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We introduce a new graphical representation for multiplicative and exponential linear logic proof-structures, based only on standard labelled oriented graphs and standard notions of graph theory. The inductive structure of boxes is handled by means of a box-tree. Our proof-structures are canonical and allows for an elegant definition of their Taylor expansion by means of pullbacks.

Introduction

Linear Logic (LL) [START_REF] Girard | Linear logic[END_REF] has been introduced by Girard as a refinement of intuitionnistic and classical logic that isolates the infinitary parts of reasoning under two modalities: the exponentials ! and ?. These modalities give a logical status to the operations of memory/hypothesis management such as copying/contraction or erasing/weakening: a linear proof corresponds to a program/proof that uses its arguments/hypotheses linearly, i.e. only once, while an exponential proof corresponds to a program/proof that can use its arguments/hypotheses at will.

One of the features of LL is that it allows us to represent its proofs as proofnets, a graphical syntax alternative to sequent calculus. Sequent calculus is a standard formalism for several logical systems. However, sequent calculus forces an order among inference rules even when they are evidently independent, a drawback called bureaucracy. Proof-nets, instead, are a geometrical, parallel and bureaucracy-free representation of proofs as labeled oriented graphs. In proof-nets deductive rules are disposed on the plane, in parallel, and connected only by their causal relation. Clearly, not all graphs that can be written in the language of LL are proof-nets, i.e. represent a proof in LL sequent calculus. Proof-nets are special inhabitants of the wider land of proof-structures: they can be characterized, among proof-structures, by abstract (geometric) conditions called correctness criteria [START_REF] Girard | Linear logic[END_REF]. The procedure of cut-elimination can be applied directly to proof-structures, and proof-nets can also be seen as the proof-structures with a good behavior with respect to cut-elimination [3]. Cut-elimination defined on proof-structures is more elegant than in sequent calculus because it drastically reduces the need for commutative steps, the non-interesting and bureaucratic burden in every sequent calculus proof of cut-elimination. Indeed, in proof-structures there is no last rule, and so most commutative cut-elimination cases simply disappear.

Unfortunately, this is a faithful picture of the advantages of proof-structures only in the multiplicative fragment of LL (MLL) [START_REF] Danos | The structure of multiplicatives[END_REF], which does not contain exponentials ! and ?, and so it is not sufficiently expressive to encode classical or intuitionistic logic (or the λ-calculus) in. To handle the exponentials Girard was forced to introduce boxes. They come with the black-box principle: "boxes are treated in a perfectly modular way: we can use the box B without knowing its content, i.e., another box B with exactly the same doors would do as well" [START_REF] Girard | Linear logic[END_REF].

According to this principle, boxes forbid interaction between their content and their outer environment. This is evident in the definition of correctness criteria for MELL (the multiplicative-exponential fragment of LL) and in the definition of cut-elimination steps for MELL. Let us consider cut-elimination. Some cutelimination steps require us to duplicate or erase whole sub-proofs, typically the steps for the !-modality in MELL. Proofs in sequent calculus are tree-shaped and bear a clear notion of last rule, the root of the tree. This property has an obvious but important consequence: given a !-rule r in a sequent calculus proof, there is an evident sub-proof ending with r, the sub-tree rooted in r. Therefore, non-linear cut-elimination steps can easily be defined by duplicating or erasing sub-trees. Switching to proof structures, the situation radically changes, because a proof structure in general has many last rules, one for each formula in the conclusions. Given a rule r it is not clear how to find a sub-proof-structure ending with r. Thus, in order to define cut-elimination steps for the !-modality in MELL proof-structures-which requires to identify some sub-proof-structure-some information has to been added.

The typical solution is to re-introduce part of the bureaucracy in MELL proofstructures, pairing each !-rule with an explicit box containing the sub-proof that can be duplicated or erased during cut-elimination. In some fragments of MELL (for instance the intuitionistic one corresponding to the λ-calculus [START_REF] Solieri | Geometry of resource interaction and Taylor-Ehrhard-Regnier expansion: a minimalist approach[END_REF] or more in general the polarized one [START_REF] Accattoli | Compressing polarized boxes[END_REF]) where proof-structures still have an implicit tree-like structure (since among the conclusions there is always exactly one distinct output, the analogue of sequent calculus last rule), the explicit box is actually not needed. But here we are interested in the full (classical) MELL fragment, where linear negation is involutive and classical duality can be interpreted as the possibility of juggling between different conclusions. Concretely, in the literature mainly two kinds of solution that make use of explicit boxes can be found:

1. A MELL proof-structure is an oriented graph together with some additional information to identify the content and the border of each box. This additional information can be provided either informally, just drawing the border of each box in the graph [START_REF] Girard | Linear logic[END_REF][START_REF] Danos | Proof-nets and the Hilbert Space[END_REF][START_REF] Mazza | The separation theorem for differential interaction nets[END_REF], but then the definition of MELL proof-structure is not rigorous; or in a more formal way [START_REF] De Carvalho | The relational model is injective for multiplicative exponential linear logic (without weakenings)[END_REF][START_REF] Guerrieri | Computing connected proof(structure)s from their Taylor expansion[END_REF][START_REF] De Carvalho | Taylor expansion in linear logic is invertible[END_REF], but then the definition is highly technical and ad hoc; 2. A MELL proof-structure is an inductive oriented graph [START_REF] Laurent | Polarized proof-nets and lambda-µ-calculus[END_REF][START_REF] Pagani | The cut-elimination theorem for differential nets with promotion[END_REF][START_REF] Tranquilli | Intuitionistic differential nets and lambda-calculus[END_REF][START_REF] De Carvalho | A semantic measure of the execution time in linear logic[END_REF], i.e. an oriented graph where with any vertex v of type ! is associated another oriented graph representing the content of the box of v. This inductive solution can be taken to extremes by representing proof-structures with term-like syntax [START_REF] Ehrhard | A new correctness criterion for MLL proof nets[END_REF].

