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Abstract. We introduce a new graphical representation for multiplica-
tive and exponential linear logic proof-structures, based only on standard
labelled oriented graphs and standard notions of graph theory. The
inductive structure of boxes is handled by means of a box-tree. Our
proof-structures are canonical and allows for an elegant definition of their
Taylor expansion by means of pullbacks.
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1 Introduction

Linear Logic (LL) [14] has been introduced by Girard as a refinement of intu-
itionnistic and classical logic that isolates the infinitary parts of reasoning under
two modalities: the exponentials ! and ?. These modalities give a logical status to
the operations of memory/hypothesis management such as copying/contraction
or erasing/weakening : a linear proof corresponds to a program/proof that uses
its arguments/hypotheses linearly, i.e. only once, while an exponential proof
corresponds to a program/proof that can use its arguments/hypotheses at will.

One of the features of LL is that it allows us to represent its proofs as proof-
nets, a graphical syntax alternative to sequent calculus. Sequent calculus is a
standard formalism for several logical systems. However, sequent calculus forces
an order among inference rules even when they are evidently independent, a
drawback called bureaucracy. Proof-nets, instead, are a geometrical, parallel and
bureaucracy-free representation of proofs as labeled oriented graphs. In proof-nets
deductive rules are disposed on the plane, in parallel, and connected only by their
causal relation. Clearly, not all graphs that can be written in the language of LL
are proof-nets, i.e. represent a proof in LL sequent calculus. Proof-nets are special
inhabitants of the wider land of proof-structures: they can be characterized, among
proof-structures, by abstract (geometric) conditions called correctness criteria
[14]. The procedure of cut-elimination can be applied directly to proof-structures,
and proof-nets can also be seen as the proof-structures with a good behavior
with respect to cut-elimination [3]. Cut-elimination defined on proof-structures is
more elegant than in sequent calculus because it drastically reduces the need for
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commutative steps, the non-interesting and bureaucratic burden in every sequent
calculus proof of cut-elimination. Indeed, in proof-structures there is no last rule,
and so most commutative cut-elimination cases simply disappear.

Unfortunately, this is a faithful picture of the advantages of proof-structures
only in the multiplicative fragment of LL (MLL) [9], which does not contain
exponentials ! and ?, and so it is not sufficiently expressive to encode classical or
intuitionistic logic (or the λ-calculus) in. To handle the exponentials Girard was
forced to introduce boxes. They come with the black-box principle: “boxes are
treated in a perfectly modular way: we can use the box B without knowing its
content, i.e., another box B′ with exactly the same doors would do as well” [14].

According to this principle, boxes forbid interaction between their content and
their outer environment. This is evident in the definition of correctness criteria
for MELL (the multiplicative-exponential fragment of LL) and in the definition
of cut-elimination steps for MELL. Let us consider cut-elimination. Some cut-
elimination steps require us to duplicate or erase whole sub-proofs, typically the
steps for the !-modality in MELL. Proofs in sequent calculus are tree-shaped
and bear a clear notion of last rule, the root of the tree. This property has an
obvious but important consequence: given a !-rule r in a sequent calculus proof,
there is an evident sub-proof ending with r, the sub-tree rooted in r. Therefore,
non-linear cut-elimination steps can easily be defined by duplicating or erasing
sub-trees. Switching to proof structures, the situation radically changes, because
a proof structure in general has many last rules, one for each formula in the
conclusions. Given a rule r it is not clear how to find a sub-proof-structure ending
with r. Thus, in order to define cut-elimination steps for the !-modality in MELL
proof-structures—which requires to identify some sub-proof-structure—some
information has to been added.

The typical solution is to re-introduce part of the bureaucracy in MELL proof-
structures, pairing each !-rule with an explicit box containing the sub-proof that
can be duplicated or erased during cut-elimination. In some fragments of MELL
(for instance the intuitionistic one corresponding to the λ-calculus [24] or more in
general the polarized one [1]) where proof-structures still have an implicit tree-like
structure (since among the conclusions there is always exactly one distinct output,
the analogue of sequent calculus last rule), the explicit box is actually not needed.
But here we are interested in the full (classical) MELL fragment, where linear
negation is involutive and classical duality can be interpreted as the possibility of
juggling between different conclusions. Concretely, in the literature mainly two
kinds of solution that make use of explicit boxes can be found:

1. A MELL proof-structure is an oriented graph together with some additional
information to identify the content and the border of each box. This additional
information can be provided either informally, just drawing the border of each
box in the graph [14,10,19], but then the definition of MELL proof-structure
is not rigorous; or in a more formal way [6,15,7], but then the definition is
highly technical and ad hoc;

2. A MELL proof-structure is an inductive oriented graph [17,22,26,8], i.e. an
oriented graph where with any vertex v of type ! is associated another oriented
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graph representing the content of the box of v. This inductive solution can be
taken to extremes by representing proof-structures with term-like syntax [12].

The drawback of Item 1 is that the definition of MELL proof-structure is not
easily manageable because either it is not precise or it is too tricky. Item 2, instead,
provides more manageable definitions of MELL proof-structures, but another
drawback arises: they intrinsically are not canonical, in that there are different
inductive presentations of a MELL proof-structure defined up to associativity
and commutativity of contractions, neutrality of weakening with respect to
contraction, and permutation of weakenings and contractions with box-border.

