
HAL Id: hal-02313687
https://hal.science/hal-02313687

Submitted on 11 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Generation of Most Reliable LLRs of a
Non-Binary Symbol

Hassan Harb, Ali Chamas Al Ghouwayel, Emmanuel Boutillon

To cite this version:
Hassan Harb, Ali Chamas Al Ghouwayel, Emmanuel Boutillon. Parallel Generation of Most Reli-
able LLRs of a Non-Binary Symbol. IEEE Communications Letters, 2019, 23 (10), pp.1761-1764.
�10.1109/LCOMM.2019.2927702�. �hal-02313687�

https://hal.science/hal-02313687
https://hal.archives-ouvertes.fr

1

Parallel Generation of Most Reliable LLRs of a
Non-Binary Symbol

Hassan Harb, Ali Chamas Al Ghouwayel, Member, IEEE and Emmanuel Boutillon, Senior Member, IEEE

Abstract—The first task of Non-Binary decoders (LDPC or
Turbo) is to generate the Log-Likelihood Ratio (LLR) of the re-
ceived Non-Binary symbols defined over Galois Fields GF(q >2).
In the Extended Min-Sum decoding algorithm, the intrinsic
information associated to a given received symbol is a sorted
list of the nm most reliable Non-Binary GF symbols along with
their associated reliability values. In this paper we present a
fully parallel LLR generation algorithm, an enabler for very
high throughput decoding, that processes one received symbol per
clock cycle. We provide complexity figures for LLR architectures
designed over GF(q) of sizes 64, 256 and 1024, as well as
different values of nm. Compared to the related state of the
art architecture, FPGA synthesis results show that the proposed
parallel architecture improves the hardware efficiency by a factor
ranging from 7 up to 15.

Index Terms—NB-LDPC codes, EMS algorithm, LLR value.

I. INTRODUCTION

Binary Low Density Parity Check (LDPC) [1] codes and
Binary Turbo-Codes [2] have been adopted in many commu-
nication standards such as WiMAX, WiFi, DVB-C, DVB-S2X,
DVB-T2, among others. Nevertheless, with short codewords,
performance of binary codes start to degrade compared to
theoretical achievable performance. A solution to mitigate
this problem is to replace binary codes by Non-Binary (NB)
codes defined over GF(q), q = 2m [3] [4]. NB-LDPC codes
are efficient for short and moderate codeword lengths [3].
This high error correction capability is obtained thanks to
higher girths which is an inherent feature of NB-LDPC codes.
These characteristics position NB-LDPC codes as serious
competitors of classical binary LDPC and Turbo-Codes in
future wireless communication and digital video broadcasting
standards. However, this competitive edge does not come for
free; it entails high computational complexity making their
hardware implementation a very challenging task. In [5] and
[6], the authors propose the Extended-Min Sum (EMS) algo-
rithm to decode NB-LDPC code with a reduced complexity.
The principle of the EMS is to truncate the LLR messages
associated to a symbol from q (the Galois Field size) down to
nm (nm � q). The Bubble Check algorithm [7] reduces the
CN complexity from O(q2) down to O(4nm).

The first step in the EMS algorithm is the generation of
the nm most reliable candidate GF(q) symbols. Feeding the

Hassan Harb is with the Université de Bretagne Sud - Lab-STICC, UMR
6285 CNRS - Lorient, France, and Lebanese University - Faculty of Sciences,
Hadat, Beirut, Lebanon.

Ali Chamas Al Ghouwayel is with the School of Engineering, Lebanese
International University (LIU) and International University of Beirut (BIU),
Beirut, Lebanon.

Emmanuel Boutillon is with the Université de Bretagne Sud - Lab-STICC,
UMR 6285 CNRS - Lorient, France.

decoder with nm symbols in one clock cycle is a necessity
for highly parallel processing-based decoder architectures. In
this paper, we propose a parallel LLR generation architecture
able to generate a predefined number, nm, of symbols at each
clock cycle in the specific case where the channel generates
binary LLRs (Binary Phase Shift Keying (BPSK) modulation
for example). Compared to the state of the art [8], the proposed
architecture offers a hardware efficiency gain factor ranging
from 7 to 15.

