Hassan Harb

Ali Chamas

Member, IEEE Al Ghouwayel

Senior Member, IEEE Emmanuel Boutillon

Parallel Generation of Most Reliable LLRs of a Non-Binary Symbol

Keywords: LDPC codes, EMS algorithm, LLR value

The first task of Non-Binary decoders (LDPC or Turbo) is to generate the Log-Likelihood Ratio (LLR) of the received Non-Binary symbols defined over Galois Fields GF(q >2).

In the Extended Min-Sum decoding algorithm, the intrinsic information associated to a given received symbol is a sorted list of the nm most reliable Non-Binary GF symbols along with their associated reliability values. In this paper we present a fully parallel LLR generation algorithm, an enabler for very high throughput decoding, that processes one received symbol per clock cycle. We provide complexity figures for LLR architectures designed over GF(q) of sizes 64, 256 and 1024, as well as different values of nm. Compared to the related state of the art architecture, FPGA synthesis results show that the proposed parallel architecture improves the hardware efficiency by a factor ranging from 7 up to 15.

I. INTRODUCTION

Binary Low Density Parity Check (LDPC) [START_REF] Gallager | Low-density parity-check codes[END_REF] codes and Binary Turbo-Codes [START_REF] Berrou | Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1[END_REF] have been adopted in many communication standards such as WiMAX, WiFi, DVB-C, DVB-S2X, DVB-T2, among others. Nevertheless, with short codewords, performance of binary codes start to degrade compared to theoretical achievable performance. A solution to mitigate this problem is to replace binary codes by Non-Binary (NB) codes defined over GF(q), q = 2 m [3] [START_REF] Berrou | The advantages of non-binary turbo codes[END_REF]. NB-LDPC codes are efficient for short and moderate codeword lengths [START_REF] Davey | Low density parity check codes over GF(q)[END_REF]. This high error correction capability is obtained thanks to higher girths which is an inherent feature of NB-LDPC codes. These characteristics position NB-LDPC codes as serious competitors of classical binary LDPC and Turbo-Codes in future wireless communication and digital video broadcasting standards. However, this competitive edge does not come for free; it entails high computational complexity making their hardware implementation a very challenging task. In [START_REF] Declercq | Decoding Algorithms for Nonbinary LDPC Codes Over G(q)[END_REF] and [START_REF] Voicila | Lowcomplexity decoding for non-binary LDPC codes in high order fields[END_REF], the authors propose the Extended-Min Sum (EMS) algorithm to decode NB-LDPC code with a reduced complexity. The principle of the EMS is to truncate the LLR messages associated to a symbol from q (the Galois Field size) down to n m (n m q). The Bubble Check algorithm [START_REF] Boutillon | Bubble check: a simplified algorithm for elementary check node processing in extended min-sum non-binary ldpc decoders[END_REF] reduces the CN complexity from O(q 2) down to O(4n m).

The first step in the EMS algorithm is the generation of the n m most reliable candidate GF(q) symbols. Feeding the decoder with n m symbols in one clock cycle is a necessity for highly parallel processing-based decoder architectures. In this paper, we propose a parallel LLR generation architecture able to generate a predefined number, n m , of symbols at each clock cycle in the specific case where the channel generates binary LLRs (Binary Phase Shift Keying (BPSK) modulation for example). Compared to the state of the art [START_REF] Ghouwayel | A Systolic LLR Generation Architecture for Non-Binary LDPC Decoders[END_REF], the proposed architecture offers a hardware efficiency gain factor ranging from 7 to 15.

The rest of this paper is organized as follows. Section II reviews the basic notions and definitions related to the LLR computation. Section III discusses the proposed parallel architecture and Section IV presents the synthesis results. Finally, Section V concludes the paper.