Our contribution. We present here a purely graphical definition of MELL proof-
structures (Section 3), so as to keep Girard’s original intuition of a proof-structure
as a graph even in MELL. This definition follows the non-inductive approach seen
in Item 1: we use n-ary vertices of type ? collapsing weakening, dereliction and
contraction (like in [10]). In this way, we get a canonical representation of MELL
proof-structures. But our definition is completely based on standard notions
(recalled in Section 2) coming from the theory of graphs, being formal (with an
eye towards complete computer formalization) but avoiding ad hoc technicalities
to identify the border and the content of a box. The inductive structure of boxes
is handled by means of a box-tree: indeed, a MELL proof-structure R is given
by an oriented labelled graph |R| plus a tree AR (representing the order of the
boxes of R) and a graph morphism boxR from |R| to AR which allows us to
recognize the content and the border of all boxes in R. In this way, our MELL
proof-structures are still manageable: sophisticated operations on them, such as
the Taylor expansion [11] can be easily defined. As a test of the usability of our
MELL proof-structures, we give an elegant definition of their Taylor expansion,
by means of pullbacks (Section 5).

Moreover, our setting allows us to define in a simple way correctness graphs
(used to characterize the proof-structures that are proof-nets, i.e. that correspond
to proofs in the LL sequent calculus), as we show in Section 4 for MLL.

Since the main contribution of our work is to provide a new definition of MELL
proof-structures, our paper contains several definitions and no new theorems.

2 Preliminaries on graphs

Graphs with half-edges. There are many formalizations of the familiar notion
of graph. Here we adopt the one due to [4]:4 a graph is still a set of edges and
a set of vertices, but edges are now split in halves, allowing some of them to
be hanging. Splitting every edge in two has at least three features that are of
particular interest for representing LL proof-structures:

– two half-edges are connected by an involution, thus defining an edge. The
fixpoints of this involution are thus dangling edges, connected to only one

4 The folklore attributes the definition of graphs with half-edges to Kontsevitch and
Manin, but the idea can actually be traced back to Grothendieck’s dessins d’enfant.
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vertex: they are suited to represent the conclusions of a proof-structure. In this
way it is also easy to define some intuitive but formally tricky operations such
as the graft or the substitution of a graph for another graph (see Example 1);

– given a graph and any of its vertices, it is natural to define the corolla of the
vertex, that is the vertex itself with all the half-edges connected to it;

– finally, while studying proof-structures, it is always necessary to treat them
both as oriented and unoriented graphs. With this definition of graph, an
orientation, so as a labeling and a coloring, are structures on top of the
structure of the unoriented graph (see Definition 3).

Definition 1 (graph). A (finite) graph τ is a quadruple (Fτ , Vτ , ∂τ , jτ ), where

– Fτ is a finite set, whose elements are called flags of τ ;
– Vτ is a finite set, whose elements are called vertices of τ ;
– ∂τ : Fτ → Vτ is a function associating with each flag its boundary;
– jτ : Fτ → Fτ is an involution.

The graph τ is empty if Vτ = ∅.

A flag that is a fixed point of the involution jF is a tail of τ . A two-element
orbit {f, f ′} of jF is an edge of τ between ∂τ (f) and ∂τ (f ′), and f and f ′ are
the halves of such an edge. The set of edges of τ is denoted by Eτ .

Given two graphs τ and τ ′, it is always possible to consider their disjoint
union τ t τ ′ defined as the disjoint union of the underlying sets and functions.

A one-vertex graph with set of flags F and involution the identity function
idF on F is called the corolla with set of flags F ; it is usually denoted by ∗F .

Given a graph τ = (Fτ , Vτ , ∂τ , jτ ), a vertex v defines a corolla τv = (Fv, {v},
∂τ |Fv , idFv) where Fv = ∂−1τ (v). Every graph can be described as the set of
corollas of its vertices, together with the involution glueing the flags in edges.

Definition 2 (graph morphism and isomorphism). Let τ, σ be two graphs.
A graph morphism h : τ → σ from τ to σ is a couple of functions (hF : Fτ →
Fσ, hV : Vτ → Vσ) such that hV ◦ ∂τ = ∂σ ◦ hF and hF ◦ jτ = jσ ◦ hF .

A graph morphism is injective if its component functions are. A graph iso-
morphism is a graph morphism whose component functions are bijections.

The category Graph has graphs as objects and morphisms of graphs as
morphisms: indeed, graph morphisms compose (by composing the underlying
functions) and the couple of identities (on vertices and flags) is neutral. It is a
monoidal category, with disjoint union as a monoidal product.

Graphs with structure. Some structure can be put on top of a graph.

Definition 3 (structured graph). Let τ = (Fτ , Vτ , ∂τ , jτ ) be a graph.

– A labeled graph (τ, `τ ) with labels in I is a graph τ and a function `τ : Vτ → I.
– A colored graph (τ, cτ ) is a graph τ with a function cτ : Fτ → C such that

cτ (f) = cτ (f
′) for the two halves f, f ′ of any edge of τ .
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– An oriented graph (τ, oτ ) is a graph τ with a function oτ : Fτ → {in,out}
such that oτ (f) 6= oτ (f

′) for the two halves f, f ′ of any edge of τ . If oτ (f) =
out and oτ (f

′) = in, {f, f ′} is said an edge of τ from ∂τ (f) to ∂τ (f
′);

in-oriented (resp. out-oriented) tails of τ are called inputs (resp. outputs)
of τ ; if v is a vertex of τ , its inputs (resp. its outputs) are the elements of
the set inτ (v) = ∂−1τ (v) ∩ o−1τ (in); (resp. outτ (v) = ∂−1τ (v) ∩ o−1τ (out));

– An ordered graph (τ,<τ ) is a graph together with an order on the flags.

