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Abstract. Cyber Security researchers are in an ongoing battle against ransomware attacks.
Some exploits begin with social engineering methods to install payloads on victims’ comput-
ers, followed by a communication with command and control servers for data exchange. To
scale down these attacks, scientists should shed light on the danger of those rising intru-
sions to prevent permanent data loss. To join this arm race against malware, we propose in
this paper an analysis of various ransomware families based on the collected system and net-
work logs from a computer. We delve into malicious network traffic generated by these sam-
ples to perform a packet level detection. Our goal is to reconstruct ransomware’s full activ-
ity to check if its network communication is distinguishable from benign traffic. Then, we ex-
amine if the first packet sent occurs before data’s encryption to alert the administrators or
afterwards. We aim to define the first occurrence of the alert raised by malicious network
traffic and where it takes place in a ransomware workflow. Logs collected are available at
http://serveur2.seres.rennes.telecom-bretagne.eu/data/RansomwareData/ .

Keywords: Ransomware - Network Traffic - Machine Learning.

1 Introduction

Ransomware attacks represent a widespread phenomenon of this decade. None of the operating
systems or electronic devices are spared. This pandemic affected more than 200 000 computers
at the beginning of 2017 [34].

There is no doubt that ransomware is spreading at a high rate infecting not only gov-
ernmental organizations but also end users and hospitals. Its timeline represents a lucrative
business that combines intelligence of the attacker and the fear of the victims for the loss of
his/her files.

Motivation Our motivation to join the malware battle specifically ransomware is its fre-
quency. In fact, one attack occurs every 40 seconds (October 2016) infecting various sectors
like education, entertainment, financial services, healthcare, etc. Unfortunately, these sectors
are not immune to such attacks or extortion techniques (Deutsche Bahn, Honda, Renault,
etc.) [2].

Even though previous operating system targets were essentially Windows computers,
nowadays a wider range of infected equipment and OS is noticed: MacOS, IoT devices and
Cellphones (Android OS) [35,41]. Previous work has been carried out knowing the signature
of the ransomware on the file system that is the encryption of all victims’ files. It is an ob-
vious footprint representing solely that malicious software. In fact, data distribution diverges
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between an encrypted and a non-encrypted file. Thus, any statistical tool (Shannon Entropy,
Chi Squared, ...) applied on these elements displays distinct results enabling an accurate
detection. As follows, an emerging ransomware can neither go unnoticed in these conditions
nor easily be detected. Our work does not represent a real-time based solution, but rather
a study on ransomware families to potentially extract an additional signature besides the
obvious encryption phase.

Contribution The objective of this paper is to find a way to spot the same traceability,
however, based on network analysis. The main contributions of this paper are summarized as
follows:

1. Providing a mechanism for data filtering based on open source tools.

2. Creating ransomware models via machine learning on network flows.

3. Evaluating ransom notes and encrypted files to check whether the detection occurred at
a time t inferior at the start of the encryption.

Outline The paper is structured as follows. Ransomware’s description is presented in Sec-
tion 2. Ransomware state of the art is defined in Section 3. Data collection, filtering and
detection mechanisms of ransomware are developed in Section 4. The results of the experi-
ments are outlined in Section 5. Finally, the conclusion is drawn in Section 6.

2 Context

2.1 Ransomware

Ransomware is a specific type of malware that encrypts users’ files or locks the screen where
access to data is only granted if a ransom is paid. The payment is accomplished via Bitcoin or
any other cryptocurrency. Another ransomware type such as Doxware operates in a distinct
way: you can accept paying the ransom or you can provide information about two of your
friends for cyber criminals. Ransomware’s stages are outlined below:

Infection process by spam emails, self-propagation.

Encryption process (AES, RSA...) of specific file types (.doc, .xls, .jpg, .pdf).
Deletion of original files and Microsoft Shadow Volumes.

Ransom Request key exchanged for money.

Ll

Since 1989 (first known malware extortion attack), researchers have been aware of these
attacks. Concurrently, cyber criminals have been improving their techniques for better gain.
A glimpse of the recent attacks is presented below. Cyber attackers are shifting their focus to
large companies for more fruitful hunts. For instance, National Health Service (NHS) England,
and Telefonica have been infected with WanaCryptOr [3].