II. DEFINITION OF THE LOG-LIKELIHOOD RATIO

In this paper, we consider the transmission of Non-Binary codeword over GF(q), q = 2 m , using a BPSK modulation through an Additive White Gaussian Noise (AWGN) Channel of noise variance σ 2 . A GF symbol X of the codeword is represented by a binary vector of size m, i.e., X = (x 0 , x 1 , ..., x m-1). Each coordinate of this vector is modulated as B(x i) = (-1) xi , i = 0, 1, . . . , m -1, and transmitted over the AWGN channel. At the receiver side, the received message is R = (r 0 , r 1 , . . . , r m-1), where r i = B(x i) + w i and w i , i = 0, 1, . . . , m -1 are independent realizations of a Gaussian variable N (0, σ). Following [START_REF] Savin | Min-max decoding for non binary LDPC codes[END_REF], and knowing the received vector R and that the GF symbols are equiprobable, we define the LLR L(X) of a GF symbol X as

L(X) = log P (R| X) P (R|X) , (1)
where X represents the hard decision over R, i.e. xi = 1 if r i < 0, 0 otherwise, i = 0, 1, . . . , m -1. The expression (1) can be developed as

L(X) = m-1 i=0 log (P (r i |x i)) -log (P (r i |x i)) . (2)
Since in the AWGN channel,

P (r|x) = 1 √ 2πσ e -(r-B(x)) 2 2σ 2
, (2) reduces to

L(X) = 1 2σ 2 m-1 i=0 (r i -B(x i)) 2 -(r i -B(x i)) 2 . (3)
Thus,

L(X) = m-1 i=0 2 σ 2 |r i |∆(x i , x i), (4)
with ∆(a, b) = 0 if a = b, 1 otherwise. In the following, the LLR value 2 σ 2 r i in (4) will be denoted by y i . Note that the decision value ȳi on y i remains equal to xi .

Example: let Y = (-6, +9, -2, +12, +11, -7) be the received quantized LLR values of a symbol over GF(64). Then Ȳ = (1, 0, 1, 0, 0, 1). Let X 0 = (0, 0, 0, 0, 0, 0), then L(X 0) = 6 + 2 + 7 = 15, since X 0 differs from Ȳ in positions 1, 3 and 6. The n m = 5 best possible decisions, based on Y , will be U = {U i } i=0,1,2,3,4 , with U i = (U ⊕ i , U + i) a couple composed of a GF value U ⊕ i and its associated LLR

U + i = L(U ⊕ i).
In this example, U 0 = ((1, 0, 1, 0, 0, 1), 0), U 1 = ((1, 0, 0, 0, 0, 1), 2), U 2 = ((0, 0, 1, 0, 0, 1), 6), U 3 = ((1, 0, 1, 0, 0, 0), 7) and finally U 4 = ((0, 0, 0, 0, 0, 1), 8).

III. PROPOSED ARCHITECTURE

This section describes the new proposed parallel architecture that generates the first n m most reliable LLR values with their associated GF symbols in parallel. The key idea is to work in 3 steps. The first step is to replace the received unstructured set of LLR Y = (y 0 , y 1 , . . . y m-1) by an equivalent structured set S + = (s + 0 , s + 1 , . . . , s + m-1) containing the absolute values of Y sorted in ascendant order. The second step is to find the set Î of the n m smallest LLR values along with their associated GF values from the structured set S + . Finally, the last step is to transform the set of solutions Î of the structured problem back to the set of solutions U of the initial problem. In order to ease the reading of the paper, GF symbol and vector in the structured domain will be noted with a hat.

A. From unstructured to structured channel observations

The first step is then to sort the absolute values of the received LLR |y i |, i = 0...m-1, using the odd-even sorting algorithm 1 [START_REF] Farmahini-Farahani | Modular Design of High-Throughput, Low-Latency Sorting Units[END_REF] of size m. Fig. 1.a) shows the considered symbol to refer to a Comparator-Swap (CS) while the one shown in Fig. 1.b) refers to a simple Comparator (C). Fig. 2 shows the fully parallel pipelined sorter that receives the absolute values |y i |, sorts them, and generates the couples

s i = (s + i , π(i)), i = 0, . . . , m -1, so that π(i) ∈ {0, . . . , m -1}, s + i = |y π(i) | and 0 ≤ s + 0 ≤ s + 1 ≤ • • • ≤ s + m-1 .
The permutation π is used later in step 3 to transform the solution of the structured problem back to the solution of the initial problem.