Different structures on a graph can combine: for instance, a graph τ can be
endowed with both a labeling `τ and an orientation oτ .

Graphs can be depicted in diagrammatic form. As a graph is just a disjoint
union of corollas glued with the involution, we only need to depict corollas (as in
Figure 1, on the left) and place the two halves of an edge next to each other (as
in Figure 1, on the right). In oriented graphs, inputs of a corolla are depicted
above the corolla, outputs are below; arrows also show the orientation. The color
of a flag f (if any) is written next to f . The label of a vertex v (if any) is written
inside v. If ordered, flags of a corolla are depicted increasing from left to right.

Example 1. The oriented labeled colored ordered corolla τ5 = (∗5, o5, `5, c5, <5)
depicted in Figure 1 (on the left) has ∗ as only vertex and 5 = {0, 1, 2, 3, 4} as
set of flags; it is endowed with the order 0 <5 4 and 1 <5 2 <5 3, and

– the orientation o5 : 5 → {in,out} defined by o5(0) = o5(4) = out and
o5(1) = o5(2) = o5(3) = in,

– the labeling `5 : {∗} → {z} defined by `5(∗) = z,
– the coloring c5 : 5→ {a0, . . . , a4} defined by c(i) = ai for all i ∈ 5.

Consider also the oriented labeled colored corolla σax, whose only vertex is
labeled by ax, and whose only flags are the outputs 5 (labeled by a2) and 6
(labeled by a3). The oriented labeled colored ordered two-vertex graph ρ depicted
in Figure 1 (on the right) is obtained from the corollas τ5 and σax by defining
the involution jρ : {0, . . . , 6} → {0, . . . , 6} as jρ(i) = jτ5(i) for i ∈ {0, 1, 4}, and
jρ(i) = i+ 3 for i ∈ {2, 3}, and jρ(i) = i− 3 for i ∈ {5, 6}.

Each enrichment of the structure of graphs introduced in Definition 3 induces
a notion of morphism that preserves such a structure, and an associated category.
For instance, a morphism h : (τ, oτ ) → (σ, oσ) where (τ, oτ ) and (σ, oσ) are
oriented graphs is such that oσ ◦ hF = oτ .

Trees and paths. An unoriented path on a graph τ is a finite and even sequence
of flags ϕ = (f1, . . . , f2n) for some n ∈ N such that, for all 1 6 i 6 n, jτ (f2i−1) =
jτ (f2i) and (if i 6= n) ∂τ (f2i) = ∂τ (f2i+1). We say that ϕ is between ∂τ (f1) and
∂τ (f2n) if n > 0 (and it is a cycle if moreover ∂τ (f1) = ∂τ (f2n)), otherwise it is
the empty (unoriented) path, which is between any vertex and itself; the length of
ϕ is n. Two vertices are connected if there is an unoriented path between them.

Let τ be a graph: τ is connected if any vertices v, v′ ∈ Vτ are connected; a
connected component of τ is a maximal (with respect the inclusion of flags and
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z

a0 a4

a1 a2 a3

z

a0 a4

a1 a2 a3

ax

Fig. 1. An oriented labeled colored ordered corolla (on the left), and an oriented labeled
colored ordered two-vertex graph (on the right).

vertices) connected sub-graph of τ ; τ is acyclic (or a forest) if it has no cycles; τ
is a tree if it is a connected forest.

A rooted tree τ is an oriented tree such that each vertex has exactly one
output. Thus, τ has exactly one output tail: its boundary is called the root of τ .

Remark 1. Let τ and τ ′ be two rooted trees, and h : τ → τ ′ be an oriented graph
morphism. As hF preserves tails and orientation, hV maps the root of τ to the
root of τ ′. Rooted trees and oriented graph morphisms form a category RoTree.

An oriented path on an oriented graph τ is an unoriented path (f1, . . . , f2n)
for some n ∈ N such that f2i−1 is output and f2i is input for all 1 6 i 6 n. Such
a path is said to be from ∂τ (f1) to ∂τ (f2n) if n > 0, otherwise it is the empty
(oriented) path, which is from any vertex to itself.

The set of oriented paths on an oriented tree is finite. As such, given a tree
τ , we define its reflexive-transitive closure, or free category, τ	 as the oriented
graph with same vertices and same tails as τ , and with an edge from v to v′ for
any oriented path from v to v′ in τ . The operator (·)	 lifts to a functor from the
category RoTree to the category of oriented graphs.

3 DiLL proof-structures

This section is the core of our paper. We define here proof-structures corresponding
to some fragments or extension of LL: MELL, DiLL and DiLL0. Full differential
linear logic (DiLL) is an extension of MELL (with the same language as MELL)
provided with both promotion rule (i.e. boxes) and co-structural rules (the duals of
the structural rules handling the ?-modality) for the !-modality: DiLL0 and MELL
are particular subsystems of DiLL, respectively the promotion-free one (i.e. without
boxes) and the one without co-structural rules. As the study of cut-elimination
is left to future work, our interest for DiLL is just to have an unitary syntax
subsuming both MELL and DiLL0: this is why, unlike [22,26], our DiLL proof-
structures are not allowed to contain a set of DiLL proof-structures inside a box.