Various categories of malware exist. Each one of them presents specific characteristics [22].
For example in 2012, the attacker of Reveton ransomware displayed a fraudulent message to
the user. It declared that he/she has been illegally using some software or acquiring illegal
documents/movies. In addition to that, to pressure the victim to pay, the attacker displays
the IP address of the victim and an actual footage from his/her webcam representing scare
tactics [4].
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Another wave of ransomware named “CryptoLocker” emerged in 2013 using 2048-bit RSA
for encrypting a whitelist of files. As a result, data is unrecoverable since decryption would
take decades. This pandemic did not end here. It goes on with diverse attacks like CryptoWall,
WannaCry, Petya and Bad Rabbit that infect currently just computers. However, Fusob that
appeared in 2015-2016 targeted mobile devices. The most recent cyberattack struck Balti-
more city on the 7th of May 2019. Multiple services were shutdown due to this ransomware
attack [1].

Targeted files may vary from a ransomware to another. A fine sample that encompasses
the majority of these extensions is: .odt, .docx, .xIsx, .pptx, .mdb, .jpeg, .gif, .bmp, .exif, .txt,
etc [32].

2.2 Ransomware Timeline

2012 & 2014 £ 2017 4= 2019
Reveton CryptoWall WannaCry, Petya, ?
Bad Rabbit
Ransomware Attacks Timeline
1989 &¥ 2013 &* 2015-2016 2018 &¥
PC Cyborg CryptoLocker Fusob Ryuk

Trojan

Fig. 1. Ransomware Families Debut Timeline [17].

The timeline shown in Figure 1 presents a glimpse of ransomware families initial release
dates and their targeted systems. It will be used in Section 5 as a comparison means between
the release date and the network activity observed throughout the collected data of various
samples. Thus, the question remains, based on previous observations can we predict what will
happen in ransomware’s universe, or prevent a plausible attack.

3 Ransomware Detection State of the Art

In the worst case scenario, if no noticeable characteristics alerted the user, encryption process
will begin.To eradicate malicious threats, a myriad of solutions are available in the current
literature [40,37,8,19].

Some researchers delve into investigating ransomware’s signals on the filesystem for in-
stance API calls or relevant system calls [14,24]; or they rely on metrics collected from en-
crypted files such as entropy[42,36,23]. However, some researchers delve into the study of
network activity for ransomware detection [12,13,9]. Therefore, the analysis presented in the
literature could be divided in two parts: host and network based ransomware detection.

3.1 Host Based Ransomware Detection

Previous work conducted in the literature emphasizes that each malware, even though is
sometimes obfuscated, can present different patterns enabling researchers its detection at an
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early stage. Indeed, ransomware metrics have distinct values compared to benign processes
such as I/O Request Packets Sequence, API Calls Flow Graph, and in our case, acquired
system and network logs from ransomware execution.

Gomez Hernandez et al. illustrate in their work (RLocker) a ransomware early detection
mechanism that could prevent its operations [20]. One of RLocker advantages is the detection
of zero day’s ransomware attacks. It is achieved by deploying a honeyfile structure to lure
ransomware, which will block any process that passes through it, or try to modify it. However,
previous requirements are crucial for the success of such operation. Nevertheless, RLocker has
a limitation: it could be bypassed if a process passes randomly through the files without
intercepting the lure folders. A similar limitation related to files traversals could be noticed in
Moussaileb et al. work for early mitigation mechanisms [28]. Even though their solution, solely
based on file system exploration, is effective (up to 100% detection rate), their detection would
be delayed if a ransomware uses multithreading for simultaneously traversing and encrypting
the filesystem (some encrypted files are inevitable in this case).

Most of the current detection mechanisms of ransomware rely on an obvious signature of
the latter: the encryption process that occurs [42,24,36,23,25,16]. In fact, many alerts based on
monitoring the system activity are reported. For example, studying bits distribution, whether
performing machine learning algorithms on various dlls or on functions called referring to a
cryptographic context [14,25]. This means that the encryption process is already taking place
and losses are inevitable. All the solutions mentioned previously are viable for ransomware
detection. Yet, some file losses occur and they are solely based on system activity when the
malware is executing its payload.