With the example of previous section, from the set of binary LLR Y = (-6, +9, -2, +12, +11, -7), we obtain the set S + = (2, 6, 7, 9, 11, 12) and the associated permutation π = (2, 0, 5, 1, 4, 3). 1 Other types of sorting algorithm can also be selected. , thus Â⊕ will be always selected before B⊕ . The notion of dominance can be defined formally by the existence of an injective function π between the set of indices φ Â⊕ of the positions of 1s in Â⊕ and the set of indices φ B⊕ of positions of 1s in B⊕ so that, for all e ∈ φ Â⊕ , π(e) ≥ e. The explicit construction of π is not described due to lack of space but it can be simply constructed offline using a greedy algorithm.

The relation of dominance gives only a partial order over the set of binary vectors of size m. For example, Ĉ⊕ = (0, 0, 1) and D⊕ = (1, 1, 0) can give either L(Ĉ⊕) > L(D⊕) or L(Ĉ⊕) < L(D⊕) (for example, with S + = (2, 3, 12) and S + = (2, 3, 4), respectively). For given values of m and n m , it is possible to generate formally the set Ĵ ⊕ m (n m) of all vectors of size m that are dominated by at most n m vectors (note that a vector is dominated by itself). Thus, for any realization of S + , the set Ĵ ⊕ m (n m) = { Ĵ⊕ 0 , Ĵ⊕ 1 , . . . , Ĵ⊕ n J -1 } of cardinality n J , is guaranteed to contain the n m m-binary vectors associated to the n m smallest LLR values. Note that the proposed notion of dominance is already presented in a different context in [START_REF] He | Beta-expansion: A theoretical framework for fast and recursive construction of polar codes[END_REF] to define the position of frozen bits in the construction process of polar codes.

Table I shows all the elements of the set Ĵ ⊕ 6 (12) that constitute all the possible candidates needed to extract n m = 12 symbols over GF(64). In this case, the set Ĵ ⊕ 6 (12) is of cardinality n J = 17.

Figure 3 shows the evolution of n J as a function of n m for TABLE I: The n J = 17 elements of Ĵ ⊕ 6 [START_REF] Kabat | On the Sensibility of the "Arranged List of the Most a Priori Likely Tests" Algorithm[END_REF], associated Φ Ĵ⊕ sets, literal expressions of Ĵ+ and Numerical Application (NA) for S + = [START_REF] Berrou | Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1[END_REF][START_REF] Voicila | Lowcomplexity decoding for non-binary LDPC codes in high order fields[END_REF][START_REF] Boutillon | Bubble check: a simplified algorithm for elementary check node processing in extended min-sum non-binary ldpc decoders[END_REF][START_REF] Savin | Min-max decoding for non binary LDPC codes[END_REF][START_REF] He | Beta-expansion: A theoretical framework for fast and recursive construction of polar codes[END_REF][START_REF] Kabat | On the Sensibility of the "Arranged List of the Most a Priori Likely Tests" Algorithm[END_REF].

i Ĵ⊕ i φ Ĵ⊕ i Ĵ+ i = L(Ĵ⊕ i) NA 0 (0, 0, 0, 0, 0, 0) ∅ 0 Ĵ+ 0 = 0 1 (1, 0, 0, 0, 0, 0) {0} s + 0 Ĵ+ 1 = 2 2 (0, 1, 0, 0, 0, 0) {1} s + 1 Ĵ+ 2 = 6 3 (0, 0, 1, 0, 0, 0) {2} s + 2 Ĵ+ 3 = 7 4
(0, 0, 0, 1, 0, 0)

{3} s + 3 Ĵ+ 4 = 9 5 (0, 0, 0, 0, 1, 0) {4} s + 4 Ĵ+ 5 = 11 6
(0, 0, 0, 0, 0, 1)

{5} s + 5 Ĵ+ 6 = 12 7
(1, 1, 0, 0, 0, 0) {0, 1}

s + 0 + s + 1 Ĵ+ 7 = 8 8 (1, 0, 1, 0, 0, 0) {0, 2} s + 0 + s + 2 Ĵ+ 8 = 9 9 (0, 1, 1, 0, 0, 0) {1, 2} s + 1 + s + 2 Ĵ+ 9 = 13 10 (1, 1, 1, 0, 0, 0) {0, 1, 2} s + 0 + s + 1 + s + 2 Ĵ+ 10 = 15 11 (1, 0, 0, 1, 0, 0) {0, 3} s + 0 + s + 3 Ĵ+ 11 = 11 12 (0, 1, 0, 1, 0, 0) {1, 3} s + 1 + s + 3 Ĵ+ 12 = 15 13 (1, 1, 0, 1, 0, 0) {0, 1, 3} s + 0 + s + 1 + s + 3 Ĵ+ 13 = 17 14 (0, 0, 1, 1, 0, 0) {2, 3} s + 2 + s + 3 Ĵ+ 14 = 16 15 (1, 0, 0, 0, 1, 0) {0, 4} s + 0 + s + 4 Ĵ+ 15 = 13 16
(1, 0, 0, 0, 0, 1) {0, 5} s + 0 + s + several values of m. It is important to note that n J is greater than n m , but less than 2n m for m ≤ 10, i.e., it increases almost linearly with n m for practical values of n m .