Given a countably infinite set of propositional variables X,Y, Z, . . . , (MELL)
formulas (whose set is denoted by FMELL) are defined by the following grammar:

A,B ::= X | X⊥ | 1 | ⊥ | A⊗B | A`B | !A | ?A



Proof-net as graph, Taylor expansion as pullback 7

Linear negation (·)⊥ is defined via De Morgan laws 1⊥ = ⊥, (A⊗B)⊥ = A⊥`B⊥
and (!A)⊥ = ?A⊥, so as to be involutive, i.e. A⊥⊥ = A for any formula A.
Variables and their negations are atomic formulas; ⊗ and ` (resp. ! and ?) are
multiplicative (resp. exponential) connectives; 1 and ⊥ are multiplicative units.

We equip an oriented graph with labels (specifying the type of the vertices,
which is a MELL connective or unit), colors (specifying the type of the flags,
which is a MELL formula), and a function that specifies the deepest box each flag
or vertex is in; all of them are subject to compatibility conditions.

Definition 4 (module, proof-structure). A (DiLL) moduleM = (|M |, `, o, c,
<) is a labeled (`), oriented (o), colored (c), ordered (<) graph |M | such that:

– ` : V|M | → {ax, cut,1,⊥,⊗,`, ?, !} associates with each vertex its type;
– c : F|M | → FMELL associates with each flag its type;
– < is a strict order on the flags of |M | that is total on the tails of |M | and on
the inputs of each vertex labeled by ` or ⊗;

– for every vertex v ∈ V|M |,

• if `(v) = cut, v has no output and exactly two inputs i1 and i2, such that
c(i1) = c(i2)

⊥;
• if `(v) = ax, v has no inputs and exactly two outputs o1 and o2, such
that c(o1) = c(o2)

⊥;
• if `(v) ∈ {1,⊥}, v has no inputs and only one output o, with c(o) = `(v);
• if `(v) ∈ {⊗,`}, v has exactly two inputs i1 < i2 and one output o, such
that c(o) = c(i1) `(v) c(i2);
• if `(v) ∈ {?, !}, v has exactly n > 0 inputs i1, . . . , in and one output o,
such that c(o) = `(v) c(ij) for all 1 6 j 6 n;5

In Figure 2 we depicted the corollas associated with all types of vertices.

A (DiLL) proof-structure is a tuple R = (|R|,A, box), where |R| = (‖R‖, `R,
oR, cR, <R) is a module with no input tails, called the structured graph of R
(and ‖R‖ is the graph of R). Moreover, the following hold:

– A is a rooted tree with no input tails, called the box-tree of R.
– box : |R| → A	 is a morphism of oriented graphs,6 the box-function of R,

such that boxF induces a partial bijection from
⋃
v∈V‖R‖,`(v)=! in|R|(v) to the

5 This implies that c(ij) = c(ik) for all 1 6 j, k 6 n.
6 The structured graph |R| of R is more structured (it is also labeled, colored, ordered)
than an oriented graph such as A	. When we talk of a morphism between two
structured graphs where one of the two, say τ , is less structured than the other, say
σ, we mean that τ must be only considered with the same structure as σ. Thus, in
this case, box is a morphism from (‖R‖, oR)—discarding `R, cR, <R—to A	.
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A A⊥ A B A B A · · · A A · · · A

A A⊥ 1 ⊥

ax
cut

1 ⊥
⊗

A⊗B

`
A`B

?

?A

!

!A

Fig. 2. DiLL cells, with their labels and their typed inputs and outputs.

set of input flags in A.7 Moreover, for any vertex v ∈ V‖R‖ with f ∈ in|R|(v),
if boxV (∂‖R‖ ◦ j‖R‖(f)) 6= boxV (∂‖R‖(f)) then `(v) ∈ {!, ?}.8

A proof-structure is empty (denoted by ε) if its graph is empty.
A MELL proof-structure is a proof-structure such that:

– for all v ∈ V‖R‖, if `(v) = ! then card(in|R|(v)) = 1;
– boxF induces a (total) bijection from

⋃
v∈V‖R‖,`(v)=! in|R|(v) to the set of

input flags in A.

A DiLL0 proof-structure is a proof-structure whose box-tree contains only its
root in the set of vertices. A MLL (resp. MLL–) proof-structure is a DiLL0 proof-
structure whose structured graph has no vertices of type ! or ? (resp. 1, ⊥, ! or ?).

Given a proof-structure R = (|R|,A, box), the output tails of |R| are the
conclusions of R. So, if f is the output of the root of A, the pre-images f1, . . . , fn
of f via boxF ordered according to <|R| form a finite sequence of the conclusions of
R. The type of R is the list (c|R|(f1), . . . , c|R|(fn)) of the types of the conclusions.

Borrowing the terminology of interaction nets [16,13], if R is a proof-structure,
we say that the vertices of |R| are the cells of R, the flags of |R| are the ports of R.

Remark 2 (box). In our syntax, boxes do not have explicit constructors or cells,
hence boxes and depth of a proof structure are recovered in a non-inductive way.

