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Abstract

Gene network inference is the task of reconstructing regulatory networks among

genes from high-throughput (in particular transcriptomic) data. Here we in-

troduce the main concepts of this rich and rapidly evolving field. In order to

illustrate the basic principles of gene network inference we simulate gene expres-

sion patterns using two distinct computational models, Boolean dynamics and

ordinary differential equations. These synthetic data are then analyzed with

basic gene network inference methods based on information theory and correla-

tion analysis. We emphasize that a careful distinction between the underlying

network architecture and the effective network inferred from the dynamical pat-

terns, similar to the interplay of structural and functional connectivity often

discussed in Computational Neuroscience, may open up a new perspective on

the data.
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1. Several notions of gene network

Networks are abstractions of real-life systems in terms of graphs consisting

of nodes and links. They have a prominent role in Systems Biology and Systems

Medicine, as they allow the integration of diverse data in a common framework.

Furthermore, graph theory offers a rich toolbox for analyzing network structure

and its implications for the dynamics, and hence the function, of such networks.

Network inference is the challenging task of estimating the underlying net-

work from dynamical observations at each node of a system. It obviously de-

pends on the meaning of a link between two nodes. This task has been explored

with diverse methods across many disciplines, ranging from computer science

[13] and bioinformatics [26] to physics [36], information theory [63] and statistics

[58]. Machine learning has an increasingly important role in this issue [52, 14, 3].

Several notions of gene network are coexisting. The most prominent notion

is the transcriptional regulatory network, where nodes are genes and a (directed)

link indicates that the first gene encodes a transcription factor having a bind-

ing site in the regulatory region of the second gene. Evidence for the binding

site of the transcription factor can either be provided by bioinformatic predic-

tion (genomic motif analysis) or by experiments. The principal technique for

experimentally assessing transcriptional regulatory interactions are Chromatin

immunoprecipitation microarrays (ChIP–chip). Often, transcription regulation

is represented as a bipartite graph comprising transcription factor nodes and

gene nodes, with directed links from the encoding gene to the transcription

factor and from the transcription factor to the regulated gene(s). Then the

transcriptional regulatory network introduced above is the gene-centric projec-

tion of this bipartite graph.

Regulation via transcription factors is only one of many biological aspects

of gene regulation. Other possible points of action of gene regulatory mecha-

nisms include chromosomal organization and chromatin state, modification of

the RNA transcript, mRNA transport or degradation and, when going further to

the level of proteins, translation, protein degradation or activation and deacti-
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vation. For instance, chromatin conformation is involved either through binding

sites accessibility, or through mechanical constraints modifying binding affinity

of transcription factors [46]. As such, a transcriptional regulatory network does

not capture the whole complexity of gene regulation, but only the component

based on transcription factor targeted action.

In contrast to a transcriptional regulatory network, a genetic interaction

network rather addresses the functional relationships between genes. It is based

on the empirical evaluation of phenotypes, comparing single-gene knockout mu-

tants and two-gene knockout mutants (double mutants). A link in a genetic

interaction network indicates that the phenotype of the double mutant differs

from that of each individual mutant (e.g., the double mutation is lethal, while

both single-gene mutants have a viable phenotype). This type of networks is

not discussed here [see 11, for a detailed review].

Other types of gene networks frequently employed are co-expression net-

works, where a link between two genes means that they are jointly expressed,

and co-regulation networks, where a link between two genes means that they

are regulated by a common transcription factor. It is today acknowledged that

in metazoan species, topological domains delineate sets of genes that are co-

regulated, and separate genes and regulatory sequences that should not inter-

fere with their regulation [50]. Gene co-regulation networks are thus essentially

shaped by 3D genome organization. Even in prokaryotic gene regulation, the

regulatory influence of chromosomal organization is well documented [74, 75]

(see also Section 6). Another notion of gene network is derived from protein-

protein interaction networks, by considering that a link between two genes means

that the encoded proteins physically interact.

A shortcoming in these various definitions is their limitation to pairwise

relationships, while the expression of more than two genes could intermingle in

complex crosstalks. Hyper-networks could in principle be used to capture n-

ary relationships [39, 61] but their mathematical intricacy makes them far less

operational than plain networks.

Henceforth, we focus on transcriptional regulatory networks.
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2. Some landmarks on gene regulatory networks

The concept of gene regulation and first drawings of gene regulatory networks

date back to the work of Jacob and Monod in 1961 [38, 57]. They proposed a

model in which a metabolite induces or represses the expression of a regulator

gene, in turn controlling the expression of an array of co-expressed structural

genes (forming an operon). Today, the notion of structural and regulatory genes

is no longer in use, replaced by those of regulatory sequences and transcriptional

regulatory networks.