The drawback of Item 1 is that the definition of MELL proof-structure is not easily manageable because either it is not precise or it is too tricky. Item 2, instead, provides more manageable definitions of MELL proof-structures, but another drawback arises: they intrinsically are not canonical, in that there are different inductive presentations of a MELL proof-structure defined up to associativity and commutativity of contractions, neutrality of weakening with respect to contraction, and permutation of weakenings and contractions with box-border.

Our contribution. We present here a purely graphical definition of MELL proofstructures (Section 3), so as to keep Girard's original intuition of a proof-structure as a graph even in MELL. This definition follows the non-inductive approach seen in Item 1: we use n-ary vertices of type ? collapsing weakening, dereliction and contraction (like in [START_REF] Danos | Proof-nets and the Hilbert Space[END_REF]). In this way, we get a canonical representation of MELL proof-structures. But our definition is completely based on standard notions (recalled in Section 2) coming from the theory of graphs, being formal (with an eye towards complete computer formalization) but avoiding ad hoc technicalities to identify the border and the content of a box. The inductive structure of boxes is handled by means of a box-tree: indeed, a MELL proof-structure R is given by an oriented labelled graph |R| plus a tree A R (representing the order of the boxes of R) and a graph morphism box R from |R| to A R which allows us to recognize the content and the border of all boxes in R. In this way, our MELL proof-structures are still manageable: sophisticated operations on them, such as the Taylor expansion [START_REF] Ehrhard | Uniformity and the Taylor expansion of ordinary lambdaterms[END_REF] can be easily defined. As a test of the usability of our MELL proof-structures, we give an elegant definition of their Taylor expansion, by means of pullbacks (Section 5).

Moreover, our setting allows us to define in a simple way correctness graphs (used to characterize the proof-structures that are proof-nets, i.e. that correspond to proofs in the LL sequent calculus), as we show in Section 4 for MLL.

Since the main contribution of our work is to provide a new definition of MELL proof-structures, our paper contains several definitions and no new theorems.

Preliminaries on graphs

Graphs with half-edges. There are many formalizations of the familiar notion of graph. Here we adopt the one due to [START_REF] Borisov | Generalized Operads and Their Inner Cohomomorphisms[END_REF]:4 a graph is still a set of edges and a set of vertices, but edges are now split in halves, allowing some of them to be hanging. Splitting every edge in two has at least three features that are of particular interest for representing LL proof-structures:

two half-edges are connected by an involution, thus defining an edge. The fixpoints of this involution are thus dangling edges, connected to only one vertex: they are suited to represent the conclusions of a proof-structure. In this way it is also easy to define some intuitive but formally tricky operations such as the graft or the substitution of a graph for another graph (see Example 1); given a graph and any of its vertices, it is natural to define the corolla of the vertex, that is the vertex itself with all the half-edges connected to it; finally, while studying proof-structures, it is always necessary to treat them both as oriented and unoriented graphs. With this definition of graph, an orientation, so as a labeling and a coloring, are structures on top of the structure of the unoriented graph (see Definition 3).

Definition 1 (graph). A (finite) graph τ is a quadruple (F τ , V τ , ∂ τ , j τ ), where -F τ is a finite set, whose elements are called flags of τ ; -V τ is a finite set, whose elements are called vertices of τ ; -∂ τ : F τ → V τ is a function associating with each flag its boundary;

-j τ : F τ → F τ is an involution. The graph τ is empty if V τ = ∅.
A flag that is a fixed point of the involution j F is a tail of τ . A two-element orbit {f, f } of j F is an edge of τ between ∂ τ (f ) and ∂ τ (f ), and f and f are the halves of such an edge. The set of edges of τ is denoted by E τ .

Given two graphs τ and τ , it is always possible to consider their disjoint union τ τ defined as the disjoint union of the underlying sets and functions.

A one-vertex graph with set of flags F and involution the identity function id F on F is called the corolla with set of flags F ; it is usually denoted by * F .

Given a graph τ = (F τ , V τ , ∂ τ , j τ ), a vertex v defines a corolla

τ v = (F v , {v}, ∂ τ | Fv , id Fv ) where F v = ∂ -1 τ (v)
. Every graph can be described as the set of corollas of its vertices, together with the involution glueing the flags in edges.

Definition 2 (graph morphism and isomorphism). Let τ, σ be two graphs.

A graph morphism h : τ → σ from τ to σ is a couple of functions (h F : F τ → F σ , h V : V τ → V σ ) such that h V • ∂ τ = ∂ σ • h F and h F • j τ = j σ • h F .
A graph morphism is injective if its component functions are. A graph isomorphism is a graph morphism whose component functions are bijections.

The category Graph has graphs as objects and morphisms of graphs as morphisms: indeed, graph morphisms compose (by composing the underlying functions) and the couple of identities (on vertices and flags) is neutral. It is a monoidal category, with disjoint union as a monoidal product.

Graphs with structure. Some structure can be put on top of a graph.