Let R = (|R|,AR, boxR) be a proof-structure. With every flag f of |R| such
that boxRF (f) is an input flag of AR9 is associated a box Bf , that is the subgraph
7 This means that for any input flag f ′ in A there is exactly one input f of some
vertex of type ! in |R| such that boxF (f) = f ′; but boxF (f) need not be an input
flag in A for any input f of some vertex of type ! in |R| (by definition of morphism,
boxF (f) is necessarily an input flag in A	). Intuitively, a vertex v of type ! represents
a generalized co-contraction (in particular, a co-weakening if it has no inputs), and
a box is associated with (and only with) each input f of v such that boxF (f) is an
input flag in A (and not only in A	): f represents the principal door (in the border)
of such a box (note that for f ′ ∈ F‖R‖, if f ′ 6= f then boxF (f

′) 6= boxF (f) and that
boxV (∂‖R‖ ◦ j‖R‖(f)) 6= boxV (∂‖R‖(f)) for such a f).

8 Roughly, it says that the border of a box is made of (inputs of) vertices of type ! or ?.
9 According to the constraints on boxR, this condition can be fulfilled only by inputs
of a cell of type ! (a !-cell, for short) in |R|, and an input of a !-cell need not fulfill it;
in particular, if R is a MELL proof-structure, then this condition is fulfilled by all
and only the inputs of !-cells (and such an input is unique for any !-cell) in |R|; but
if R is a DiLL0 proof-structure, then this condition is not fulfilled by any flag in |R|
(since AR has no inputs) and so boxR is a graph morphism associating the root of
AR with any vertex of |R|. Therefore, in a DiLL0 proof-structure ρ = (|ρ|,Aρ, boxρ),
Aρ and boxρ do not induce any structure on |ρ|: ρ can be identified with |ρ|.
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⊥ 1 Y Y ⊥

⊥ 1

X

1

X⊥

ax

ax

ax

!

!1

⊥ 1

!

!1

?

?⊥
?

?!1

⊗

X ⊗ ?⊥

?

?Y

`
?Y ` Y ⊥

!

!(?Y ` Y ⊥)

1

!

!1

•

•

•

• •

Fig. 3. A MELL proof-structure R with its box-tree AR. The dotted arrows represent
the edges added by the reflexive-transitive closure (·)	.

of |R| (which is actually a proof-structure) made up of all the cells v (with their
inputs and outputs) such that there is an oriented path on AR from boxRV (v) to
boxRV (∂‖R‖ ◦ j‖R‖(f)): a conclusion of such a box Bf associated with f is every
output f ′ of a vertex v in Bf such that ∂‖R‖ ◦ j‖R‖(f ′) is not in Bf . Summing up,
every non-root vertex of AR represents a box in R, and the root of AR represents
the parts of R outside all the boxes. The tree-structure of AR expresses the
nesting condition of boxes.

The depth of a cell v of R is the length of the oriented path in AR from
boxR(v) to the root of AR. The depth of R is the maximal depth of the cells of R.

Example 2. In Figure 3 a MELL proof-structure R is depicted: the structured
graph |R| of R is on the left; the box-tree AR of R is on the right. The box-function
boxR is kept implicit by means of colors: the colored areas in |R| represent boxes,
and the same color is used on AR to show where each box is mapped by boxR.

The proof-structures we have just defined are quite rigid: they depend on their
carrier-sets of cells and wires. Nonetheless, a precise answer to the question “When
two proof-structures can be considered equal?” requires a notion of isomorphism
inherited by the notion of graph isomorphism.

Definition 5 (isomorphism of proof-structures). Let R = (|R|,AR, boxR)
and R′ = (|R′|,AR′ , boxR′) be proof-structures, with |R| = (‖R‖, `R, oR, cR, <R)
and |R′| = (‖R′‖, `R′ , oR′ , cR′ , <R′). An isomorphism of proof-structures f : R '
R′ is a couple f = (f|·|, fbox) where:

– f|·| : |R| → |R′| is an isomorphism of the structured graphs of R and R′,
– fbox : AR → AR′ is an isomorphism of the box-trees of R and R′,

such that the following diagram commutes

|R| A	
R

|R′| A	
R′

boxR

f|·| f	
box

boxR′
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` Γ,A,B,∆
` Γ,B,A,∆ (exc) ` A,A⊥ (ax)

` Γ,A ` A⊥,∆
` Γ,∆ (cut)

` Γ ` ∆
` Γ,∆ (mix)

` 1
(1)

` Γ
` Γ,⊥ (⊥)

` Γ,A,B
` Γ,A`B

(`)
` Γ,A ` B,∆
` Γ,A⊗B,∆ (⊗) ` (emp)

Fig. 4. Sequent calculi for MLL– (all rules but (mix), (emp), (1), (⊥)), MLL (all rules).

Note that if R is isomorphic to a proof-structure R′, and R is a MELL or
DiLL0 proof-structure, then R′ is respectively a MELL or DiLL0 proof-structure.

4 Sequent calculi, proof-nets and correctness for MLL

Every proof in the sequent calculus for LL can be translated in a proof-structure
with the same conclusions. Figure 4 gives the rules of the sequent calculi for
two multiplicative fragments of LL: MLL– (without units) and MLL (with units
and mix). A MLL– (resp. MLL) formula is a MELL formula without exponential
connectives and multiplicative units (resp. without exponential connectives). A
sequent is a finite sequence of (MLL– or MLL, depending on the context) formulas
A1, . . . , An. Capital Greek letters Γ,∆, . . . range over sequents.

