(1 +O
( |t|
n

))
dt

=
C1,k

n
ρ−nk

∫
γ̃1

e
−t− 2κk1/4√

ρk

√
−t

1 +
1

ρk
√
n

κt(ρk − 2
√
k)−

√
−t

k∑
j=1

bk,j√
cj

(1 +O
( |t|
n

))
dt

=
C1,k

n
ρ−nk

∫
γ̃1

e
−t− 2κk1/4√

ρk

√
−t
(

1 +O
( |t|√

n

))
dt.

Now, by applying Lemma 5.1, we get that the integral above can be further estimated to result in∫
γ1

zk+`−n−1∏k+`
j=1

√
Rk,j(z, 1)

dz =
C1,k

n
ρ−nk

∫
γ̂1

e
−t− 2κk1/4√

ρk

√
−t
dt+O

( ρ−nk
n3/2

)
=
κk1/4C1,k√

πρkn
ρ−nk exp

(
−κ2(2k +

√
k)
)

+O
( ρ−nk
n3/2

)
.

(9)

Next, we show that the integrals along γj for j ∈ {2, 3, 4} are all of order o
(
ρ−nk n−3/2

)
and hence the

whole asymptotic contribution comes from integration along γ1.
First, let us consider the integral along γ4:∣∣∣∣∣
∫
γ4

zk+`−n−1∏k+`
j=1

√
Rk,j(z, 1)

dz

∣∣∣∣∣ ≤ (ρk(1 + ε))
k+bκ

√
nc−n−1 |γ4|max

z∈γ4

∣∣∣∣∣ 1∏k+bκ
√
nc

j=1

√
Rk,j(z, 1)

∣∣∣∣∣
≤ Cρ−nk (1 + ε)−n (ρk(1 + ε))

bκ
√
nc

min
z∈γ4

∣∣∣∣√Rk,1(z, 1)

∣∣∣∣−bκ
√
nc

,
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whereC is some positive constant. Here, (1+ε)−n contributes an exponential factor e−Dn with a positive

constant D, which compensates the factor minz∈γ4

∣∣∣√Rk,1(z, 1)
∣∣∣−bκ√nc and thus guarantees∫

γ4

zk+`−n−1∏k+`
j=1

√
Rk,j(z, 1)

dz = O
((
ρk(1− ε)−n

))
= o

(
ρ−nk n−3/2

)
.

Now, we estimate the integral along γ2. For some constant C > 0, we have∣∣∣∣∣
∫
γ2

zk+`−n−1∏k+`
j=1

√
Rk,j(z, 1)

dz

∣∣∣∣∣ ≤ C
∣∣∣∣∣∣∣
∫ εn

log2 n

ρ
bκ
√
nc−n

k

(
1 + t

n + i
n

)bκ√nc−n√
Rk,1

(
ρk
(
1 + t

n + i
n

)
, 1
)bκ√nc 1

n
dt

∣∣∣∣∣∣∣
≤ Cρ−nk

1

n
ρ
bκ
√
nc

k max
γ2

∣∣∣∣∣ z√
Rk,1(z, 1)

∣∣∣∣∣
bκ
√
nc ∫ εn

log2 n

(
1 +

t

n
+
i

n

)−n
dt.

Using the fact that
∣∣∣√Rk,1(z, 1)

∣∣∣ =
∣∣∣z +

√
Rk,0(z, 1)

∣∣∣ and by Lemma 5.2, we get that the maximum
contributes a factor

max
z∈γ2

∣∣∣∣∣ z√
Rk,1(z, 1)

∣∣∣∣∣
bκ
√
nc

= max
z∈γ2

∣∣∣∣∣ 1

1 + 1
z

√
Rk,0(z, 1)

∣∣∣∣∣
bκ
√
nc

=

(
1 + C̃

log n√
n

)bκ√nc
∼ eC logn

for some positive constants C̃ and C > 0. The remaining integral can be estimated by∫ εn

log2 n

(
1 +

t

n
+
i

n

)−n
dt = O

(
e− log2 n

)
,

which finally gives us∣∣∣∣∣
∫
γ2

zk+`−n−1∏k+`
j=1

√
Rk,j(z, 1)

dz

∣∣∣∣∣ = O
(
ρ−nk

1

n
e− log2 n+C logn

)
= o

(
ρ−nk n−3/2

)
.

The estimate of the integral along γ3 works analogously.
Therefore, by (9), we get

[zn]
∂Uk,`(z, u)

∂u

∣∣∣
u=1

=
κk1/4C1,k√

πρkn
ρ−nk exp

(
−κ2(2k +

√
k)
)

+O
( ρ−nk
n3/2

)
.

Combining this result and the asymptotic behavior of the sequence enumerating all k-indexed terms,
we finally obtain that the expected number of leaves at the level bκ√nc is given by

[zn]
∂Uk,`(z,u)

∂u

∣∣∣
u=1

[zn]Gk(z)
∼

κk1/4C1,k√
πρkn

ρ−nk exp
(
− κ2(2k +

√
k)
)

k1/4C1,k

2
√
πρk

n−3/2ρ−nk

= 2κ exp
(
−κ2(2k +

√
k)
)√

n.
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6 Final remarks
By Theorem 5.3, we can observe that the expected unary profile of lambda terms with De Bruijn indices
at most k looks like the density of a Rayleigh distribution.

So far, the distribution of the number of leaves in each De Bruijn level has not been investigated,
however, the total number of leaves within these terms, as well as their distribution, have been studied
asymptotically by Gittenberger and Larcher (2018).

Theorem 6.1 (Gittenberger and Larcher (2018), Theorem 1). Let Xn be the total number of variables in
a random closed lambda term of size n where the De Bruijn index of each variable is at most k. Then Xn

is asymptotically normally distributed with

EXn ∼
√
k

1 + 2
√
k
n and VXn ∼

√
k

2(1 + 2
√
k)2

n as n→∞.

Since the number of binary nodes differs only by 1 from the number of leaves, and the remaining nodes
(that are neither binary nodes nor leaves) have to be unary nodes, we can state the following corollary.

Corollary 6.2. Let Yn be the total number of binary nodes in a random closed lambda term of size n with
De Bruijn index at most k, and let Zn be the total number of unary nodes, respectively. Then

EYn = EXn ∼
√
kρkn and EZn ∼ ρkn as n→∞,

with Xn being defined as in Theorem 6.1.

Remark. Thus, it is an immediate observation that on average each lambda binds
√
k leaves in lambda

terms with De Bruijn indices being at most k.
By calculating the asymptotic number of individual constructors that occur in k-colored Motzkin trees,

we get exactly the same results as in Theorem 6.1 (and therefore also as in Corollary 6.2). Furthermore,
the height and the profile of these k-colored Motzkin trees is also very similar to that of lambda terms
with De Bruijn indices at most k. Thus, k-indexed lambda terms are very much alike k-colored Motzkin
trees. However, their counting sequences differ significantly (by a factor C1,k/2) due to the restrictions
on labelling leaves in hats of the terms. So, there are way more k-colored Motzkin trees than k-indexed
lambda terms. Nevertheless the great majority of them exhibits the same structural properties.

This leads to the conjecture that the problem of generating random lambda terms could be solved by
means of generating random k-colored Motzkin trees and finding a suitable algorithm for repairing their
hats. The resulting generation would not be perfectly uniform, but potentially very close to the uniform
one and it would definitively be an interesting future topic to investigate.
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