Definition 3 (structured graph). Let τ = (F τ , V τ , ∂ τ , j τ ) be a graph.

-A labeled graph (τ, τ ) with labels in I is a graph τ and a function τ :

V τ → I. -A colored graph (τ, c τ ) is a graph τ with a function c τ : F τ → C such that c τ (f ) = c τ (f ) for the two halves f, f of any edge of τ . -An oriented graph (τ, o τ ) is a graph τ with a function o τ : F τ → {in, out} such that o τ (f ) = o τ (f ) for the two halves f, f of any edge of τ . If o τ (f ) = out and o τ (f ) = in, {f, f } is said an edge of τ from ∂ τ (f ) to ∂ τ (f ); in-oriented (resp. out-oriented) tails of τ are called inputs (resp. outputs) of τ ; if v is a vertex of τ , its inputs (resp. its outputs) are the elements of the set in τ (v) = ∂ -1 τ (v) ∩ o -1 τ (in); (resp. out τ (v) = ∂ -1 τ (v) ∩ o -1 τ (out)); -An ordered graph (τ, < τ
) is a graph together with an order on the flags.

Different structures on a graph can combine: for instance, a graph τ can be endowed with both a labeling τ and an orientation o τ .

Graphs can be depicted in diagrammatic form. As a graph is just a disjoint union of corollas glued with the involution, we only need to depict corollas (as in Figure 1, on the left) and place the two halves of an edge next to each other (as in Figure 1, on the right). In oriented graphs, inputs of a corolla are depicted above the corolla, outputs are below; arrows also show the orientation. The color of a flag f (if any) is written next to f . The label of a vertex v (if any) is written inside v. If ordered, flags of a corolla are depicted increasing from left to right. Consider also the oriented labeled colored corolla σ ax , whose only vertex is labeled by ax, and whose only flags are the outputs 5 (labeled by a 2 ) and 6 (labeled by a 3 ). The oriented labeled colored ordered two-vertex graph ρ depicted in Figure 1 (on the right) is obtained from the corollas τ 5 and σ ax by defining the involution j ρ : {0, . . . , 6} → {0, . . . , 6} as j ρ (i) = j τ5 (i) for i ∈ {0, 1, 4}, and j ρ (i) = i + 3 for i ∈ {2, 3}, and j ρ (i) = i -3 for i ∈ {5, 6}.

Each enrichment of the structure of graphs introduced in Definition 3 induces a notion of morphism that preserves such a structure, and an associated category. For instance, a morphism h

: (τ, o τ ) → (σ, o σ ) where (τ, o τ ) and (σ, o σ ) are oriented graphs is such that o σ • h F = o τ .
Trees and paths. An unoriented path on a graph τ is a finite and even sequence of flags ϕ = (f 1 , . . . , f 2n ) for some n ∈ N such that, for all

1 i n, j τ (f 2i-1 ) = j τ (f 2i ) and (if i = n) ∂ τ (f 2i ) = ∂ τ (f 2i+1 ). We say that ϕ is between ∂ τ (f 1 ) and ∂ τ (f 2n ) if n > 0 (and it is a cycle if moreover ∂ τ (f 1 ) = ∂ τ (f 2n
)), otherwise it is the empty (unoriented ) path, which is between any vertex and itself; the length of ϕ is n. Two vertices are connected if there is an unoriented path between them.

Let τ be a graph: τ is connected if any vertices v, v ∈ V τ are connected; a connected component of τ is a maximal (with respect the inclusion of flags and vertices) connected sub-graph of τ ; τ is acyclic (or a forest) if it has no cycles; τ is a tree if it is a connected forest.

A rooted tree τ is an oriented tree such that each vertex has exactly one output. Thus, τ has exactly one output tail: its boundary is called the root of τ .

Remark 1. Let τ and τ be two rooted trees, and h : τ → τ be an oriented graph morphism. As h F preserves tails and orientation, h V maps the root of τ to the root of τ . Rooted trees and oriented graph morphisms form a category RoTree.

An oriented path on an oriented graph τ is an unoriented path (f 1 , . . . , f 2n ) for some n ∈ N such that f 2i-1 is output and f 2i is input for all 1 i n. Such a path is said to be from ∂ τ (f 1 ) to ∂ τ (f 2n ) if n > 0, otherwise it is the empty (oriented) path, which is from any vertex to itself.

The set of oriented paths on an oriented tree is finite. As such, given a tree τ , we define its reflexive-transitive closure, or free category, τ as the oriented graph with same vertices and same tails as τ , and with an edge from v to v for any oriented path from v to v in τ . The operator (•) lifts to a functor from the category RoTree to the category of oriented graphs.

DiLL proof-structures

This section is the core of our paper. We define here proof-structures corresponding to some fragments or extension of LL: MELL, DiLL and DiLL 0 . Full differential linear logic (DiLL) is an extension of MELL (with the same language as MELL) provided with both promotion rule (i.e. boxes) and co-structural rules (the duals of the structural rules handling the ?-modality) for the !-modality: DiLL 0 and MELL are particular subsystems of DiLL, respectively the promotion-free one (i.e. without boxes) and the one without co-structural rules. As the study of cut-elimination is left to future work, our interest for DiLL is just to have an unitary syntax subsuming both MELL and DiLL 0 : this is why, unlike [START_REF] Pagani | The cut-elimination theorem for differential nets with promotion[END_REF][START_REF] Tranquilli | Intuitionistic differential nets and lambda-calculus[END_REF], our DiLL proofstructures are not allowed to contain a set of DiLL proof-structures inside a box.

