
HAL Id: hal-02313403
https://hal.science/hal-02313403v1

Submitted on 11 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VNF placement algorithms to address the mono- and
multi-tenant issues in edge and core networks

Cedric Morin, Géraldine Texier, Christelle Caillouet, Gilles Desmangles,
Cao-Thanh Phan

To cite this version:
Cedric Morin, Géraldine Texier, Christelle Caillouet, Gilles Desmangles, Cao-Thanh Phan. VNF place-
ment algorithms to address the mono- and multi-tenant issues in edge and core networks. CLOUD-
NET 2019 : 8th IEEE International Conference on Cloud Networking, Nov 2019, Coimbra, Portugal.
�10.1109/CloudNet47604.2019.9064108�. �hal-02313403�

https://hal.science/hal-02313403v1
https://hal.archives-ouvertes.fr

VNF placement algorithms to address the mono-
and multi-tenant issues in edge and core networks

Cédric Morin∗†‡, Geraldine Texier ∗†, Christelle Caillouet§, Gilles Desmangles ‡, Cao-Thanh Phan †
∗IMT Atlantique/IRISA/Adopnet, France; first.lastname@imt-atlantique.fr

†BCOM, France; first.lastname@b-com.com
‡TDF, France; first.lastname@tdf.fr

§Université Côte d’Azur/I3S/CNRS/Inria, France; first.lastname@univ-cotedazur.fr

Abstract—The Network Functions Virtualisation
(NFV) concept offers network operators the ability
to provide more scalable and less expensive services,
free from the limitations inherent to hardware de-
vices. However, in 5G networks, the functions must
be deployed not only in large central data centers,
but also in the edge. We propose an algorithm that
solves the Virtual Network Function Chain Placement
Problem allowing a fine management of these rare
resources in order to respond to the greatest number
of requests possible. Because networks can be divided
into several entities belonging to different tenants who
are reluctant to reveal their internal topologies, we
propose a heuristic that allows the NFV orchestrator
to place the function chains based only on an abstract
view of the infrastructure network. We leverage this
approach to address the complexity of the problem in
large mono- or multi-tenant networks. We analyze the
efficiency of our algorithm and heuristic with respect
to a wide range of parameters and topologies.

Index Terms—VNF placement optimization, multi-
tenant architecture, mono-tenant architecture

I. Introduction

NFV turns traditional physical middelboxes into soft-
ware Virtual Network Functions (VNFs) running over
generic servers. Among other benefits, VNFs break the
vendor dependence, allow frequent updates, reduce in-
stallation and management costs and introduce flexibility
in terms of scaling and placement [1]. With the NFV-
Management and Orchestration (MANO) standard, ETSI
introduces a new architecture to manage the NFV de-
ployment and the Network Service (NS) instantiation [2].
In order to provide a NS, the Network Functions Vir-
tualisation Orchestrator (NFVO) receives a request to
create a Virtual Network Function Chain (VNFC) under
specific constraints. This is what we call the Virtual
Network Function Chain Placement Problem (VNFCPP).
The NFVO decides where to place and how to connect
the VNFs, based on the topology information provided by
the Virtualized Infrastructure Managers (VIMs). Then,
the VIMs reserve resources in the virtual infrastructure
according to the placement decision.The architecture is
called mono-tenant when the NFVO and the VIMs are
operated by the same provider, and multi-tenant when
the NFVO solicits VIMs belonging to other providers

to implant VNFs on their infrastructure. The VNFCPP
supposes the full cooperation of all entities. That can
be achieved in a mono-tenant architecture but is not
possible in a multi-tenant architecture since VIMs may
be reluctant to disclose confidential information such as
their topology.

In parallel, the emergence of 5G is leading to the
creation of new NSs, with increased traffic and latency
constraints. Due to their proximity with end users, edge
resources are crucial to reach ultra low latency require-
ments, but their scarcity imposes a wise management.
So, despite VNFs promise of flexibility and scalability, we
must focus on edge resources in addition to those of the
cloud [3].