Definition 6 (translation, proof-net). Let X ∈ {MLL–,MLL}.
With any proof π in the sequent calculus for X and conclusion ` Γ is associated

a X proof-structure Rπ with type Γ , called the translation of π, defined by induction
on the size of π as follows:10

π =
(ax)

` A,A⊥  |Rπ| = A A⊥

ax

π =

.... π1
` Γ,A

.... π2

` A⊥, ∆
(cut)

` Γ,∆

 |Rπ| = |Rπ1
| |Rπ2

|

Γ A A⊥ ∆

cut

π =

.... π1
` Γ,A,B,∆

(exc)
` Γ,B,A,∆

 |Rπ| =

B A

|Rπ1
|

Γ ∆

π = (emp)
`  |Rπ| = |ε| (ε is the empty proof-structure)

10 We write only the graph |Rπ| of Rπ, because its box-tree ARπ and its box-function
boxRπ are trivial (see Footnote 9).
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π =

.... π1
` Γ

.... π2
` ∆ (mix)

` Γ,∆

 |Rπ| = |Rπ1
| |Rπ2

|

Γ ∆

π = (1)
` 1  |Rπ| = 1

1

π =

.... π1
` Γ (⊥)
` Γ,⊥

 |Rπ| =

⊥

|Rπ1
|

Γ

⊥

π =

.... π1
` Γ,A,B

(`)
` Γ,A`B

 |Rπ| = |Rπ1
|

Γ A B

`
A`B

π =

.... π1
` Γ,A

.... π2
` B,∆

(⊗)
` Γ,A⊗B,∆

 |Rπ| = |Rπ1
| |Rπ2

|

Γ A B ∆

⊗

A⊗B

A proof-structure R is a X proof-net (or is X sequentializable) if R = Rπ (i.e.
R is the translation of π) for some proof π in the X sequent calculus.

The translation is not surjective (neither injective) over proof-structures, even
when we restrict to MLL– or MLL proof-structures. Purely graph-theoretical
conditions, called correctness criteria, have been presented in order to charac-
terize the set of sequentializable proof-structures. We give here two among the
most celebrated of such correctness criteria, switching acyclicity and its variant
switching acyclicity and connectedness, presented originally in [9]. We define them
via the switching operation on a proof-structure R, which roughly consists of
“detaching” all inputs but one of every vertex of type ` in R. This switching can
be easily defined in our setting, thanks to modules and involutions.

Definition 7 (switching, correctness graph). Let R be a MLL proof-structure,
whose structured graph is |R| and whose (unoriented) graph is ‖R‖.

A switching of R is a function sR : {v ∈ V‖R‖ | `|R|(v) = `} → F‖R‖ such
that sR(v) is one of the two inputs of v.

With every switching sR of R is associated a sR-correctness graph τ(sR),
which is the (unoriented) graph obtained from ‖R‖ by replacing the involution
j‖R‖ : F‖R‖ → F‖R‖ for ‖R‖ with jτ(sR) : F‖R‖ → F‖R‖ defined as follows:
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jτ(sR)(f) =


j‖R‖(f) if f is an input of a vertex v such that either

`|R|(v) = ` and sR(v) = f , or `|R|(v) 6= `;

f otherwise.

A MLL proof-structure R is switching acyclic (resp. switching acyclic and
connected) if every correctness graph of R is acyclic (resp. acyclic and connected).

Theorem 1 (Sequentialization, [9]).

1. A MLL– proof-structure is MLL– sequentializable iff it is switching acyclic
and connected.

2. A MLL proof-structure is MLL sequentializable iff it is switching acyclic.

The definitions and the results of this section can be easily generalized to
DiLL0 and MELL proof-structures.

5 The Taylor expansion

The Taylor expansion [11] of a MELL (or more in general a DiLL) proof-structure
R is a (usually infinite) set of DiLL0 proof-structures: roughly speaking, each
element of the Taylor expansion of R is obtained from R by replacing each
box B in R with nB copies of its content (for some nB ∈ N), recursively on
the depth of R. Note that nB depends not only on B but also on which “copy”
of all boxes containing B we are considering. Up to now (with the exception
of [15]), the Taylor expansion of MELL proof-structure is defined globally and
inductively [19,21]: with every MELL proof-structure R is directly associated its
Taylor expansion (the whole set!) by induction on the depth of R.

We adopt an alternative non-inductive approach, which strongly refines [15]:
the Taylor expansion is defined pointwise (see Example 3 and Figure 5). Indeed,
proof-structures have a tree structure that is made explicit through their box-
function. The definition of the Taylor expansion of a proof-structure uses this
tree structure: first we define how to “expand” a tree via the notion of thick
subtree [5] (Definition 8), then we take all the expansions of the tree structure of
a proof-structure and we pull them back to the underlying graphs (Definition 9),
finally we forget the tree structures associated with them (Definition 10).

Definition 8 (thick subtree [5]). Let τ be a rooted tree. A thick subtree of
τ is a pair (σ, h) of a rooted tree σ and a graph morphism h : σ → τ .