Given a countably infinite set of propositional variables X, Y, Z, . . . , (MELL) formulas (whose set is denoted by F MELL ) are defined by the following grammar:

A, B ::= X | X ⊥ | 1 | ⊥ | A ⊗ B | A `B | !A | ?A
Linear negation (•) ⊥ is defined via De Morgan laws 1 ⊥ = ⊥, (A⊗B) ⊥ = A ⊥ `B⊥ and (!A) ⊥ = ?A ⊥ , so as to be involutive, i.e. A ⊥⊥ = A for any formula A. Variables and their negations are atomic formulas; ⊗ and `(resp. ! and ?) are multiplicative (resp. exponential ) connectives; 1 and ⊥ are multiplicative units.

We equip an oriented graph with labels (specifying the type of the vertices, which is a MELL connective or unit), colors (specifying the type of the flags, which is a MELL formula), and a function that specifies the deepest box each flag or vertex is in; all of them are subject to compatibility conditions. • if (v) = cut, v has no output and exactly two inputs i 1 and i 2 , such that In Figure 2 we depicted the corollas associated with all types of vertices.

c(i 1 ) = c(i 2 ) ⊥ ; • if (v) = ax, v
A (DiLL) proof-structure is a tuple R = (|R|, A, box), where |R| = ( R , R , o R , c R , < R
) is a module with no input tails, called the structured graph of R (and R is the graph of R). Moreover, the following hold:

-A is a rooted tree with no input tails, called the box-tree of R.

-box : |R| → A is a morphism of oriented graphs, 6 the box-function of R, such that box F induces a partial bijection from v∈V R , (v)=! in |R| (v) to the A A ⊥ A B A B A • • • A A • • • A A A ⊥ 1 ⊥ ax cut 1 ⊥ ⊗ A ⊗ B À `B ? ?A ! !A
Fig. 2. DiLL cells, with their labels and their typed inputs and outputs.

set of input flags in A. 7 Moreover, for any vertex

v ∈ V R with f ∈ in |R| (v), if box V (∂ R • j R (f )) = box V (∂ R (f )) then (v) ∈ {!, ?}. 8
A proof-structure is empty (denoted by ε) if its graph is empty.

A MELL proof-structure is a proof-structure such that:

-for all v ∈ V R , if (v) = ! then card(in |R| (v)) = 1; -box F induces a (total) bijection from v∈V R , (v)=! in |R| (v) to the set of input flags in A.
A DiLL 0 proof-structure is a proof-structure whose box-tree contains only its root in the set of vertices. A MLL (resp. MLL -) proof-structure is a DiLL 0 proofstructure whose structured graph has no vertices of type ! or ? (resp. 1, ⊥, ! or ?).

Given a proof-structure R = (|R|, A, box), the output tails of |R| are the conclusions of R. So, if f is the output of the root of A, the pre-images f 1 , . . . , f n of f via box F ordered according to < |R| form a finite sequence of the conclusions of R. The type of R is the list (c |R| (f 1 ), . . . , c |R| (f n )) of the types of the conclusions.

Borrowing the terminology of interaction nets [START_REF] Lafont | Interaction nets[END_REF][START_REF] Ehrhard | Differential interaction nets[END_REF], if R is a proof-structure, we say that the vertices of |R| are the cells of R, the flags of |R| are the ports of R.

Remark 2 (box). In our syntax, boxes do not have explicit constructors or cells, hence boxes and depth of a proof structure are recovered in a non-inductive way.

Let R = (|R|, A R , box R ) be a proof-structure. With every flag f of |R| such that box R F (f ) is an input flag of A R 9 is associated a box B f , that is the subgraph 7 This means that for any input flag f in A there is exactly one input f of some vertex of type ! in |R| such that boxF (f ) = f ; but boxF (f ) need not be an input flag in A for any input f of some vertex of type ! in |R| (by definition of morphism, boxF (f ) is necessarily an input flag in A ). Intuitively, a vertex v of type ! represents a generalized co-contraction (in particular, a co-weakening if it has no inputs), and a box is associated with (and only with) each input f of v such that boxF (f ) is an input flag in A (and not only in A ): f represents the principal door (in the border) of such a box (note that for

f ∈ F R , if f = f then boxF (f ) = boxF (f ) and that boxV (∂ R • j R (f )) = boxV (∂ R (f ))
for such a f ). 8 Roughly, it says that the border of a box is made of (inputs of) vertices of type ! or ?. 9 According to the constraints on boxR, this condition can be fulfilled only by inputs of a cell of type ! (a !-cell, for short) in |R|, and an input of a !-cell need not fulfill it; in particular, if R is a MELL proof-structure, then this condition is fulfilled by all and only the inputs of !-cells (and such an input is unique for any !-cell) in |R|; but if R is a DiLL0 proof-structure, then this condition is not fulfilled by any flag in |R| (since AR has no inputs) and so boxR is a graph morphism associating the root of AR with any vertex of |R|. Therefore, in a DiLL0 proof-structure ρ = (|ρ|, Aρ, boxρ), Aρ and boxρ do not induce any structure on |ρ|: ρ can be identified with |ρ|. of |R| (which is actually a proof-structure) made up of all the cells v (with their inputs and outputs) such that there is an oriented path on The proof-structures we have just defined are quite rigid: they depend on their carrier-sets of cells and wires. Nonetheless, a precise answer to the question "When two proof-structures can be considered equal?" requires a notion of isomorphism inherited by the notion of graph isomorphism.