A set of indicators can represent viably ransomware behavior as presented in CryptoLock
by Scaife et al. [36]. Shannon entropy was one of their main metrics since encrypted or
compressed files have high entropy. In their solution, few files are lost. Another statistical
technique was adopted by Mbol et al. for ransomware detection [27]. Their focus was on
JPEG files since they initially have high entropy. In order to distinguish between an encrypted
image and a clear one, Kullback Leibler divergence was used and 128 KB up to 512 KB of
JPEG files were analyzed. A high detection rate was achieved by their solution: 99.95%. A
similar approach is used by Palisse et al., however, using the goodness-of-fit test to distinguish
between encrypted and non encrypted files achieving 99.3% true positive rate [30].

Wolf described in his latest work [39] multiple ransomware detection approaches. It in-
cludes a comparison of the metadata of a file before and after encryption is used. A high
similarity indicates that little changes were made to the file thus indicating the absence of
encryption.

3.2 Network Based Ransomware Detection

A victim’s computer is like a zombie machine (compromised computer under remote direction)
under ransomware instructions. It needs to communicate with the C&C system for information
exchange such as the key needed for encrypting victims’ files. Therefore, an additional step is
taken into consideration to check if the communication between those two entities based on
network activity is sufficient to detect malware attacks before the payload’s fully execution
and file losses. Some recent search topics switched from host to network analysis.

For example, Ganame et al. stated that to have a better coping mechanism with existent
cyber threats researchers should move from signature to behavioral based detection [18]. Thus,



Ransomware Network Traffic Analysis for Pre-Encryption Alert 5

they developed a data breach system that is able to identify zero-day malware: WannaCry.
Its main advantage lays in its capacity to block the source of compromise preventing further
ransomware propagation.

Cabaj et al. presented in their work clear characteristics of CryptoWall and Locky fami-
lies [13]. They both communicate with the server via HT TP POST requests. Despite providing
valuable insight on these two distinct families, very little information can be retrieved for in-
stance from Shade ransomware since all its traffic is encrypted. In addition to that, other type
of ransomware for example Bitman and Teslacrypt have some samples that communicate with
the C&C (Command and Control) via GET requests only as shown in our experiments (for ex-
ample 2e7f7cc9a815efd0a6590042ce27f6da Teslacrypt ransowmare). Thus, these ransomware
samples can go unnoticed.

Alhawi et al. are able to detect Windows ransomware while only tracing the network
traffic achieving a 97.1% detection rate [9]. Yet, no indication is provided as to whether the
detection occurred before or after the encryption process. Moreover, conversation flow is used
for the classification. In other words, N suspicious records are required to detect an anomaly
or ransomware attack.

Our work is an extension of Alhawi et al. [9]. The same approach based on machine learning
to flag malicious ransomware communication is used. However, our analysis is performed on
packet inspection rather than the conversation flow. We take one step further in the analysis
to localize this traffic in the ransomware workflow: When does it occur? Is it sufficient to
separate benign vs ransomware activity?

We extend the current work sphere by analyzing packet flows rather than conversation
flows. We are aware of the challenges encountered by using machine learning for network
intrusion detection (lack of training data, data variability, malware polymorphism, adversarial
training, ...) [10,31,38], we take them into consideration and we adopt the Machine Learning
method as a means for classification.

4 Proposed methodology

We develop in the current paper a proof of concept that can be implemented in a driver as a
future work to avoid being detected by a ransomware process.

We endeavor to thwart ransomware nefarious behavior by analyzing the network traces.
The malware analysis routine consists in executing the ransomware and gathering the needed
information: system logs for reconstructing the malware session and displaying the timestamp
of the first encryption process and network logs for traffic classification. Then, the machine
learning process enables a classification between malicious and benign records. Finally, an
evaluation is made to check whether the detection of malicious traffic occurs before the en-
cryption process or afterwards. To accomplish this task, our proposed mechanism is divided
into 3 main parts: Data Collection, Session Reconstruction & Data Filtering and Analysis &
Model Development. It will be thoroughly explained in the following sections. All the steps
are summarized in Ransomware Network Alert Algorithm.