As in analysis, an addend of the Taylor expansion of an analytical function f
is an approximant of f , here if A is the box-tree of a proof-structure R, a thick
subtree of A is a sort of approximant of A taking recursively a number of copies
(possibly 0) of each input of the vertices of A, i.e. of each box of R.
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Example 3. The following is (a graphical presentation of) a thick subtree (τ, h) of
the box-tree AR of the proof-structure R in Figure 3, where the graph morphism
h : τ → AR is depicted chromatically (same color means same image via h).

•

•

•

• •

• •

• • • • •

h−→
•

•

•

• •

Intuitively, τ is obtained from AR by taking 3 copies of the blue box, 1 copy of
the red box, 4 copies of the orange box; in the first (resp. second; third) copy of
the blue box, 1 copy (resp. 0 copies; 2 copies) of the purple box has been taken.

The crucial point is to pull back the expansion of trees to proof-structures.
In Appendix A we recall the definition of pullback in the category of graphs.

Definition 9 (proto-Taylor expansion). Let R = (|R|,AR, boxR) be a proof-
structure. The proto-Taylor expansion of R is set Tproto

R of thick subtrees of AR.
Let t = (τt, ht) ∈ Tproto

R . The t-expansion of R is the pullback (Rt, pt, pR):

Rt τ	t

|R| A	
R

pt

pR h	
t

boxR

computed in the category of graphs and graph morphisms.11

Given a proof-structure R and t = (τt, ht) ∈ Tproto
R , the t-expansion (Rt, pt, pR)

of R is a naked graph. In order for it to be lifted into a DiLL0 proof-structure,
we need to define more structure on it, using either t or R.

– Oriented, labeled and colored structures on the graph |R| are defined through
functions defined on the flags and vertices of |R|; hence, by precomposing
with the graph morphism pR : Rt → |R|, this transports to a structure of
oriented labeled and colored graph on Rt;

– the order on the flags of Rt is defined as the order induced by their image in
|R|: f < f ′ if and only if (pR)F (f) < (pR)F (f

′);
– let [τt] be the tree made up only of the root of τt and its tail and let ι : τt → [τt]

be the graph morphism sending all the vertices of τt to the root of τt; ι	
induces by post-composition a morphism ht = ι	 ◦ pt : Rt → [τt]

	.

With its structure of oriented, labeled, ordered and colored graph, the triple
(Rt, [τt], ht) is a DiLL0 proof-structure.
11 This means that τ	t andA	

R are considered as (unoriented) graphs, see also Footnote 6.
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⊥ 1 ⊥ 1 ⊥ 1 Y Y ⊥

⊥ 1 1 1

X 1 1 1 1

X⊥ !1

ax

ax

ax ax ax

!

!1

!

!1

!

⊥ 1 1 1

!

!1?

?⊥

?

?!1

⊗

X ⊗ ?⊥

?

?Y

`
?Y ` Y ⊥

!

!(?Y ` Y ⊥)

1 1 1 1

!

!1

•

Fig. 5. The element of the Taylor expansion of the MELL proof-structure R in Fig. 3
obtained from the element of Tproto

R depicted in Ex. 3.

Definition 10 (Taylor expansion). Let R be a proof-structure. The Taylor
expansion of R is the set TR = {(Rt, [τt], ht) | t = (τt, ht) ∈ Tproto

R }.

An element of the Taylor expansion of a proof-structure is thus a DiLL0
proof-structure. It has much less structure than the pullback (Rt, pt, pR), which
defines a DiLL0 proof-structure Rt coming with its projections pt : Rt → τ	t and
pR : Rt → |R|. In particular, a cell in Rt is labelled (through the projections) by
the cell of |R| and the branch of the box-tree of R it arose from. But (Rt, [τt], ht)
where Rt is without its projections pt and pR loses the correspondence with
R = (|R|,AR, boxR) (see Fig. 5). Reconstructing such projections, starting only
from an element of the Taylor expansion, can be seen as the core of the works on
the injectivity of the Taylor expansion, see [7,15].

Remark 3. From the definition it follows that each element of the Taylor expan-
sion of a proof-structure R has the same conclusions and the same type as R. More
precisely, let R be a proof-structure and ρ be in the Taylor expansion of R: f is a
conclusion of ρ and an output of a cell v of ρ if and only if pRF (f) is a conclusion
of R and an output of a cell pRV (v) of R. And c|ρ|(f) = c|R|(pRF (f)) (i.e. the
type of f in ρ is the same as the type of pRF (f) in R) and `|ρ|(v) = `|R|(pRV (v))
(i.e. the type of v in ρ is the same as the type of pRV (v) in R).

Remark 4. One could go further and define an incomplete Taylor expansion of
a proof-structure, where some boxes are expanded, but not all. This extension
fits into this framework: the absence of boxes in an element (Rt, [τt], ht) of the
Taylor expansion owes only to the fact that [τt] is a root. By replacing this root
by a rooted tree, we keep track of which boxes are expanded and which are not.

6 Conclusions

Cut-elimination. The fact that we get a canonical (as explained in Section 1)
representation of MELL proof-structures is not only an aesthetic matter: it has
important consequences on the definition of cut elimination, because it avoids
the presence of the bureaucratic commutative-steps. As a notable consequence,
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as proved in [2], the proof of strong normalization for MELL becomes quite
elegant and much easier than with non-canonical MELL proof-structures [23].
The canonicity of our definition of MELL proof-structures paves the way to such
a smooth cut elimination; we plan to work out this issue in future work.