⊥ 1 Y Y ⊥ ⊥ 1 X 1 X ⊥ ax ax ax ! !1 ⊥ 1 ! !1 ? ?⊥ ? ?!1 ⊗ X ⊗ ?⊥ ? ?Y ?Y `Y ⊥ ! !(?Y `Y ⊥ ) 1 ! !1 • • • • •
A R from box R V (v) to box R V (∂ R • j R (f )): a conclusion of such a box B f associated with f is every output f of a vertex v in B f such that ∂ R • j R (f ) is not in B f .

Definition 5 (isomorphism of proof-structures)

. Let R = (|R|, A R , box R ) and R = (|R |, A R , box R ) be proof-structures, with |R| = ( R , R , o R , c R , < R ) and |R | = ( R , R , o R , c R , < R ). An isomorphism of proof-structures f : R R is a couple f = (f |•| , f box ) where: -f |•| : |R| → |R | is an isomorphism of the structured graphs of R and R , -f box : A R → A R is an isomorphism of the box-trees of R and R , such that the following diagram commutes |R| A R |R | A R boxR f |•| f box box R Γ, A, B, ∆ Γ, B, A, ∆ (exc) A, A ⊥ (ax) Γ, A A ⊥ , ∆ Γ, ∆ (cut) Γ ∆ Γ, ∆ (mix) 1 (1) Γ Γ, ⊥ (⊥) Γ, A, B Γ, A `B (`) Γ, A B, ∆ Γ, A ⊗ B, ∆ (⊗) (emp)
Fig. 4. Sequent calculi for MLL -(all rules but (mix), (emp), (1), (⊥)), MLL (all rules).

Note that if R is isomorphic to a proof-structure R , and R is a MELL or DiLL 0 proof-structure, then R is respectively a MELL or DiLL 0 proof-structure.

Sequent calculi, proof-nets and correctness for MLL

Every proof in the sequent calculus for LL can be translated in a proof-structure with the same conclusions. Figure 4 gives the rules of the sequent calculi for two multiplicative fragments of LL: MLL -(without units) and MLL (with units and mix). A MLL -(resp. MLL) formula is a MELL formula without exponential connectives and multiplicative units (resp. without exponential connectives). A sequent is a finite sequence of (MLL -or MLL, depending on the context) formulas A 1 , . . . , A n . Capital Greek letters Γ, ∆, . . . range over sequents.

Definition 6 (translation, proof-net). Let X ∈ {MLL -, MLL}.
With any proof π in the sequent calculus for X and conclusion Γ is associated a X proof-structure R π with type Γ , called the translation of π, defined by induction on the size of π as follows:

10 π = (ax) A, A ⊥ |R π | = A A ⊥ ax π = . . . . π 1 Γ, A . . . . π 2 A ⊥ , ∆ (cut) 
Γ, ∆

|R π | = |R π1 | |R π2 | Γ A A ⊥ ∆ cut π = . . . . π 1 Γ, A, B, ∆ (exc) 
Γ, B, A, ∆

|R π | = B A |R π1 | Γ ∆ π = (emp) |R π | = |ε| (ε is the empty proof-structure) π = . . . . π 1 Γ . . . . π 2 ∆ (mix) Γ, ∆ |R π | = |R π1 | |R π2 | Γ ∆ π =
(1)

1 |R π | = 1 1 π = . . . . π 1 Γ (⊥) Γ, ⊥ |R π | = ⊥ |R π1 | Γ ⊥ π = . . . . π 1 Γ, A, B (`) Γ, A `B |R π | = |R π1 | Γ A B À `B π = . . . . π 1 Γ, A . . . . π 2 B, ∆ (⊗) Γ, A ⊗ B, ∆ |R π | = |R π1 | |R π2 | Γ A B ∆ ⊗ A ⊗ B A proof-structure R is a X proof-net (or is X sequentializable) if R = R π (i.e.
R is the translation of π) for some proof π in the X sequent calculus.

The translation is not surjective (neither injective) over proof-structures, even when we restrict to MLL -or MLL proof-structures. Purely graph-theoretical conditions, called correctness criteria, have been presented in order to characterize the set of sequentializable proof-structures. We give here two among the most celebrated of such correctness criteria, switching acyclicity and its variant switching acyclicity and connectedness, presented originally in [START_REF] Danos | The structure of multiplicatives[END_REF]. We define them via the switching operation on a proof-structure R, which roughly consists of "detaching" all inputs but one of every vertex of type `in R. This switching can be easily defined in our setting, thanks to modules and involutions. Definition 7 (switching, correctness graph). Let R be a MLL proof-structure, whose structured graph is |R| and whose (unoriented) graph is R .

A

switching of R is a function s R : {v ∈ V R | |R| (v) = `} → F R such that s R (v) is one of the two inputs of v.
With every switching s R of R is associated a s R -correctness graph τ (s R ), which is the (unoriented) graph obtained from R by replacing the involution j R : F R → F R for R with j τ (s R ) : F R → F R defined as follows:

j τ (s R ) (f ) =      j R (f ) if f is an input of a vertex v such that either |R| (v) = `and s R (v) = f , or |R| (v) = `; f otherwise.
A MLL proof-structure R is switching acyclic (resp. switching acyclic and connected) if every correctness graph of R is acyclic (resp. acyclic and connected).

Theorem 1 (Sequentialization, [START_REF] Danos | The structure of multiplicatives[END_REF]).