Due to the effort over many years and the careful manual curation of the un-

derlying database, the most comprehensive transcriptional regulatory network

currently available in electronic form is the network stored in RegulonDB [30]

for the gut bacterium Escherichia coli. Figure 1 shows a network representation

of the main segment of RegulonDB. Here, various pieces of computational and

empirical information are integrated, leading to a list of edges with controlled

levels of reliability.

For the yeast Saccharomyces cerevisiae, as an example, early compilations of

the transcriptional regulatory network, are provided in Guelzim et al. [34] and

Lee et al. [45]. However more recent information is still accumulating, and needs

to be compiled from individual publications [e.g., 33, 6]. A review of the current

status of its transcriptional regulatory network is provided in Liu et al. [49]. A

recently developed database for edges derived from ChIP–chip experiments is

RegulatorDB [16].

With such a substantial volume of information available about gene regu-

latory networks, we can think of these networks as the ’hardware’, on which

the dynamical processes of gene activation and deactivation, as well as tran-

scription and translation run. Gene expression profiles (or transcriptomic data)

can be regarded as snapshots of these dynamics running on the underlying net-

work. We will see in Sections 5 and 6 that it is indeed a productive approach

to discriminate the structural information (i.e., the network architecture) and

the dynamical information (i.e., the gene expression pattern).
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When going to multicellular organisms, data availability for gene regulatory

networks deteriorates in two ways: (1) Data (for example for gene regulation

via transcription factors) becomes less and less complete. (2) Other processes

of gene regulation (beyond transcription factors) become more and more impor-

tant.

Insights on gene regulation during the development of multicellular organ-

isms came from investigations taking as a model the Drosophila embryo [60].

Here a set of genes, the gap genes, control via the concentrations of their prod-

ucts the expression of developmental pair-rule genes [64]. The complexity of the

developmental embryonic regulatory networks has been best demonstrated by

the work of Davidson on sea urchin [22, 47].

In Human, the ENCODE (Encyclopedia of DNA Elements) project [19] un-

dertook among other tasks that of mapping the gene regulatory network [31].

Another direction, far different from high-throughput experimental inves-

tigations, is to study the design of gene regulation through the construction

of synthetic networks with a few genes [35] or the analysis of functional net-

work motifs [68, 1]. These approaches provide insight in the logic and the main

building blocks of gene regulatory networks.

As for the dynamics of gene regulation, beyond ordinary differential equa-

tions an acknowledged paradigm has been established with the development of

random Boolean networks [42, 10]. In the following section we will make use of

these two approaches to generate sample data for illustrating simple principles

of network inference.

3. An illustrative example of gene regulatory network inference

In situations, where reliable and comprehensive data on the network struc-

ture are not available, the distinction between the network architecture derived

from structural information and the dynamical patterns obtained from gene ex-

pression is not possible, and the task of network inference becomes an important

approach.
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Here we illustrate the key ideas of network inference in their simplest form

using as a benchmark the small (fictitious) transcriptional regulatory network

shown in Figure 2A and synthetic gene expression data.

For this purpose of illustrating some of the challenges associated with net-

work inference, we simulated stylized but realistic gene expression profiles. We

then inferred a gene regulatory network from these data, in order to subsequently

compare the inferred with the original regulatory network. We used two funda-

mentally different models of regulatory dynamics: (1) Boolean dynamics, where

nodes can be on or off, (2) stochastic ordinary differential equations, as repre-

sented by the GeneNetWeaver software [67], where node states take continuous

values representing the amount of transcripts.

The network shown in Figure 2 consists of 20 nodes with 30 directed links,

15 activating and 15 inhibitory. First, we looked at this network from the

perspective of Boolean dynamics. In this modeling framework time is discrete

and genes can be on (1) or off (0). As an update rule, which computes the

state of a gene (0 or 1) as a function of its inputs, we used the simple, but

biologically plausible, majority rule employed for example in Li et al. [48]. A

node i is switched on at time t + 1, xi(t + 1) = 1, if the sum over all activating

and inhibitory influences entering from active nodes at time t is larger than

0, Si(t) =
∑

j Aijxj(t) > 0, where matrix elements Aij are −1 (+1) for an

inhibitory (activating) link from node j to node i and 0, if node j is not connected

to node i. If the sum Si(t) is smaller than 0, the node i will be switched off,

xi(t + 1) = 0. If the activating and inhibitory influences balance, Si(t) = 0, the

state of the node does not change, xi(t + 1) = xi(t). Simulating this system,

starting from random initial conditions, leads to fixed-point attractors and cyclic