2) Computation of the list of LLR values Ĵ + : Based on S + and the set Ĵ ⊕ , the n J values of Ĵ + are computed using a set of adders wired according to the addition of s + i s indicated in the third column of Table I. The next step is to sort the predefined potential candidates

Ĵ + i = { Ĵ+ i } i=0,1,...,n J -1 , to gen- erate the list of n m sorted LLRs Î = {(Î⊕ k , Î+ k)} k=0,...,nm-1 .
3) Sorting of the potential candidates: The sorting process is first presented for the case where m = 6 and n m = 12, then the method is generalized for any m and n m values.

The first three outputs are always Î0 = Ĵ0 , Î1 = Ĵ1 and Î2 = Ĵ2 . For the remaining 9 outputs, we propose the sorter architecture shown in Fig. 4. The sorter receives the 14 remaining elements Ĵi , i = 3, . . . , 16, and extracts the first 9 sorted symbols having the smallest LLR values. The relation of dominance gives some a priori information on the relative order of the elements of Ĵ. In fact, for a given couple (a,b), if Ĵ⊕ a dominates Ĵ⊕ b , then by definition, Ĵ+ a ≤ Ĵ+ b . This a priori information can be exploited to reduce the number of comparators and multiplexers. Therefore, the 14 elements are split up into 5 sets based on the LLR value as:

{ Ĵ+ 3 ≤ Ĵ+ 4 ≤ Ĵ+ 5 ≤ Ĵ+ 6 }, { Ĵ+ 7 ≤ Ĵ+ 8 ≤ Ĵ+ 9 ≤ Ĵ+ 10 }, { Ĵ+ 11 ≤ Ĵ+ 12 ≤ Ĵ+ 13 }, { Ĵ+ 14 } and { Ĵ+ 15 ≤ Ĵ+ 16 }.
The sorter architecture is based on the odd-even algorithm [START_REF] Farmahini-Farahani | Modular Design of High-Throughput, Low-Latency Sorting Units[END_REF]. It is composed of N l = 7 layers of CSs. The overall complexity is N cs = 28 CSs (CSs and Cs are not differentiated) with a critical path of T = N l × T CS = 7 × T CS , where T CS is the critical path of one CS.

Going back to the previous example, the obtained set Î is equal to the n m = 12 couples (see Table I To generate the sorting architecture that extracts Î from Ĵ in the general case, we propose a generic method. It consists in starting with an odd-even sorter of size 2 log 2 (n J) , i.e., the lowest power of 2 greater than or equal to n J , then pruning each CS receiving pre-ordered inputs or having unused outputs. Table II summarizes the sorter complexity for several values of n m and different Galois fields. Note that the mapping between the elements of Ĵ and the inputs of the odd-even sorter impacts significantly the overall complexity. Finding the optimal mapping is still an open question. When defined, this optimal mapping may lead, for some GF and n m configurations, to lowering the complexity figures of N cs and/or N J proposed in Table II.

C. Inverse permutation of the GF values of Î

The computation of the intrinsic message U from Î is straightforward. The couples

U k = (U ⊕ k , U + k), k = 0, 1, . . . , n m -1 are obtained as U ⊕ k = (Î⊕ k (π -1 (i)) ⊕ Ȳ (i)) i=0,1,...,m-1 and U + k = Î+ k .
Following the previous example, π = (2, 0, 5, 1, 4, 3) gives π -1 = (1, 3, 0, 5, 4, 2). For k = 0, U 0 = (Ȳ , 0). For k = 1, Î⊕ 1 = (1, 0, 0, 0, 0, 0), then (Î⊕ 1 (π -1 (i))) i=0,1,...,m-1 is equal to (0, 0, 1, 0, 0, 0,), thus U ⊕ 1 = (0, 0, 1, 0, 0, 0)⊕(1, 0, 1, 0, 0, 1) = (1, 0, 0, 0, 0, 1). Since U + 1 = Î+ 1 = 2, then U 1 = ((1, 0, 0, 0, 0, 1), 2). The same process is repeated to obtain U k , k = 2, . . . , n m -1.