1. A MLL -proof-structure is MLL -sequentializable iff it is switching acyclic and connected. 2. A MLL proof-structure is MLL sequentializable iff it is switching acyclic.

The definitions and the results of this section can be easily generalized to DiLL 0 and MELL proof-structures.

The Taylor expansion

The Taylor expansion [START_REF] Ehrhard | Uniformity and the Taylor expansion of ordinary lambdaterms[END_REF] of a MELL (or more in general a DiLL) proof-structure R is a (usually infinite) set of DiLL 0 proof-structures: roughly speaking, each element of the Taylor expansion of R is obtained from R by replacing each box B in R with n B copies of its content (for some n B ∈ N), recursively on the depth of R. Note that n B depends not only on B but also on which "copy" of all boxes containing B we are considering. Up to now (with the exception of [START_REF] Guerrieri | Computing connected proof(structure)s from their Taylor expansion[END_REF]), the Taylor expansion of MELL proof-structure is defined globally and inductively [START_REF] Mazza | The separation theorem for differential interaction nets[END_REF][START_REF] Pagani | The inverse taylor expansion problem in linear logic[END_REF]: with every MELL proof-structure R is directly associated its Taylor expansion (the whole set!) by induction on the depth of R.

We adopt an alternative non-inductive approach, which strongly refines [START_REF] Guerrieri | Computing connected proof(structure)s from their Taylor expansion[END_REF]: the Taylor expansion is defined pointwise (see Example 3 and Figure 5). Indeed, proof-structures have a tree structure that is made explicit through their boxfunction. The definition of the Taylor expansion of a proof-structure uses this tree structure: first we define how to "expand" a tree via the notion of thick subtree [START_REF] Boudes | Thick subtrees, games and experiments[END_REF] (Definition 8), then we take all the expansions of the tree structure of a proof-structure and we pull them back to the underlying graphs (Definition 9), finally we forget the tree structures associated with them (Definition 10). Definition 8 (thick subtree [START_REF] Boudes | Thick subtrees, games and experiments[END_REF]). Let τ be a rooted tree. A thick subtree of τ is a pair (σ, h) of a rooted tree σ and a graph morphism h : σ → τ .

As in analysis, an addend of the Taylor expansion of an analytical function f is an approximant of f , here if A is the box-tree of a proof-structure R, a thick subtree of A is a sort of approximant of A taking recursively a number of copies (possibly 0) of each input of the vertices of A, i.e. of each box of R.

Example 3. The following is (a graphical presentation of) a thick subtree (τ, h) of the box-tree A R of the proof-structure R in Figure 3, where the graph morphism h : τ → A R is depicted chromatically (same color means same image via h).

• • • • • • • • • • • • h -→ • • • • •
Intuitively, τ is obtained from A R by taking 3 copies of the blue box, 1 copy of the red box, 4 copies of the orange box; in the first (resp. second; third) copy of the blue box, 1 copy (resp. 0 copies; 2 copies) of the purple box has been taken.

The crucial point is to pull back the expansion of trees to proof-structures. In Appendix A we recall the definition of pullback in the category of graphs.

Definition 9 (proto-Taylor expansion)

. Let R = (|R|, A R , box R ) be a proof- structure. The proto-Taylor expansion of R is set T proto R of thick subtrees of A R . Let t = (τ t , h t ) ∈ T proto R . The t-expansion of R is the pullback (R t , p t , p R ): R t τ t |R| A R pt pR h t boxR
computed in the category of graphs and graph morphisms. 11Given a proof-structure R and t = (τ t , h t ) ∈ T proto R , the t-expansion (R t , p t , p R ) of R is a naked graph. In order for it to be lifted into a DiLL 0 proof-structure, we need to define more structure on it, using either t or R.

-Oriented, labeled and colored structures on the graph |R| are defined through functions defined on the flags and vertices of |R|; hence, by precomposing with the graph morphism p R : R t → |R|, this transports to a structure of oriented labeled and colored graph on R t ; the order on the flags of R t is defined as the order induced by their image in

|R|: f < f if and only if (p R ) F (f ) < (p R ) F (f ); -let [τ t ]
be the tree made up only of the root of τ t and its tail and let ι :

τ t → [τ t ]
be the graph morphism sending all the vertices of τ t to the root of τ t ; ι induces by post-composition a morphism

h t = ι • p t : R t → [τ t ] .
With its structure of oriented, labeled, ordered and colored graph, the triple Definition 10 (Taylor expansion). Let R be a proof-structure. The Taylor expansion of R is the set

(R t , [τ t ], h t ) is a DiLL 0 proof-structure. ⊥ 1 ⊥ 1 ⊥ 1 Y Y ⊥ ⊥ 1 1 1 X 1 1 1 1 X ⊥ !1 ax ax ax ax ax ! !1 ! !1 ! ⊥ 1 1 1 ! !1 ? ?⊥ ? ?!1 ⊗ X ⊗ ?⊥ ? ?Y ?Y `Y ⊥ ! !(?Y `Y ⊥ )
T R = {(R t , [τ t ], h t ) | t = (τ t , h t ) ∈ T proto R }.
An element of the Taylor expansion of a proof-structure is thus a DiLL 0 proof-structure. It has much less structure than the pullback (R t , p t , p R ), which defines a DiLL 0 proof-structure R t coming with its projections p t : R t → τ t and p R : R t → |R|. In particular, a cell in R t is labelled (through the projections) by the cell of |R| and the branch of the box-tree of R it arose from. But (R t , [τ t ], h t ) where R t is without its projections p t and p R loses the correspondence with R = (|R|, A R , box R ) (see Fig. 5). Reconstructing such projections, starting only from an element of the Taylor expansion, can be seen as the core of the works on the injectivity of the Taylor expansion, see [START_REF] De Carvalho | Taylor expansion in linear logic is invertible[END_REF][START_REF] Guerrieri | Computing connected proof(structure)s from their Taylor expansion[END_REF].