4.1 Data collection

The ransomware is downloaded and executed on the pc of the victim (our bare metal platform)
for 2 up to 3 minutes which is the time required until the encryption note or encrypted files
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Algorithm Ransomware Network Alert RNA
1: procedure RANSOMWARE NETWORK ALERT

2: R_+ {R_.: Ransomware Related }

3: def session_reconstruction(PML file, R_Hash):

4 process_name < {pname:R_Hash.exe}

5: R_pid < {get PID / pname=R_Hash.exe}

6: for pid € PID.PML do
7.
8

if Parent(pid) € R_pid then
R_children < pid

9: R_session + {Filter(PML File) / R_pid & R_children}

11: def getR_Network_Activity(R_session, PCAP File):
12: R_Network_Activity < {Filter R_session}

13: R_IP @« {get R.IP @ src-dst}

14: R_Ports + {get R_Ports src-dst}

15: R_Net_Act < {Filter(Pcap File) / R.IP_Q & Ports }

17: Construct R-Model

18: if evaluate(Net_Act) € R-Model then
19: return R_Alert

20: return Benign_Activity

pop up on the file system. Moreover, the time constraint is also due to the encryption process
involved in the ransomware infection that could also encrypt the collected information.

The Wireshark and Process Monitor executables are launched on Windows OS 7 32 bits
as in [21]. Each one of them has an independent task for collecting the following information:
Wireshark collects the information about network activity whereas Process Monitor gathers
the whole system activity (including network information).

Log formats are present below:

— PCAP (Packet Capture) File: Data created by Wireshark that contains the network packet
data generated during a live network capture (source and destination IP address, ports,
data exchanged, length of the data, ...). It can be analyzed later on for network intrusion
detection purposes.

— PML (Process Monitor Log) File: File created by Process Monitor and contains the log of
system activities (process name, process id (PID), path, ...).

The information from Process Monitor and Wireshark is acquired to perform a network
analysis. Needed data is collected from an automated bare metal malware analysis platform
built from scratch using Clonezilla Server [15].

A crawler downloads a ransomware from two databases Virus Share (https://virusshare.
com) and Malwaredb.Malekal (http://malwaredb.malekal.com) (currently down), then it is
executed on Windows 7 32 bits machines for a period of 2 to 3 minutes. A dump corresponding
to this malware behavior is saved for further post mortem analysis. For scalability reasons,
parallel machines are used to perform the tests as well as an improved disk image distribution.

Dataset All the methods and parsers are developed using Python and shell script. The
analysis is performed on an Ubuntu 16.02 machine.
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1054 ransomware were executed on Windows7 OS (table 1). Howbeit, 100 ransomware
executables are kept for the machine learning phase since they were active (en-
crypted the files of the victim). Even though only 100 samples are used for experiments but
the machine learning is performed on packets. For example for 12 Bitman samples, we ex-
tracted 714 network records. Whereas if we consider the network flow as shown in [9] we get
only 62 malicious records to evaluate.

Stratosphere IPS dataset is used for normal captures only [5]. In fact, it contains recent
normal traffic captured since 2013 until 2017. An additional information is the description
of the behavior captured making the labeling process feasible. Moreover, in the project’s
malware section, it contains ransomware packet capture: it is a mean of comparison between
the ransomware traces provided by their dataset and our own generated in a bare metal
platform explained in the following sections.

Family Samples Number of Working samples
Teslacrypt 334 11
Yakes 252 2
Shade 139 56
Cerber 95 11
Deshacop 62 2
Zerber 57 5
TorrenLocker 38 0
Bitman 27 12
Razy 26 0
Locky 24 1
NotPetya 0 0

Table 1. An overview of the active ransomware families (total of 100 active samples from 1054 tested), ranked
in descending order according to their samples number.

4.2 Session reconstruction & Data filtering

The Process Monitor format contains crucial information for reconstructing the malware ses-
sion and activity. However, the initial log file contains megabytes of data. It represents the full
activity on a computer: gathered information from all running processes. An initial filtering
is required to extract all the information of the ransomware session.

In the following section, we describe the preprocessing (filtering) of the collected data to
gather solely ransomware activity.

Let P be the ensemble of all the Processes running in Windows.

Let p_name, p_pid, p_ppid be respectively the name, the PID (process identifier) and the PPID
(parent process identifier) of a specific process p.

Ransomware executable names are associated with their MD5 or SHA-256 hash. They
represent a unique identifier, that is known prior to the execution of the ransomware for
testing purposes (line 4 of Algorithm Ransomware Network Alert). To extract the information
from the PML file, an initial lookup is made on all the processes that have a name constituted
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of the concatenation of the (Ransomware_.MD5Hash or Ransomware_SHA256) and (.exe) a
filename extension representing an executable file on Windows. The operator + denotes the
concatenation operation.