attractors, into which the system settles after a short transient of a few time

steps. We assumed that the measured gene expression patterns are sampled

from these attractors, rather than from the transients. Furthermore, we did not

distinguish between fixed-point attractors and cyclic attractors, each of which

is allowed to contribute a single time point (’snapshot’) to our data acquisition

procedure. Figure 2B shows examples of such attractors.
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Using attractors derived from 2000 random initial conditions, we employed

a variant of the ESABO (’entropy shift under Boolean operations’) method de-

scribed in Claussen et al. [17], which yields a score for each pair of nodes in

the network. This ESABO score takes the vectors formed by the on-off states

of each of the two genes across all attractors and evaluates, how these vectors

change under a Boolean AND. A z-score is then computed, comparing the com-

position of this resulting vector to a vector obtained via an AND operation now

applied to pairs of randomly shuffled vectors, i.e. random vectors with the same

overall composition in 0 and 1 as the original two gene vectors. This z-score is

the ESABO score of the two genes. Employing upper and lower thresholds for

the ESABO score allowed us to define positive and negative interactions among

genes and thus infer a regulatory network with inhibitory and activating links.

For the example at hand, the inferred network is depicted in Figure 2C. Note

that this method determines only undirected links. In principle, it is possible to

augment this method to infer directed links, for example by looking at the asym-

metry between (0,1) and (1,0) in the pairs of gene vectors entering the ESABO

analysis or other information about the state fluctuations at each end point of

the undirected links in the reconstructed network. In this simple illustrative

example we did not pursue this line of investigation.

As a second approach for simulating gene expression patterns from the net-

work given in Figure 2A, we employed the GeneNetWeaver software described

in Schaffter et al. [67], which has also been used to generate synthetic data

for the DREAM (Dialogue for Reverse Engineering Assessments and Methods)

network inference challenges [52]. We generated 10 time series of 1000 (dimen-

sionless) time steps. Computing the Pearson correlation between the resulting

simulated expression vectors for pairs of genes and imposing an upper (lower)

threshold on the correlation coefficients to define activating (inhibitory) links,

we inferred the network shown in Figure 2D. Again, this simplistic method yields

only undirected links. Analyzing the change of the correlation coefficient under

time delays between the two gene expression arrays may be a plausible strategy

for inferring the direction of a link. Also, many of the methods described in the
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next section (e.g., partial correlations, versions of the mutual information and

dynamic Bayesian networks) make possible such directionality inference.

For the inferred network shown in Figure 2C for example, the Jaccard index

for the positive links comparing the reconstruction with the original from Figure

2A (intersection of the two link sets divided by the union) is 0.52, compared to

0.05 ± 0.04 for a random selection of links. For the negative links the Jaccard

index is 0.46, compared to 0.048±0.034 for random data. With our choice of ±5

as the threshold for the ESABO scores, the inferred network is denser than the

original network. In Figure 3 the number of links is shown as a function of the

threshold (Figure 3A), together with the corresponding Jaccard indices (Fig-

ure 3C). The same analysis for the network inferred from the GeneNetWeaver

simulation is shown in Figures 3B and 3D.

In addition to illustrating important aspects of network inference, this little

example introduces several fundamental principles of modeling and analyzing

gene regulation, and the range of mathematical models potentially employed

for this type of modeling [details see 41, 44], in particular the notion and use-

fulness of Boolean attractors ([details see 48, 21, 9]. Many of these points have

been excellently summarized in Bornholdt [8]. An early review of mathematical

models of gene expression patterns, as well as data analysis approaches employ-

ing clustering of expression data to identify genes under common regulation is

found in D’Haeseleer et al. [26].

4. Several methods of gene network inference

Network inference is less demanding than the broader topic of identifying

from data the (often nonlinear) dynamical rules underlying the system at hand

[see, e.g., 77, for a detailed discussion of this more general field].

The first approach described in the previous section, for the data derived

from Boolean dynamics, is an information-theoretical method. The second

approach, for continuous data, is the simplest example of a correlation-based

method. Beyond these approaches, there are causality-based methods, meth-
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ods based on Bayesian networks [62], regression-based methods and various

approaches relying on machine learning [see, e.g., 77, 44, 3]. A combination of

Bayesian networks and Markov chain Monte Carlo (MCMC) has been proposed

in Mukherjee and Speed [58] to refine the graphical model approaches to net-

work inference. A useful classification of inference methods is given in De Smet

and Marchal [24]. A successful strategy, proposed in [52] in the context of the

DREAM challenges, is to use an aggregation of different methods.