The rest of this paper is organized as follows. Section
II reviews the basic notions and definitions related to the
LLR computation. Section III discusses the proposed parallel
architecture and Section IV presents the synthesis results.
Finally, Section V concludes the paper.

II. DEFINITION OF THE LOG-LIKELIHOOD RATIO

In this paper, we consider the transmission of Non-Binary
codeword over GF(q), q = 2m, using a BPSK modulation
through an Additive White Gaussian Noise (AWGN) Channel
of noise variance σ2. A GF symbol X of the codeword
is represented by a binary vector of size m, i.e., X =
(x0, x1, ..., xm−1). Each coordinate of this vector is modulated
as B(xi) = (−1)xi , i = 0, 1, . . . ,m − 1, and transmitted
over the AWGN channel. At the receiver side, the received
message is R = (r0, r1, . . . , rm−1), where ri = B(xi) + wi
and wi, i = 0, 1, . . . ,m − 1 are independent realizations of
a Gaussian variable N (0, σ). Following [9], and knowing the
received vector R and that the GF symbols are equiprobable,
we define the LLR L(X) of a GF symbol X as

L(X) = log

(
P (R|X̄)

P (R|X)

)
, (1)

where X̄ represents the hard decision over R, i.e. x̄i = 1 if
ri < 0, 0 otherwise, i = 0, 1, . . . ,m − 1. The expression (1)
can be developed as

L(X) =

m−1∑
i=0

log (P (ri|x̄i))− log (P (ri|xi)) . (2)

Since in the AWGN channel, P (r|x) = 1√
2πσ

e
−(r−B(x))2

2σ2 , (2)
reduces to

L(X) =
1

2σ2

m−1∑
i=0

(ri −B(xi))
2 − (ri −B(x̄i))

2. (3)

Thus,

2

Fig. 1: Comparator-Swap (CS) and Comparator (C).

L(X) =

m−1∑
i=0

2

σ2
|ri|∆(x̄i, xi), (4)

with ∆(a, b) = 0 if a = b, 1 otherwise. In the following, the
LLR value 2

σ2 ri in (4) will be denoted by yi. Note that the
decision value ȳi on yi remains equal to x̄i.

Example: let Y = (−6,+9,−2,+12,+11,−7) be the
received quantized LLR values of a symbol over GF(64).
Then Ȳ = (1, 0, 1, 0, 0, 1). Let X0 = (0, 0, 0, 0, 0, 0), then
L(X0) = 6 + 2 + 7 = 15, since X0 differs from Ȳ in
positions 1, 3 and 6. The nm = 5 best possible decisions,
based on Y , will be U = {Ui}i=0,1,2,3,4, with Ui = (U⊕i , U

+
i)

a couple composed of a GF value U⊕i and its associated LLR
U+
i = L(U⊕i). In this example, U0 = ((1, 0, 1, 0, 0, 1), 0),

U1 = ((1, 0, 0, 0, 0, 1), 2), U2 = ((0, 0, 1, 0, 0, 1), 6), U3 =
((1, 0, 1, 0, 0, 0), 7) and finally U4 = ((0, 0, 0, 0, 0, 1), 8).

III. PROPOSED ARCHITECTURE

This section describes the new proposed parallel architecture
that generates the first nm most reliable LLR values with their
associated GF symbols in parallel. The key idea is to work in 3
steps. The first step is to replace the received unstructured set
of LLR Y = (y0, y1, . . . ym−1) by an equivalent structured set
S+ = (s+0 , s

+
1 , . . . , s

+
m−1) containing the absolute values of Y

sorted in ascendant order. The second step is to find the set
Î of the nm smallest LLR values along with their associated
GF values from the structured set S+. Finally, the last step is
to transform the set of solutions Î of the structured problem
back to the set of solutions U of the initial problem. In order
to ease the reading of the paper, GF symbol and vector in the
structured domain will be noted with a hat.