Ransomware_name = Ransomware_M D5Hash + .exe

Ransomware_name = Ransomware_SH A256 + .exe

Consequently, an association of the name of the running process with the corresponding
process identifier (PID) is achievable. It is a unique decimal number that represents this
particular object (line 5 of Algorithm Ransomware Network Alert). The collection of all the
PIDs associated to the ransomware is achieved.

R_pid = {Vp eP / p_name= Ransomware,name}

However, any process running on Windows creates different children as threads or new
processes to accomplish its tasks or parallelize the workload. In ransomware’s case, one thread
is created for listing the files, another one for encryption. For this reason, the tree/graph of
the current processes is essential since it displays the relation among all of them (line 8 of
Algorithm Ransomware Network Alert).

R_Children_pid = {Vp eP / pppid= R,pz'd}

At this stage, the identifier of the ransomware process and all the sub processes that it
created are at our disposal. The relation between all processes is represented by a directed
graph defined as followed G = (N, E) where: N is the set of nodes containing the PID, E is
the set of edges, dashed arrows are representing benign processes, red arrows are representing
ransomware processes.

Fig. 2. TeslaCrypt Process IDs Tree: Red Arrow.

Figure 2 displays a sub-tree of some subprocesses running on the machines. The red arrow
marks the beginning of TeslaCrypt’s execution. It is clear that TeslaCrypt malware creates
many processes to accomplish its tasks, even though having a benign parent and siblings.
Therefore, it is essential to build this “relation” graph (line 9 of Algorithm Ransomware
Network Alert).
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R_Activity = {Vp eP / p_pid= R_pid | R,Children,pid}

Thus, an initial filtering on the PML log file can be performed. It is divided into a ma-
licious log that consists of all the actions performed by the ransomware and the second file
that implies only benign records (line 10 of Algorithm Ransomware Network Alert). The in-

formation gathered in the PML file is used to extract only the network communication from
PCAP logs.

Ransomware Network Session Reconstruction

Since there is a gap between the data provided by the PML and PCAP file, a mapping is
needed to collect an exhaustive information from ransomware’s network activity.

The network activity that exists in R_Activity acquired in the previous section is basic. It
englobes only source and destination IP addresses, port numbers and the length of the packet
found in the PML File, whereas additional features can be extracted from a PCAP file such
as TCP window size, checksum, header length, etc.

We proceed by capturing the IP addresses and port numbers (line 18 € 14 of Algorithm
Ransomware Network Alert) used during R_Activity for the communication with a third party
(for example the C&C), then we filter the PCAP File based on the data obtained previously
(line 15 of Algorithm Ransomware Network Alert).

Table 2 displays the different features found in a PML file (table 3) with the basic network
elements (for instance IP addresses and ports) while detailed and additional characteristics
(TCP checksum, flags, windows size) can be extracted from a PCAP file (table 4).

Table 2. TeslaCrypt Network Information extracted from:

Table 3. PML File. Table 4. PCAP File.
Features Record #1 Record #2 Features Record #3
Time of Day 1/24/2019 5:46 1/24/2019 5:46 IP Src 10.1.1.9
Process Name htiyxhpnayrf.exe |htiyxhpnayrf.exe IP Dst 198.12.157.163
PID 3916 3916 TCP Srcport 49209
Operation TCP Connect TCP Send TCP Dstport 80
Path tivy-PC:49179  to|tivy-PC:49179  to| | TCP Checksum |0x00006ec0
crl.toservers.com |crl.toservers.com TCP Flags 0x00000002
Event Class Network Network TCP Hdr_len 32
Detail Length: 0, rcvwin:|Length: 896, star-| [TCP Win-|8192
66240, seqnum: 0, ...|time: 768, endtime:| |dow_size
770, seqnum: 0, con-| |TCP Len 0
nid: 0 TCP Nxtseq 0

4.3 Supervised Machine Learning

The goal of this machine learning step is to develop a model for ransomware detection via
network traffic analysis. Point anomaly represents a suspicious record at a given time t:
when a specific data instance deviates from the normal pattern. Whereas, collective anomaly
represents a collection of similar events that are abnormal [7]. For example, point anomaly
can be flagging Record#1 from table 3 since it is not similar to benign records. Therefore,



10 R. Moussaileb et al.

it is used for the machine learning process to flag any malicious network communication
established by the ransomware. Its main advantage compared to collective anomaly is an
early detection of ransomware presence rather than having to analyze n packets to expose the
malicious behavior.