Remark 3. From the definition it follows that each element of the Taylor expansion of a proof-structure R has the same conclusions and the same type as R. More precisely, let R be a proof-structure and ρ be in the Taylor expansion of R: f is a conclusion of ρ and an output of a cell v of ρ if and only

if p R F (f ) is a conclusion of R and an output of a cell p R V (v) of R. And c |ρ| (f ) = c |R| (p R F (f )) (i.e. the type of f in ρ is the same as the type of p R F (f ) in R) and |ρ| (v) = |R| (p R V (v)) (i.e. the type of v in ρ is the same as the type of p R V (v) in R).
Remark 4. One could go further and define an incomplete Taylor expansion of a proof-structure, where some boxes are expanded, but not all. This extension fits into this framework: the absence of boxes in an element (R t , [τ t ], h t ) of the Taylor expansion owes only to the fact that [τ t ] is a root. By replacing this root by a rooted tree, we keep track of which boxes are expanded and which are not.

Conclusions

Cut-elimination. The fact that we get a canonical (as explained in Section 1) representation of MELL proof-structures is not only an aesthetic matter: it has important consequences on the definition of cut elimination, because it avoids the presence of the bureaucratic commutative-steps. As a notable consequence, as proved in [2], the proof of strong normalization for MELL becomes quite elegant and much easier than with non-canonical MELL proof-structures [START_REF] Pagani | Strong normalization property for second order linear logic[END_REF]. The canonicity of our definition of MELL proof-structures paves the way to such a smooth cut elimination; we plan to work out this issue in future work.

Taylor expansion and relational semantics. Relational semantics is the simplest denotational model of LL. It can be seen as a degenerate case of Girard's coherent semantics [START_REF] Girard | Linear logic[END_REF]: formulas are interpreted as sets and proof-structures as relations between them. It is well-known that, given a MELL proof-structure R, there is a correspondence between certain equivalence classes on its relational semantics R and the elements of its Taylor expansion T R : in particular, two cut-free MELL proof-structures with atomic axioms have the same relational semantics if and only if they have the same Taylor expansion. This equivalence, which relates the syntactic notion of Taylor expansion to the semantic notion of relational model, holds only with a canonical representation MELL proof-structures, such as ours.

Mix and forests. In an ongoing work, we are naturally led to consider several proof-structures at the same time and to "mix" them in a single proof-structure. Our definition of proof-structure (Definition 4) is perfectly suited for this purpose. Indeed, the definition of a box-tree lends itself to a generalization: considering not trees, but forests of boxes. The graph morphism condition implies, if its image is a forest, that the proof-structure contains several connected components; and each inverse image of a tree in the forest is actually a proof-structure.

So, by slightly generalizing the definition, we can consider a list of proofstructures as a whole proof-structure, while respecting their individuality, contrarily to all of them having the same image through box. This allows us to mimic the situation of the mix rule of sequent calculus: taking two proofs and considering it one can be done by merging two roots of a box-forest.

A most general Taylor expansion: Milner's absorption. It is possible to go farther in the definition of the Taylor expansion and to specify a new box-tree that need not be trivial. This allows for instance to expand some boxes and not all; and even to expand partially a box: copying alongside a box its contents and (co-)contracting the box with the copies. This is reminiscent of the π-calculus and of Mazza's parsimonious λ-calculus [START_REF] Mazza | Simple parsimonious types and logarithmic space[END_REF], where the exponentials verify the isomorphism !A A ⊗ !A.

Other boxes. Boxes for other connectives of linear logic have been considered in various works: quantifiers (both first-order and second order [START_REF] Girard | Linear logic[END_REF]), fix-points [START_REF] Montelatici | Polarized Proof Nets with Cycles and Fixpoints Semantics[END_REF] and additives [START_REF] Girard | Linear logic[END_REF][START_REF] Tortora De Falco | The additive multiboxes[END_REF]. The boxing tree represents a sequential structure that is added on top of a proof-structure. All these connective share in common to require such a sequentialization.

As the different kind of sequentialization need to merge correctly, we believe this approach to be adapted without problems to other kinds of boxes, paving the way to a unified notion of proof-structures for a richer system than MELL.

Technical Appendix

A Computing a pullback in the category of graphs

The category of graphs has all pullbacks, a fact that we use extensively. We recall here all the definitions and facts that are packed in that affirmation. It is unique (up to unique isomorphism), and it is customary to write X × Z Y a pullback of X and Y over Z (leaving f and g implicit) and a pullback diagram with a corner:

A X Y Z ! X ! Y f g
All pullbacks exist in the category of graphs. Explicitely, let τ = (F τ , V τ , ∂ τ , j τ ), σ = (F σ , V σ , ∂ σ , j σ ) and ρ = (F ρ , V ρ , ∂ ρ , j ρ ) be three graphs and g : σ → τ , h : ρ → τ be two graph morphisms. Consider the two sets

F = {(f 1 , f 2 ) ∈ F σ × F ρ | g F (f 1 ) = h F (f 2 )} V = {(v 1 , v 2 ) ∈ V σ × V ρ | g V (v 1 ) = h V (v 2 )}
They are both equiped with two projections, which we will write π F σ , π F ρ , π V σ , π V ρ . Let f ∈ F .

g V • ∂ σ • π F σ (f ) = ∂ τ • g F • π F σ (f ), because g is a graph morphism = ∂ τ • h F • π F ρ (f ), by definition of F = h V • ∂ ρ • π F ρ (f )
, because h is a graph morphism Hence, we can define ∂ :

F → V by ∂(f ) = (∂ σ • π F σ (f ), ∂ ρ • π F ρ (f )).
In the same way, we define j : F → F by j(f ) = (j σ • π F σ (f ), j ρ • π F ρ (f )), and check that it is an involution.