A major issue is to distinguish between direct and indirect interactions, that

is, to avoid the spurious identification as a link of what is merely a network path

between two nodes. This issue has been addressed with partial correlations [23],

conditional mutual information [79], network deconvolution [29], by a silencing

method of indirect effects based on network structure [5], as well as by refine-

ments of the mutual information approach (e.g., ’part mutual information’ [80]

or ’conditional mutual inclusive information’ [78]) and many more [see 53, for

additional examples].

The challenges of network inference, as well as the current panel of methods,

have recently been summarized in Brugere et al. [13]. One challenge is to in-

tegrate data from multiple sources (e.g., gene expression profiles from different

data sets). In Castro et al. [15] this challenge is addressed via a multitask learn-

ing approach, in contrast to inferring a single network per data source and then

combining these individual networks into a consensus network (as frequently

done in typical network inference methods; see Marbach et al. [52]). An al-

ternative is to include prior information (e.g., regulatory interactions already

known or inferred from other data sets) in the network inference process [70].

Inferring networks from noisy data [76] and assessing the robustness of network

reconstructions are also prominent topics in the recent literature.

Important algorithmic approaches and methodological innovations are ex-

cellently summarized in a range of review articles and book chapters [e.g.,

24, 44, 27, 13, 66, 40]. Delgado and Gómez-Vela [25] provide a clear and de-

tailed survey of the underlying assumptions and parameters of network inference

methods, as well as a summary of frequently used measures of reconstruction
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quality of the resulting methods.

5. Structure and dynamics of gene regulation

In the spirit of the distinction done in neural networks between structural

and functional connectivity, it is here essential to distinguish the hardware of

gene regulation and the dynamics producing gene expression patterns.

The hardware refers to potential links, corresponding to the ability of a

transcription factor (or a small RNA) to bind some regulatory domain on the

genome, generally the promoter or enhancers of a gene. Each link thus represents

only a potentiality. Actually many hardware architectures are compatible with

a given set of expression data. Henceforth this hardware cannot be inferred from

gene expression measurements but rather established link-wise from ChiP-chip

data or other dedicated experiments. The dynamics refers to the actual activity

of these potential physical links, namely which links are actually at work, with

which strength. The experimental data underlying the dynamical information

(microarray or RNA-Seq data) is thus distinct from structural information.

The current view is that the dynamic network can be inferred from mea-

surements of gene expression and correlation analysis, with possibly taking into

account prior structural knowledge in the form of constraints. We suggest an-

other way of addressing the question of gene regulation inference, which can be

formulated as: given the hardware, how constrained are expression data. A re-

lated question is, whether the observed gene expression patterns are compatible

with the network. Approaches for measuring the agreement of a gene expres-

sion profile with a given regulatory network have, for example, been discussed

in Cline et al. [18], Marr et al. [56, 55], Cowen et al. [20]. This approach of

quantifying the agreement between a gene expression pattern and a network

can also be addressed from a slightly different perspective: Not only can we ask

for the evidence that a gene regulatory network has produced this expression

pattern. We can also ask, whether this pattern is meaningful to emulate the

other networks in a cell e.g., the metabolic network or the protein interaction
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network. In the case of metabolic networks such an approach has been pursued

in Sonnenschein et al. [73, 72], Knecht et al. [43]. Another question is whether

the observed gene expression patterns can even be predicted from the informa-

tion contained in the network. Simulation here provides part of the answer, as

detailed in the next section.

6. The promises of gene regulatory network simulation

To exploit the dynamical systems viewpoint on gene regulatory networks, a

requirement is to solve the challenge of simulating expression data. Benchmark

studies proceed by first, generating a realistic/plausible gene network, then gen-

erating realistic/plausible gene expression patterns (i.e. expression matrix of g

genes by c chip measurements). In our above example, gene expression patterns

for the in silico network were derived from GeneNetWeaver [54].

However, it should be noted that even in the case of E. coli, gene expression

patterns can by no means be fully explained by the available transcriptional

regulatory network. A range of other biological processes and factors exert a

systematic influence on the gene expression pattern. It is, for example, by now

widely accepted that even in the case of bacteria, chromosomal structure and the

positioning of genes in the circular chromosome exerts an important regulatory

influence [74, 75, 65, 55, 12].

7. Perspectives in Systems Medicine

Since long ago, genetics, based for instance on family studies, has determined

the impact of gene sequence variation in diseases. More recently, genome-wide

association studies performed on large cohorts of patients and controls provided

more quantitative and wider-scope results in the form of statistical association

between single-nucleotide polymorphisms and diseases [37]. In a second step,

these pointwise variants are mapped to genes (currently the closest genes along

the genome) [2]. These results are available in a public database, the GWAS cat-

alog, and offer an unprecedented ground for developing personalized medicine.
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In the present context, we suggest that functional insights could be gained by

investigating the location of these at-risk genes on regulatory networks.