The supervised approach is effective since labeling the data is possible in our system. Thus,
it enables us to detect other variants of ransomware based on an extrapolation of the data
acquired throughout our experiments (line 17). Most of the research done in the literature
on network intrusion detection via machine learning uses the following algorithms: decision
trees, k-nearest neighbors and random forests [11,33,29]. Therefore, they will be adopted to
detect ransomware behavior as a deviation from normal traffic. To perform this classification,
Scikit-learn, a free software machine learning library, is used.

Our analysis addresses point anomaly subdivided in two, whether TCP or UDP protocol
is used. In fact, each packet is different than the other and presents few common features such
as IP addresses and ports.

Whereas, for the collective anomaly, the conversation flow is used. Each row in the list
displays the statistical values for exactly one conversation (ports, addresses, duration and
packets exchanged). This work has been already covered in the literature in [9].

Benign traffic is downloaded from Stratosphere IPS, an open source dataset used to re-
produce the experiments [5]. It contains sufficient captures for our analysis.

Since the overall database of malware collection contains 100 active ransomware, we used
the percentage split method (70/30) for the training and test set for each family. It splits our
dataset into random train and test subsets. The first one contains 70% of the data while the
second one 30%.

The separation between TCP and UDP training is made since the number of UDP com-
munication outweighs the TCP ones thus making our dataset unbalanced.

For network log extraction as a CSV file from the PCAP, many features provided by the
Wireshark community exist. Filtering the PCAP file is possible by extracting 243 fields from
the TCP protocol or 29 from the UDP protocol (e.g., hitps: // www.wireshark.org/ docs/ dfref/
t/tep.html). Nonetheless, many fields have non existent values for all the records, therefore,
they were removed.

The features used for training UDP workflow are:
IP and Port source/destination, Protocol, UDP checksum and length.

The features used for training TCP workflow are:
frame.len, ip.src, ip.dst, ip.proto,  _ws.col.Protocol, tcp.srcport, tcp.dstport,
tep.ack, tcp.analysis.ack_rtt, tcp.analysis.acks_frame, tcp.analysis.bytes_in_flight,
tep.analysis.initial_rtt, tcp.analysis.push_bytes_sent, tcp.checksum, tcp.flags, tcp.hdr_len,
tep.len, tecp.nxtseq, tcp.window_size, tcp.window_size_scalefactor.

Data Preprocessing can have a significant impact on the performance of various ML algo-
rithms [26]. It handles, among other things, missing values and categorical variables. In fact,
an intervention is needed since classification models can not handle these elements on their
own. In our samples, empty values are replaced by zero, as for the IP addresses and flags they
are transformed into integers. Overall, the whole dataset consists of solely numerical values.
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5 Experimental results

UDP Results

For the Cerber and Zerber samples, we achieve a 100% detection rate using any of the Decision
Trees, Random Forest or K Nearest Neighbors. In fact, the difference is explicit. More than
16000 UDP packets are sent through incremental IP addresses having the same length in a
matter of seconds. Additionally, the same information is being conveyed to all those different
servers or zombies. The protocol used is solely UDP, very rare in a user normal environment,
and is blocked in some companies. Moreover, it is comparable to a Denial of Service (DOS)
attack due to the important number of contacted servers via UDP that is not common in
normal behavior in just few seconds.

The Udhisapi.dll module provides support in hosting compliant Universal Plug and Play
(UPnP devices). We believe that it can be used as a method of discovering and communicating
with Universal Plug and Play devices across the network, such as other personal computers,
printers, mobile devices... that broaden the attack vectors for ransomware.

TCP Results
The results of the other samples are presented in tables 5 to 9.

Supervised Learning Algorithm

True Positive Rate

True Negative Rate

False Positive Rate

False Negative Rate

Training Time (seconds)

K nearest neighbor (n=2) 99.56 98.13 1.86 043 0.004
Decision Tree 100 100 0 0 0.01
Random Forest 100 99.79 0.2 0 0.03

Table 5. Bitman Classifiers Performance Metrics.

Supervised Learning Algorithm

True Positive Rate

True Negative Rate

False Positive Rate

False Negative Rate

Training Time (seconds)

K nearest neighbor (n=2) 100 99.97 0.02 0 0.13
Decision Tree 100 100 0 0 0.16
Random Forest 100 100 0 0 0.24

Table 6. Cerber Classifiers Performance Metrics.