A. From unstructured to structured channel observations

The first step is then to sort the absolute values of the received
LLR |yi|, i = 0...m−1, using the odd-even sorting algorithm1

[10] of size m. Fig. 1.a) shows the considered symbol to
refer to a Comparator-Swap (CS) while the one shown in
Fig. 1.b) refers to a simple Comparator (C). Fig. 2 shows the
fully parallel pipelined sorter that receives the absolute values
|yi|, sorts them, and generates the couples si = (s+i , π(i)),
i = 0, . . . ,m− 1, so that π(i) ∈ {0, . . . ,m− 1}, s+i = |yπ(i)|
and 0 ≤ s+0 ≤ s+1 ≤ · · · ≤ s+m−1. The permutation π is
used later in step 3 to transform the solution of the structured
problem back to the solution of the initial problem.

With the example of previous section, from the set of
binary LLR Y = (−6,+9,−2,+12,+11,−7), we obtain the
set S+ = (2, 6, 7, 9, 11, 12) and the associated permutation
π = (2, 0, 5, 1, 4, 3).

1Other types of sorting algorithm can also be selected.

Fig. 2: Sorter architecture of the observed bits.

B. Solution of the structured problem

The first step is to compute the LLR values associated to
a predefined set of symbols Ĵ⊕, where Ĵ⊕ is defined offline
in such a way that the nm most reliable intrinsic symbols
for any S+ are always computed. The design of Ĵ⊕ takes
advantage of the fact that the LLR values of S+ are positive
and sorted. Then, the LLR values Ĵ + of Ĵ⊕, computed from
S+, are sorted in increasing order and the set of solutions
Î = (Î⊕, Î+) of the structured problem is simply extracted
as the smallest nm values of Ĵ +.

1) Offline construction of Ĵ⊕: Let Â⊕ and B̂⊕ be two
vectors of size m and S+ a vector of m positive ordered bit-
LLR values. Â⊕ is said to dominate B̂⊕ if and only if, among
all possible realizations of S+, L(Â⊕) ≤ L(B̂⊕). For exam-
ple, with m = 3, Â⊕ = (1, 1, 0) dominates B̂⊕ = (1, 0, 1)
because L(Â⊕) = s+0 + s+1 while L(B̂⊕) = s+0 + s+2 and,
by construction, s+1 ≤ s+2 , thus Â⊕ will be always selected
before B̂⊕. The notion of dominance can be defined formally
by the existence of an injective function π between the set
of indices φÂ⊕ of the positions of 1s in Â⊕ and the set of
indices φB̂⊕ of positions of 1s in B̂⊕ so that, for all e ∈ φÂ⊕ ,
π(e) ≥ e. The explicit construction of π is not described due
to lack of space but it can be simply constructed offline using
a greedy algorithm.

The relation of dominance gives only a partial order over the
set of binary vectors of size m. For example, Ĉ⊕ = (0, 0, 1)
and D̂⊕ = (1, 1, 0) can give either L(Ĉ⊕) > L(D̂⊕) or
L(Ĉ⊕) < L(D̂⊕) (for example, with S+ = (2, 3, 12) and
S+ = (2, 3, 4), respectively). For given values of m and nm, it
is possible to generate formally the set Ĵ⊕m (nm) of all vectors
of size m that are dominated by at most nm vectors (note that a
vector is dominated by itself). Thus, for any realization of S+,
the set Ĵ⊕m (nm) = {Ĵ⊕0 , Ĵ

⊕
1 , . . . , Ĵ

⊕
nJ−1} of cardinality nJ , is

guaranteed to contain the nm m-binary vectors associated to
the nm smallest LLR values. Note that the proposed notion of
dominance is already presented in a different context in [11]
to define the position of frozen bits in the construction process
of polar codes.

Table I shows all the elements of the set Ĵ⊕6 (12) that
constitute all the possible candidates needed to extract
nm = 12 symbols over GF(64). In this case, the set Ĵ⊕6 (12)
is of cardinality nJ = 17.