Taylor expansion and relational semantics. Relational semantics is the simplest
denotational model of LL. It can be seen as a degenerate case of Girard’s coherent
semantics [14]: formulas are interpreted as sets and proof-structures as relations
between them. It is well-known that, given a MELL proof-structure R, there is a
correspondence between certain equivalence classes on its relational semantics
JRK and the elements of its Taylor expansion TR: in particular, two cut-free MELL
proof-structures with atomic axioms have the same relational semantics if and
only if they have the same Taylor expansion. This equivalence, which relates the
syntactic notion of Taylor expansion to the semantic notion of relational model,
holds only with a canonical representation MELL proof-structures, such as ours.

Mix and forests. In an ongoing work, we are naturally led to consider several
proof-structures at the same time and to “mix” them in a single proof-structure.
Our definition of proof-structure (Definition 4) is perfectly suited for this purpose.
Indeed, the definition of a box-tree lends itself to a generalization: considering not
trees, but forests of boxes. The graph morphism condition implies, if its image is
a forest, that the proof-structure contains several connected components; and
each inverse image of a tree in the forest is actually a proof-structure.

So, by slightly generalizing the definition, we can consider a list of proof-
structures as a whole proof-structure, while respecting their individuality, con-
trarily to all of them having the same image through box. This allows us to
mimic the situation of the mix rule of sequent calculus: taking two proofs and
considering it one can be done by merging two roots of a box-forest.

A most general Taylor expansion: Milner’s absorption. It is possible to go farther
in the definition of the Taylor expansion and to specify a new box-tree that
need not be trivial. This allows for instance to expand some boxes and not all;
and even to expand partially a box: copying alongside a box its contents and
(co-)contracting the box with the copies.

This is reminiscent of the π-calculus and of Mazza’s parsimonious λ-calculus
[18], where the exponentials verify the isomorphism !A ' A⊗ !A.

Other boxes. Boxes for other connectives of linear logic have been considered
in various works: quantifiers (both first-order and second order [14]), fix-points
[20] and additives [14,25]. The boxing tree represents a sequential structure that
is added on top of a proof-structure. All these connective share in common to
require such a sequentialization.

As the different kind of sequentialization need to merge correctly, we believe
this approach to be adapted without problems to other kinds of boxes, paving
the way to a unified notion of proof-structures for a richer system than MELL.
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Technical Appendix

A Computing a pullback in the category of graphs

The category of graphs has all pullbacks, a fact that we use extensively. We recall
here all the definitions and facts that are packed in that affirmation.

Definition 11 (pullback). Let C be a category. Let X, Y , and Z be three
objects of C and f : X → Z and g : Y → Z be two arrows of C.

The pullback of X and Y along f and g is the triple (A, !X , !Y ) such that the
diagram

A X

Y Z

!X

!Y f

g

commutes and, for every other (B, h : B → X, k : B → Y ) making the same
diagram commute, there exists a unique arrow p : B → A such that:

B

A X

Y Z

h

k

p

!X

!Y f

g

It is unique (up to unique isomorphism), and it is customary to write X×Z Y
a pullback of X and Y over Z (leaving f and g implicit) and a pullback diagram
with a corner:

A X

Y Z

!X

!Y f

g

All pullbacks exist in the category of graphs. Explicitely, let τ = (Fτ , Vτ , ∂τ , jτ ),
σ = (Fσ, Vσ, ∂σ, jσ) and ρ = (Fρ, Vρ, ∂ρ, jρ) be three graphs and g : σ → τ ,
h : ρ→ τ be two graph morphisms. Consider the two sets

F = {(f1, f2) ∈ Fσ × Fρ | gF (f1) = hF (f2)}
V = {(v1, v2) ∈ Vσ × Vρ | gV (v1) = hV (v2)}
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They are both equiped with two projections, which we will write πFσ , πFρ , πVσ , πVρ .
Let f ∈ F .

gV ◦ ∂σ ◦ πFσ (f) = ∂τ ◦ gF ◦ πFσ (f), because g is a graph morphism

= ∂τ ◦ hF ◦ πFρ (f), by definition of F

= hV ◦ ∂ρ ◦ πFρ (f), because h is a graph morphism

Hence, we can define ∂ : F → V by ∂(f) = (∂σ ◦ πFσ (f), ∂ρ ◦ πFρ (f)). In the same
way, we define j : F → F by j(f) = (jσ ◦ πFσ (f), jρ ◦ πFρ (f)), and check that it is
an involution.

Hence σ ×τ ρ = (F, V, ∂, j) is a graph and πσ = (πFσ , π
V
σ ) : σ ×τ ρ → σ and

πρ = (πFρ , π
V
ρ ) : σ ×τ ρ→ ρ are graph morphisms.

σ ×τ ρ ρ

σ τ

πρ

πσ h
g

Consider now any µ = (Fµ, Vµ, ∂µ, jµ) such that the diagram

µ ρ

σ τ

p

q h
g

commutes. For f ∈ Fµ, let rF (f) = (pF (f), qF (f)) and for v ∈ Vµ, let rV (v) =
(pV (v), qV (v)). We check that it defines a graph morphism r : µ→ σ ×τ ρ and it
factorises p and q.
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