Supervised Learning Algorithm

True Positive Rate

True Negative Rate

False Positive Rate

False Negative Rate

Training Time (seconds)

K nearest neighbor (n=2) 100 99.99 1.4%10e-2 0 3.76
Decision Tree 100 100 0 0 1.02
Random Forest 100 100 0 0 1.57

Table 7. Shade Classifiers Performance Metrics.
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Supervised Learning Algorithm

True Positive Rate

True Negative Rate

False Positive Rate

False Negative Rate

Training Time (seconds)

K nearest neighbor (n=2) 99.31 97.88 2.11 0.68 0.004
Decision Tree 99.31 99.34 0.65 0.68 0.009
Random Forest 100 100 0 0 0.035

Table 8. TeslaCrypt Classifiers Performance Metrics.

Supervised Learning Algorithm

True Positive Rate

True Negative Rate

False Positive Rate

False Negative Rate

Training Time (seconds)

K nearest neighbor (n=2) 100 100 0 0 1.59

Decision Tree 100 100 0 0 0.15

Random Forest 100 100 0 0 0.32
Table 9. Zerber Classifiers Performance Metrics.

Supervised Learning Algorithm

True Positive Rate

True Negative Rate

False Positive Rate

False Negative Rate

Training Time (seconds)

K nearest neighbor (n=2) 38.35 98.11 1.88 61.64 8.02
Decision Tree 98.46 100 0 1.53 0.54
Random Forest 95.7 100 0 4.29 0.7

Table 10. Zero Day Classifiers Performance Metrics.

Decision Trees provided the best results in terms of (true — false) (positive — negative)
rate and training time. They spare potential overfitting problems by using random forest. As
for the K nearest neighbors, since IP addresses are huge numbers (could go up to 4 billion),
they have a higher weight than TCP flags (maximum value 32).

The experiments prove that machine learning classifiers are able to flag ransomware net-
work traffic for both UDP and TCP records as in signature based detection.

A benchmark comparison is possible with the proposed work in [9]. In fact, the authors

perform machine learning algorithms on protocols regardless if they were TCP or UDP based.
However, we separate them since UDP records outweigh TCP ones, thus, this separation will
enable us to have a balanced dataset. In addition, raw features are used such as described in
section 4.3. It means that any record or communication can be flagged without delaying the
alert mechanism that relies on having n malicious conversation flows. Decision trees lead to
more accurate results (98.46% vs 97.10% in [9]).

5.1 Zero Day Ransomware Detection

The experiments conducted are divided into two parts. Signature based ransomware detection
explained in the aforementioned sections where the training and the testing is performed on
samples from a specific ransomware RA, RB, ..., RN (see Figure 3, Part a).

Yet, to detect zero day attacks, an administrator should test on new variants of ran-
somware. To implement this task, training is carried out on malware samples that appeared
earlier or in the beginning of 2016. As for the tests, they will be executed on different ran-
somware families excluded from the training set (see Figure 3, Part b).

Since a similarity is noticed between some Zerber and Cerber samples, in addition to
TeslaCrypt and Bitman, we split our training and test set as followed:

— Training set families: TeslaCrypt, Cerber, Shade (our own dataset),
— Test set families: Spora (15), Globelmposter (2), Jaff (8), Matrix (3) (downloaded from
www.malware-traffic-analysis.net).
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Fig. 3. ML on Ransomware Families.

Since test samples did not figure in the training set, we have 98.46 % as true positive
rate and 100% as a true negative rate (table 10). They still represent a high value since the
strategy of requests sent between the victim and the C&C is shared among the majority of
ransomware families.

5.2 ALERT Time

Checking if encrypted files with ransom notes exist or not is crucial, in other words, if the
detection occurs before the beginning of the encryption process or at the end. Consequently,
it is essential to recapture the time of the last packet sent and the start of ransom notes. For
example, after Cerber’s network communication, it creates 9 different threads and immediately
after that, the encryption process takes place. It leaves some nanoseconds for the prevention
mechanism to take a decision (blocking or killing the process, freezing the pc) before any file
loss. Table 11 shows that the first alert, a network UDP send request, appeared before the
ransom note #DECRYPT MY FILES#.html.