IV. COMPLEXITY ANALYSIS

This section presents the implementation results on a Xilinx Kintex7 (xc7k325t -2 fbg676) FPGA device, of the LLR generator over GF(64), n m = 4 and 12. It is easy to modify the proposed architecture to fit all the cases of n m < 12 since it is a matter of removing some CSs.

Table III compares the hardware cost of the proposed and the systolic one [START_REF] Ghouwayel | A Systolic LLR Generation Architecture for Non-Binary LDPC Decoders[END_REF] in terms of Look Up Tables (LUTs). The complexity of the systolic architecture is constant since the number of stages is fixed and equal to m. The only thing that changes with n m is the size of the FIFOs implemented in each stage which does not impact significantly the overall complexity of the systolic architecture. In order to compare the efficiency of both architectures, we evaluated a metric called Hardware Efficiency (HE). HE is defined as the number of sorted symbols per second per LUT, i.e., HE = (n m /n c) × F clk /C, where n c denotes the number of clock cycles required to generate the n m outputs, F clk the clock frequency (in MHz) and C the number of LUTs required by the hardware with an FPGA implementation. For the proposed parallel architecture, n c = 1, while in [START_REF] Ghouwayel | A Systolic LLR Generation Architecture for Non-Binary LDPC Decoders[END_REF], n c is equal to n m + 1. To better illustrate the efficiency comparison, we have evaluated the HE Ratio (HER) defined as the ratio of the HE of the proposed architecture to the HE of [START_REF] Ghouwayel | A Systolic LLR Generation Architecture for Non-Binary LDPC Decoders[END_REF]. The most right column of Table III shows that the proposed architecture outperforms the systolic architecture by an order of magnitude.

V. CONCLUSION

The paper has presented the design and implementation of a parallel low-hardware cost LLR generator. Theoretical com-plexity and performance analysis of the proposed architecture compared to the systolic architecture have been addressed. For any size of n m , the proposed architecture requires the lowest area and offers the highest frequency, where a hardware efficiency gain ranging from 7 up to 15 is obtained. The architecture has been developed and presented in the context of non binary codes. It could be used also for high speed Chase algorithm [START_REF] Kabat | On the Sensibility of the "Arranged List of the Most a Priori Likely Tests" Algorithm[END_REF].

Fig. 1 :

 1 Fig. 1: Comparator-Swap (CS) and Comparator (C).

Fig. 2 :

 2 Fig. 2: Sorter architecture of the observed bits.

5 Ĵ+Fig. 3 :

 53 Fig. 3: n J versus n m in case of m = 6, 8 and 10 (GF(64), GF(256) and GF(1024) respectively).

Fig. 4 :

 4 Fig. 4: Sorter Architecture generating the most reliable n m intrinsic LLRs, GF(64), n m = 12, n J = 17.

TABLE II :

 II Upper bound of N cs and N l to extract Î from Ĵ for different values of n m and GF(q).

		nm	4	8	12	16	20	24	28	32
		n J	5 12	17	25	28	33	37	44
	GF(64)	N l	1	7	7	11	11	13	13	16
		Ncs	1 13	28	103 125 147	162 205
		n J	5 13	19	29	33	41	49	59
	GF(256)	N l	1	8	12	12	14	14	16	16
		Ncs	1 47	82	118 147 181	207 247
		n J	5 13	21	31	37	45	55	67
	GF(1024)	N l	1	8	16	18	18	20	20	22
		Ncs	1 47 167	203 283 348	399 444

TABLE III :

 III Synthesis results of the GF(64)-LLR Generator on kintex 7 FPGA device, xc7k325t -2 fbg676.

	nm	Systolic [8] nm/nc F	C	Proposed nm/nc F	C	HER
	4	0.8	250 322	4	530	222	15.37
	12	0.923	250 322	12	500	1084	7.73