Figure 3 shows the evolution of nJ as a function of nm for

3

TABLE I: The nJ = 17 elements of Ĵ⊕6 (12), associated ΦĴ⊕

sets, literal expressions of Ĵ+ and Numerical Application (NA)
for S+ = (2, 6, 7, 9, 11, 12).

i Ĵ⊕
i φ

Ĵ⊕
i

Ĵ+
i = L(Ĵ⊕

i) NA

0 (0, 0, 0, 0, 0, 0) ∅ 0 Ĵ+
0 = 0

1 (1, 0, 0, 0, 0, 0) {0} s+0 Ĵ+
1 = 2

2 (0, 1, 0, 0, 0, 0) {1} s+1 Ĵ+
2 = 6

3 (0, 0, 1, 0, 0, 0) {2} s+2 Ĵ+
3 = 7

4 (0, 0, 0, 1, 0, 0) {3} s+3 Ĵ+
4 = 9

5 (0, 0, 0, 0, 1, 0) {4} s+4 Ĵ+
5 = 11

6 (0, 0, 0, 0, 0, 1) {5} s+5 Ĵ+
6 = 12

7 (1, 1, 0, 0, 0, 0) {0, 1} s+0 + s+1 Ĵ+
7 = 8

8 (1, 0, 1, 0, 0, 0) {0, 2} s+0 + s+2 Ĵ+
8 = 9

9 (0, 1, 1, 0, 0, 0) {1, 2} s+1 + s+2 Ĵ+
9 = 13

10 (1, 1, 1, 0, 0, 0) {0, 1, 2} s+0 + s+1 + s+2 Ĵ+
10 = 15

11 (1, 0, 0, 1, 0, 0) {0, 3} s+0 + s+3 Ĵ+
11 = 11

12 (0, 1, 0, 1, 0, 0) {1, 3} s+1 + s+3 Ĵ+
12 = 15

13 (1, 1, 0, 1, 0, 0) {0, 1, 3} s+0 + s+1 + s+3 Ĵ+
13 = 17

14 (0, 0, 1, 1, 0, 0) {2, 3} s+2 + s+3 Ĵ+
14 = 16

15 (1, 0, 0, 0, 1, 0) {0, 4} s+0 + s+4 Ĵ+
15 = 13

16 (1, 0, 0, 0, 0, 1) {0, 5} s+0 + s+5 Ĵ+
16 = 14

n
m

0 5 10 15 20 25 30 35

n
J

0

10

20

30

40

50

60

70

GF(64)

GF(256)

GF(1024)

Fig. 3: nJ versus nm in case of m = 6, 8 and 10 (GF(64),
GF(256) and GF(1024) respectively).

several values of m. It is important to note that nJ is greater
than nm, but less than 2nm for m ≤ 10, i.e., it increases
almost linearly with nm for practical values of nm.

2) Computation of the list of LLR values Ĵ +: Based on S+

and the set Ĵ⊕, the nJ values of Ĵ + are computed using a
set of adders wired according to the addition of s+i s indicated
in the third column of Table I. The next step is to sort the pre-
defined potential candidates Ĵ +

i = {Ĵ+
i }i=0,1,...,nJ−1, to gen-

erate the list of nm sorted LLRs Î = {(Î⊕k , Î
+
k)}k=0,...,nm−1.

3) Sorting of the potential candidates: The sorting process
is first presented for the case where m = 6 and nm = 12,
then the method is generalized for any m and nm values.

The first three outputs are always Î0 = Ĵ0, Î1 = Ĵ1

TABLE II: Upper bound of Ncs and Nl to extract Î from Ĵ
for different values of nm and GF(q).

nm 4 8 12 16 20 24 28 32

GF(64)
nJ 5 12 17 25 28 33 37 44
Nl 1 7 7 11 11 13 13 16

Ncs 1 13 28 103 125 147 162 205

GF(256)
nJ 5 13 19 29 33 41 49 59
Nl 1 8 12 12 14 14 16 16

Ncs 1 47 82 118 147 181 207 247

GF(1024)
nJ 5 13 21 31 37 45 55 67
Nl 1 8 16 18 18 20 20 22

Ncs 1 47 167 203 283 348 399 444

and Î2 = Ĵ2. For the remaining 9 outputs, we propose the
sorter architecture shown in Fig. 4. The sorter receives the
14 remaining elements Ĵi, i = 3, . . . , 16, and extracts the
first 9 sorted symbols having the smallest LLR values. The
relation of dominance gives some a priori information on the
relative order of the elements of Ĵ . In fact, for a given couple
(a,b), if Ĵ⊕a dominates Ĵ⊕b , then by definition, Ĵ+

a ≤ Ĵ+
b .