Time of Day Operation Path
15:45:09,81792 UDP Send orfeas-PC:54673 — 85.93.63.255:6892
15:45:12,89509 CreateFile C:\...\## DECRYPT MY FILES#.html
15:45:12,89919 CreateFile C:\Py27\Lib\...\t56G_mZZIH.cerber

Table 11. Snippet of Cerber PML File, hash: 534da47881eba8a6d3cf676e6c89d1be.

Table 12 presents the percentage of samples that made a communication with the server
before an obvious ransom note or encrypted file (RansomAlert). For Bitman and TeslaCrypt
families, only 1 sample communicated with the C&C before it displays a ransom note. It
means that the detection mechanism based only on network traffic is not appropriate for
those families. Howbeit, network traffic detection for Shade ransomware is efficient and will
spare file losses for victims.

Since each sample provides a distinct ransom note or a specific file extension representing
the ransomware, all the PML files are analyzed manually to extract the required information.

An example of Bitman ransom Notes is given below:
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Ransomware Family tCommunication < tRansomAlert Percentage
Bitman 1 8.33% (1/12)
Cerber 7 100% (7/7)
Shade 55 100% (55/55)
TeslaCrypt 1 7.69% (1/11)
Yakes 0 0% (0/2)
Zerber 2 66.67% (2/3)
Table 12. Encryption Alert.
— Recovery+ysddu.png,

+-HELP-RECOVER-+bjkkl-+.png,
_ReCoVeRy_+ioigp.png,

— help_recover_instructions+drl.txt,
+-HELP-RECOVER-+wnonv-+.png.

Some Cerber samples killed Process Monitor process several times during their execution,
so the PML file retrieved is corrupted. Therefore, a difference is found between the number
of active samples in table 1 and in Figure 12. To scale down any possible error, we did not
consider those 10 truncated samples in the Alert Analysis because the acquired data was
incomplete.

5.3 Results Overview

Based on the timeline mentioned in the context (Figure 1) and on the network traffic, ran-
somware have evolved throughout the years and are polymorphic. They used to communicate
via non encrypted HTTP traffic (TCP requests), then other families moved to GET requests.
Shade ransomware for example uses only TLS protocol for its communication. In addition to
that, it was one the pioneers for IPv6 communication. In 2016, UDP communication emerged.
Based on the data gathered, new variants of ransomware can be detected if the divergence
between new samples and existent ones are low. However, many cases are covered in our work.
Attackers will have to work on covert channels for exfiltrating information or keep encrypted
communication similar to benign application.

Tests are also performed on 18 samples from Cerber, Zerber, TeslaCrypt and Bitman with-
out any Internet connection. The encryption still took place. Nonetheless, we know that the
keys were generated locally, enabling us to retrieve them via a simple hook to Windows Crypto
API or is hard-coded in ransomware’s executable, highly unlikely. Two identical ransomware
samples are found in Bitman/TeslaCrypt and two others in Cerber/Zerber. It denotes a re-
semblance between those families. For example, 2d2¢589941dd477acc60f6b8433c3562 MD5
hash is flagged as Bitman by 7 anti-virus companies and as TeslaCrypt by 8 other anti-virus
companies [6]. They are kept for signature based detection (no duplicate records in the same
family since it appears just once), but removed from zero day analysis.

6 Conclusion

In this work, we are able to detect ransomware through network traffic monitoring. We con-
clude that the majority of ransomware behave similarly. We found some common patterns
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among various families. To get a precise ransomware detection, we use machine learning tech-
niques.

To sum up, network alerts represent a first suspicion means informing the user of the
presence of a potential ransomware. However, some drawbacks exist. This first alarm can take
place after the creation of encrypted files or ransom notes as we noticed in some families. In
addition, few elements are needed for a classification, we have underfitting problems (Zerber
samples), prone to adversarial attacks. Besides, only Decision Trees among the tested algo-
rithms provided high detection rates for zero day attacks. For all the reasons mentioned above,
Network Alerts should be backed up with system data to provide a general detection mecha-
nism, working on all types of ransomware. As for our future work, we will gather additional
information from the file system to present a multi-layer alert strategy to detect ransomware’s
payload as early as possible. In this work, we chose multiple malware samples and executed
them. We should examine the puzzle of infection mechanism such as spam email to detect
ransomware download process before its installation on the victim’s computer. Furthermore,
merely 10% of the samples have encrypted files, that means we have only 10% active ran-
somware. We will check if it is due to evasion mechanisms (Sysinternal Tools, Wireshark,...)
or if the ransomware database is outdated (C&C servers are down).
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