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VAM System for Bifrequential Pump Optimization

The nonlinear Vibro-Acoustic wave Modulation (VAM) is a widely used

technique in nonlinear nondestructive testing. Many research, in this area, are

devoted to find the best combination of the excitation parameters, especially

the right frequencies to the optimization of the damage detection sensitivity. In a

previous study [1], we have proposed a novel method using the optimal

command principle for a VAM system. Indeed, this method has permitted to

find automatically the best pump frequency maximizing the nonlinear

modulation (NM) effects in a multiple scattering sample. The cost function to

be optimized thanks to the pump wave frequency is the correlation coefficient

(CC) between a reference output signal without pump and an output modulated

probe signal with the presence of the pump wave. In the present work, we aim

to improve the nonlinear damage detection by exciting simultaneously

two resonance modes of the medium. We consider a new excitation

waveform for the pump wave, composed by the sum of 2 frequencies, instead

of a monochromatic sine wave.

Main Objectives

𝑓𝑝1
∗ , 𝑓𝑝2

∗ = arg max
𝑓𝑝1 ,𝑓𝑝2

𝜌(𝑓𝑝1 , 𝑓𝑝2)

• The GA proposed only a solutions close to the resonance frequencies of the

sample.

• The optimal pumping frequencies corresponded to a resonance frequencies of the

sample.

• The corresponding values of the CC are quite similar to those obtained by a single

pump frequency. This observation may be due to the GA precision.

• A GA hybridization with a more accurate algorithm like the Descent Gradient

algorithm should refine the results.

• The optimization of the phase between the two sinusoidal pump frequencies will be

considered in a future work.

Figure 4: Comparison between the resonance frequencies obtained from the experimental Frequency Response Function (FRF) of the Config. 2 (a) 

and the Config. 1 (c). Experimental results of correlation coefficient vs. pump frequency at the sample resonance frequencies areas for the two 

sample configurations: b) Config. 2 and d) Config. 1. The FRF peaks coincide with the minimum peaks of the correlation coefficient vs. pumping 

frequency.

Figure 6: Optimization results with the genetic algorithm for the Config. 2: (a) The pump frequencies vs. generations. The GA converges to 𝑓𝑝
∗ =

153 Hz after the 4th generation for the monochromatic pump. For the bifrequential pump, 𝑓𝑝1
∗ = 150 Hz and 𝑓𝑝2

∗ = 149 Hz. (b) The corresponding

correlation coefficient 𝜌 vs. generations for the bifrequential and the monochromatic pump excitation.

Figure 5: Optimization results with the genetic algorithm for the Config. 1: (a) The pump frequencies vs. generations. The GA converges to 𝑓𝑝
∗ = 22

Hz after the 7th generation for the monochromatic pump. For the bifrequential pump, 𝑓𝑝1
∗ = 145 Hz and 𝑓𝑝2

∗ = 770 Hz. (b) The corresponding correlation

coefficient 𝜌 vs. generations for the bifrequential and the monochromatic pump excitation.

Specimen Description

The tested sample is an aluminium bar where nonlinear

scatterers can be controllably added or removed. Identical

screws can be placed in the tapped holes to mimic

nonlinear solid contacts (cracks).

Figure 3: Specimen schemes of the three configurations. Config. 1: 

all the screws are placed on the bar. Config. 2: 2 screws are placed 

at S2 and S9.

Table 1: Specimen Characteristics.

 Empirical Optimization

 Genetic Algorithm Optimization

Figure 1: Bloc Diagram of the closed loop VAM system.

1. Random generation of N pump frequency

couples 𝑓𝑝1,𝑘and 𝑓𝑝2,𝑘 from a continuous uniform

distribution in a frequency range between 10 Hz and

900 Hz (generation k).

2. Transmission of the same probe excitation signal

xs(t) without the pumping signal (switch position 1)

3. Simultaneous transmission of the probe excitation

signal 𝑥𝑠(𝑡) with the pumping signal

𝑥𝑝,𝑘 𝑡 = 𝐴 sin 2𝜋𝑓𝑝1,𝑘𝑡 + sin 2𝜋𝑓𝑝2,𝑘𝑡 with the

frequencies 𝑓𝑝1,𝑘 and 𝑓𝑝2,𝑘 (switch position 2) and the

amplitude A.

4. Generation of new pump frequency couples
𝑓𝑝1,𝑘+1 and 𝑓𝑝2,𝑘+1 by genetic algorithm (GA):

• Evaluation of the cost function ρ.
• Sorting 𝑓𝑝1,𝑘and 𝑓𝑝2,𝑘 in a descending order of the

correlation coefficient ρ and keeping N/2 pump

frequency couples.

• Generation of N/2 new pump frequency couples

by the crossover operator.

• Changing randomly 40% (Mutation rate) of the

new frequency couples for a robust optimization.

5. Return to step 2 (generation k+1).

• Improving the nonlinear damage detection in VAM technique by

exciting the medium at two resonance frequencies.

• Optimizing the correlation coefficient ρ between a reference output

signal without pump and an output modulated probe signal with the

presence of the pump wave.

• Finding automatically the frequencies 𝑓𝑝1and 𝑓𝑝2 giving the optimal

sensitivity for damage detection, such as:

Table 3: The pump frequencies obtained from the monochromatic and the bifrequential pump optimization, and the global minimum of the empirical 

cost function fp,EO.

Table 2: Correlation coefficient ρ and the fp values corresponding to the minimum peaks obtained from the empirical optimization (EO) and 

resonance frequencies obtained from the Frequency Response Function (FRF) for Config. 1 and 2.

Name Value

Density 2700 kg/m3

Poisson ratio 0.33

Young modulus 69 GPa

Wave velocity 4828 m/s

Screw mass 4.42 g

Config. 1 Config. 2

fp,EO (Hz) 𝑓𝑝
∗ (Hz) 𝑓𝑝1

∗ (Hz) 𝑓𝑝2
∗ (Hz) fp,EO (Hz) 𝑓𝑝

∗ (Hz) 𝑓𝑝1
∗ (Hz) 𝑓𝑝2

∗ (Hz)

22 22 770 145 150 153 150 149

Modes
Config. 1 Config. 2

ρEO fp,EO (Hz) fp,FRF (Hz) ρEO fp,EO (Hz) fp,FRF (Hz)

1st Mode 0.979 22 22 0.981 23 22.1

2nd Mode 0.981 144 146 0.975 150 149

3rd Mode 0.986 361 366 0.998 400 401

4th Mode 0.984 770 774 0.991 862 861

Experimental Setup

Figure 2: Experimental Setup.