This a priori information can be exploited to reduce the
number of comparators and multiplexers. Therefore, the 14
elements are split up into 5 sets based on the LLR value
as: {Ĵ+

3 ≤ Ĵ+
4 ≤ Ĵ+

5 ≤ Ĵ+
6 }, {Ĵ

+
7 ≤ Ĵ+

8 ≤ Ĵ+
9 ≤ Ĵ+

10},
{Ĵ+

11 ≤ Ĵ
+
12 ≤ Ĵ

+
13}, {Ĵ

+
14} and {Ĵ+

15 ≤ Ĵ
+
16}.

The sorter architecture is based on the odd-even algorithm
[10]. It is composed of Nl = 7 layers of CSs. The overall
complexity is Ncs = 28 CSs (CSs and Cs are not differenti-
ated) with a critical path of T = Nl×TCS = 7×TCS , where
TCS is the critical path of one CS.

Going back to the previous example, the obtained set Î is
equal to the nm = 12 couples (see Table I): Î = {(Ĵ⊕0 , 0),
(Ĵ⊕1 , 2), (Ĵ⊕2 , 6), (Ĵ⊕3 , 7), (Ĵ⊕7 , 8), (Ĵ⊕4 , 9), (Ĵ⊕8 , 9), (Ĵ⊕5 , 11),
(Ĵ⊕11, 11), (Ĵ⊕6 , 12), (Ĵ⊕9 , 13), (Ĵ⊕15, 13)}.

To generate the sorting architecture that extracts Î from
Ĵ in the general case, we propose a generic method. It
consists in starting with an odd-even sorter of size 2dlog2(nJ)e,
i.e., the lowest power of 2 greater than or equal to nJ ,
then pruning each CS receiving pre-ordered inputs or having
unused outputs. Table II summarizes the sorter complexity for
several values of nm and different Galois fields. Note that the
mapping between the elements of Ĵ and the inputs of the
odd-even sorter impacts significantly the overall complexity.
Finding the optimal mapping is still an open question. When
defined, this optimal mapping may lead, for some GF and
nm configurations, to lowering the complexity figures of Ncs
and/or NJ proposed in Table II.

C. Inverse permutation of the GF values of Î
The computation of the intrinsic message U from Î

is straightforward. The couples Uk = (U⊕k , U
+
k), k =

0, 1, . . . , nm − 1 are obtained as U⊕k = (Î⊕k (π−1(i)) ⊕
Ȳ (i))i=0,1,...,m−1 and U+

k = Î+k . Following the previous
example, π = (2, 0, 5, 1, 4, 3) gives π−1 = (1, 3, 0, 5, 4, 2).
For k = 0, U0 = (Ȳ , 0). For k = 1, Î⊕1 = (1, 0, 0, 0, 0, 0),
then (Î⊕1 (π−1(i)))i=0,1,...,m−1 is equal to (0, 0, 1, 0, 0, 0,),

4

Fig. 4: Sorter Architecture generating the most reliable nm intrinsic LLRs, GF(64), nm = 12, nJ = 17.

TABLE III: Synthesis results of the GF(64)-LLR Generator
on kintex 7 FPGA device, xc7k325t -2 fbg676.

nm
Systolic [8] Proposed

nm/nc F C nm/nc F C HER
4 0.8 250 322 4 530 222 15.37
12 0.923 250 322 12 500 1084 7.73

thus U⊕1 = (0, 0, 1, 0, 0, 0)⊕(1, 0, 1, 0, 0, 1) = (1, 0, 0, 0, 0, 1).
Since U+

1 = Î+1 = 2, then U1 = ((1, 0, 0, 0, 0, 1), 2). The same
process is repeated to obtain Uk, k = 2, . . . , nm − 1.

IV. COMPLEXITY ANALYSIS

This section presents the implementation results on a Xilinx
Kintex7 (xc7k325t -2 fbg676) FPGA device, of the LLR
generator over GF(64), nm = 4 and 12. It is easy to modify
the proposed architecture to fit all the cases of nm < 12 since
it is a matter of removing some CSs.