Hence σ × τ ρ = (F, V, ∂, j) is a graph and π σ = (π F σ , π V σ ) : σ × τ ρ → σ and π ρ = (π F ρ , π V ρ ) : σ × τ ρ → ρ are graph morphisms.

σ × τ ρ ρ σ τ π ρ π σ h g Consider now any µ = (F µ , V µ , ∂ µ , j µ ) such that the diagram µ ρ σ τ p q h g commutes. For f ∈ F µ , let r F (f ) = (p F (f ), q F (f )) and for v ∈ V µ , let r V (v) = (p V (v), q V (v)). We check that it defines a graph morphism r : µ → σ × τ ρ and it factorises p and q.

Example 1 .

 1 The oriented labeled colored ordered corolla τ 5 = ( * 5 , o 5 , 5 , c 5 , < 5 ) depicted in Figure1(on the left) has * as only vertex and 5 = {0, 1, 2, 3, 4} as set of flags; it is endowed with the order 0 < 5 4 and 1 < 5 2 < 5 3, and the orientation o 5 : 5 → {in, out} defined by o 5 (0) = o 5 (4) = out and o 5 (1) = o 5 (2) = o 5 (3) = in, the labeling 5 : { * } → { } defined by 5 ( * ) = , the coloring c 5 : 5 → {a 0 , . . . , a 4 } defined by c(i) = a i for all i ∈ 5.

Fig. 1 .

 1 Fig. 1. An oriented labeled colored ordered corolla (on the left), and an oriented labeled colored ordered two-vertex graph (on the right).

Definition 4 (

 4 module, proof-structure). A (DiLL) module M = (|M |, , o, c, <) is a labeled ( ), oriented (o), colored (c), ordered (<) graph |M | such that: -: V |M | → {ax, cut, 1, ⊥, ⊗, `, ?, !} associates with each vertex its type; -c : F |M | → F MELL associates with each flag its type; -< is a strict order on the flags of |M | that is total on the tails of |M | and on the inputs of each vertex labeled by `or ⊗; for every vertex v ∈ V |M | ,

  has no inputs and exactly two outputs o 1 and o 2 , such that c(o 1 ) = c(o 2 ) ⊥ ; • if (v) ∈ {1, ⊥}, v has no inputs and only one output o, with c(o) = (v); • if (v) ∈ {⊗, `}, v has exactly two inputs i 1 < i 2 and one output o, such that c(o) = c(i 1 ) (v) c(i 2 ); • if (v) ∈ {?, !}, v has exactly n 0 inputs i 1 , . . . , i n and one output o, such that c(o) = (v) c(i j ) for all 1 j n; 5

Fig. 3 .

 3 Fig. 3. A MELL proof-structure R with its box-tree AR. The dotted arrows represent the edges added by the reflexive-transitive closure (•) .

  Summing up, every non-root vertex of A R represents a box in R, and the root of A R represents the parts of R outside all the boxes. The tree-structure of A R expresses the nesting condition of boxes.The depth of a cell v of R is the length of the oriented path in A R from box R (v) to the root of A R . The depth of R is the maximal depth of the cells of R. Example 2. In Figure 3 a MELL proof-structure R is depicted: the structured graph |R| of R is on the left; the box-tree A R of R is on the right. The box-function box R is kept implicit by means of colors: the colored areas in |R| represent boxes, and the same color is used on A R to show where each box is mapped by box R .

1 •Fig. 5 .

 15 Fig. 5. The element of the Taylor expansion of the MELL proof-structure R in Fig. 3 obtained from the element of T proto R depicted in Ex. 3.

Definition 11 (

 11 pullback). Let C be a category. Let X, Y , and Z be three objects of C and f : X → Z and g : Y → Z be two arrows of C.The pullback of X and Y along f and g is the triple (A, ! X , ! Y ) such that the diagram and, for every other (B, h : B → X, k : B → Y ) making the same diagram commute, there exists a unique arrow p : B → A such that:

The folklore attributes the definition of graphs with half-edges to Kontsevitch and Manin, but the idea can actually be traced back to Grothendieck's dessins d'enfant.

This implies that c(ij) = c(i k ) for all 1 j, k n.

The structured graph |R| of R is more structured (it is also labeled, colored, ordered) than an oriented graph such as A . When we talk of a morphism between two structured graphs where one of the two, say τ , is less structured than the other, say σ, we mean that τ must be only considered with the same structure as σ. Thus, in this case, box is a morphism from ( R , oR)-discarding R, cR, <R-to A .

We write only the graph |Rπ| of Rπ, because its box-tree AR π and its box-function boxR π are trivial (see Footnote 9).

This means that τ t and A R are considered as (unoriented) graphs, see also Footnote 6.