However, several difficulties have to be circumvented in the use of gene regu-

latory networks for personalized medicine. That external factors, e.g. a metabo-

lites, may influence gene expression has been discovered long ago [38, 57]; they

could have either an action of induction or repression of the gene transcription.

As a consequence, the context-dependence of gene networks should be taken into

account for any efficient and reliable medical application. Also, gene expression

levels involve non only transcriptional regulation but also mRNA and protein

degradation or sequestration (RNA granules). Additional levels of regulation

are thus present. The notion of multiplexes, that is, networks sharing their set

of nodes but composed of different kinds of links, is promising to account for

several types of relationships [7, 59]. However, much work remains to be done

before turning this notion in an operational tool.

8. Conclusion

In this introductory chapter, we provides a simple illustrative example of

gene network inference. We emphasized the distinction between network struc-

ture and dynamical processes ’running on’ this structure, i.e. the distinction

between structural connectivity and functional connectivity, as an underrated

conceptual foundation of the field. We finally embedded the topic in a broader

interdisciplinary context with some guidelines to explore the existing literature.

The paradigm of ’network medicine’ is based upon the notion that diseases,

as well as treatments, can be understood as alterations of the ’cellular-molecular

network’ [71]. This view is driven by the representation of disease-gene associ-

ations as a bipartite network, termed the ’diseasome’ [32, 4], and the idea that

functional biological networks (protein interaction networks, gene regulatory

networks, metabolic networks, etc.) can be related to the diseasome via the

identification in these networks of dysregulated ’disease modules’, embedding

the associated genes on the diseasome [4, 51].
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The current trend in medical applications of network methods is rather data

integration than network inference. Data integration here can mean

(1) merging multi-’omics’ data in a common, network-based framework (e.g.,

as represented by the ’Mergeomics’ approach in Shu et al. [69]),

(2) using a given biological network to interpret ’omics’ data (as the network

coherences from Sonnenschein et al. [72], Knecht et al. [43]),

(3) enhancing data using a given network (e.g., via network propagation, as

summarized in Cowen et al. [20]).

Several promising findings suggest that the detailed reconstruction and anal-

ysis of regulatory networks, together with the integration of ever more and di-

verse data, can shed light on some basic principles underlying disease onset and

progression. In Emilsson et al. [28], the co-variation of extracellular proteins cir-

culating in the blood (the serum proteome) among elderly individuals revealed

strong associations between features of the serum protein network and disease

states. In a case study focusing on psoriasis, Zhao et al. [81] show that a reg-

ulatory network derived from multi-’omics’ data is informative about potential

key drivers of the disease.

Machine learning will undoubtedly play a prominent role in the applications

of network inference and network-based data analysis techniques to medicine.

Here it could be helpful to first create a machine learning model of the healthy

situation (e.g., represented by the corresponding regular network) and then use

this model to predict differences between the disease state and the healthy state,

as suggested in Camacho et al. [14].
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Figure 1: Transcriptional regulatory network of E. coli derived from RegulonDB (version

10.5; only data supported by literature with experimental evidence has been used). Nodes are

genes, directed links indicate the regulatory action of the transcription factor encoded by the

start-point gene onto the end-point gene. Only links with level of evidence labeled as ’strong’

in RegulonDB are shown. Activating links are shown in green, inhibitory links are shown in

red. Dual links (where the sign of the interaction depends on the conditions) are displayed in

yellow.
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Figure 2: Illustrative example of gene network inference. (A) A random graph consisting

of 20 nodes (labeled A to T) with 30 directed links, 15 activating (green) and 15 inhibitory

(red). (B) 200 examples of fixed-point attractors obtained by simulating Boolean dynamics on

the network shown in (A). (C) Network inferred from a set of 893 distinct Boolean attractors

obtained from 2000 random initial conditions using ±5 as the threshold for the ESABO score

between two nodes (see text). (D) Network inferred from continuous data simulated with

the GeneNetWeaver tool [67] using a threshold of ±0.3 for the Pearson correlation coefficient

between two nodes (see text).
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Figure 3: (A) Number of activating (full curve) and inhibitory (dashed curve) links in the

network inferred from Boolean dynamics (as in Figure 2C). The blue dotted line indicates the

number of activating and inhibitory links in the original network. (C) Jaccard index for the

comparison of link sets between the inferred network and the original network. Full curve:

activating links; dashed curve: inhibitory links. (B)+(D): Same for the network inferred from

the GeneNetWeaver simulation.
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