Table III compares the hardware cost of the proposed and
the systolic one [8] in terms of Look Up Tables (LUTs).
The complexity of the systolic architecture is constant since
the number of stages is fixed and equal to m. The only
thing that changes with nm is the size of the FIFOs im-
plemented in each stage which does not impact significantly
the overall complexity of the systolic architecture. In order
to compare the efficiency of both architectures, we evaluated
a metric called Hardware Efficiency (HE). HE is defined as
the number of sorted symbols per second per LUT, i.e., HE
= (nm/nc)× Fclk/C, where nc denotes the number of clock
cycles required to generate the nm outputs, Fclk the clock
frequency (in MHz) and C the number of LUTs required by
the hardware with an FPGA implementation. For the proposed
parallel architecture, nc = 1, while in [8], nc is equal to
nm + 1. To better illustrate the efficiency comparison, we
have evaluated the HE Ratio (HER) defined as the ratio of the
HE of the proposed architecture to the HE of [8]. The most
right column of Table III shows that the proposed architecture
outperforms the systolic architecture by an order of magnitude.

V. CONCLUSION

The paper has presented the design and implementation of
a parallel low-hardware cost LLR generator. Theoretical com-

plexity and performance analysis of the proposed architecture
compared to the systolic architecture have been addressed.
For any size of nm, the proposed architecture requires the
lowest area and offers the highest frequency, where a hardware
efficiency gain ranging from 7 up to 15 is obtained. The
architecture has been developed and presented in the context
of non binary codes. It could be used also for high speed Chase
algorithm [12].

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,” Ph.D. dissertation, Cam-
bridge, 1963.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes. 1,” in Proceedings
of ICC ’93 - IEEE International Conference on Communications, vol. 2,
May 1993, pp. 1064–1070 vol.2.

[3] M. C. Davey and D. J. C. MacKay, “Low density parity check codes
over GF(q),” in 1998 Information Theory Workshop (Cat. No.98EX131),
June 1998, pp. 70–71.

[4] C. Berrou, M. Jezequel, C. Douillard, and S. Kerouedan, “The advan-
tages of non-binary turbo codes,” in Proceedings 2001 IEEE Information
Theory Workshop (Cat. No.01EX494), Sep. 2001, pp. 61–63.

[5] D. Declercq and M. Fossorier, “Decoding Algorithms for Nonbinary
LDPC Codes Over G(q),” IEEE Transactions on Communications,
vol. 55, no. 4, pp. 633–643, April 2007.

[6] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low-
complexity decoding for non-binary LDPC codes in high order fields,”
IEEE Transactions on Communications, vol. 58, no. 5, pp. 1365–1375,
May 2010.

[7] E. Boutillon and L. Conde-Canencia, “Bubble check: a simplified
algorithm for elementary check node processing in extended min-sum
non-binary ldpc decoders,” Electronics Letters, vol. 46, no. 9, pp. 633–
634, April 2010.

[8] A. A. Ghouwayel and E. Boutillon, “A Systolic LLR Generation
Architecture for Non-Binary LDPC Decoders,” IEEE Communications
Letters, vol. 15, no. 8, pp. 851–853, August 2011.

[9] V. Savin, “Min-max decoding for non binary LDPC codes,” in 2008
IEEE International Symposium on Information Theory, July 2008, pp.
960–964.

[10] A. Farmahini-Farahani, H. J. D. III, M. J. Schulte, and K. Compton,
“Modular Design of High-Throughput, Low-Latency Sorting Units,”
IEEE Transactions on Computers, vol. 62, no. 7, pp. 1389–1402, July
2013.

[11] G. He, J. Belfiore, I. Land, G. Yang, X. Liu, Y. Chen, R. Li, J. Wang,
Y. Ge, R. Zhang, and W. Tong, “Beta-expansion: A theoretical frame-
work for fast and recursive construction of polar codes,” in GLOBECOM
2017 - 2017 IEEE Global Communications Conference, Dec 2017, pp.
1–6.

[12] A. Kabat, F. Guilloud, and R. Pyndiah, “On the Sensibility of the
”Arranged List of the Most a Priori Likely Tests” Algorithm,” in
MILCOM 2007 - IEEE Military Communications Conference, Oct 2007,
pp. 1–7.