In this paper we propose an optimization strategy to
maximize the acceptation of new VNFCs by reserving
in priority resources on links and nodes where they are
abundant, saving low capacity elements for requests with
stronger requirements. We formalize this strategy as an
Integer Linear Programming (ILP) problem, and propose
an extensive analysis of its performance depending on
requests and topology characteristics in a mono-tenant en-
vironment. Then, we propose a heuristic based on network
abstraction to handle both computational complexity and
multi-tenant context challenges. The paper is organized
as follows. After an overview of the related works in
Section II, Section III presents the ILP problem. Section
IV details our heuristic. In Section V we expose our
experimental results and conclude in Section VI.

II. Related works
Thanks to the extent of interest in NFV in recent years,

many publications are addressing the issue of VNF place-
ment [4]. They propose different approaches, depending
on the exact formulation of the problem, the context
and the aspects they optimize. When they focus on
datacenters, they often place VNFs in order to minimize
energy consumption while ignoring link constraints such
as delays, since the servers are physically co-located, as
in [5]. In wide networks, a first approach of the VNFCPP
consists in dealing separately with the chaining and the
VNF placement. In [6], the optimisation is prioritized: first
to perform the optimisation over links, then over nodes.

Similarly, [7] identifies a shortest path between the source
and destination of the chain before placing the VNFs on
it. A variant is to consider that the VNFs are already
installed, so the problem is to route new requests through
a correct chain of existing VNFs [8]. Other approaches
tends to simplify the general problem. For example, [9]
ignores nodes constraints, such as CPU, to focus on the
link cost. Few contributions address the problem to its full
extend, especially when it comes to heuristics.

[10] [6] and [11] already consider the edge resources
characteristics, however the influence of the topology
and resource distribution over the algorithm performance
needs to be further investigated. Although many projects
explored the MANO architecture (e.g., 5Gex1 and 5GT2),
to the best of our knowledge, the consideration of multi-
tenants in the VNFCPP has not been analyzed.
The main contributions of this paper are the proposal

of a fair placement algorithm as well as an in-depth
evaluation in relation to various resource distributions
over several topologies and the development of a generic
heuristic that accelerates the problem resolution and
solves it in a mono- or multi-tenant context.

III. VNF placement in a mono-tenant
architecture

A. Problem description
Upon a client’s request, the NFVO must place a NS,

decomposed in a VNFC, in the network at runtime. This
chain is specified by its physical entry and exit points
(that can be identical), a succession of VNFs and two
types of constraints: on nodes capacities and on links
capacities. For constraints on nodes, we consider both
CPU and storage (RAM). Regarding links we consider two
parameters: an additive delay and a min-max bandwidth.
Some VNFs (e.g. firewalls, encoders and decoders) may
change the Quality of Service (QoS) requirement on the
link (e.g. bandwidth required between VNFs), so the
constraints on the link may vary along the VNFC.
The required latency may be different between VNFs,

as the sub-services offered by some VNFs tolerate delays,
while others don’t. Hence, bandwidth and delay require-
ments are considered from end-to-end (for the whole ser-
vice) and locally (between VNFs). This section considers
a mono-tenant architecture where the NFVO has a full
view on the infrastructure topology to place the VNFCs.

B. Architecture considerations
VNFCs placement being constrained by nodes and links

capacities, topology and resource distribution in the net-
work are likely to play an important role. To evaluate their
impact (see Section V), we consider two main types of
architectures, as depicted in Figure 1. Flat architectures3,
representative of core networks, contain only one level of

15GEx, https://5g-ppp.eu/5gex/
25g-transformer, http://5g-transformer.eu/
3Such architectures can be found at http://sndlib.zib.de

CORE

AGGREGATION

ACCESS

(a) Edge39 (edge topology) (b) Giul39 (flat topology)

Figure 1. Topologies

nodes. Edge architectures (described in [6]) are composed
of 3 layers: core, aggregation and access and are well suited
to study low latency constraints between VNFs.

C. The optimisation model

We address the VNFCPP in a mono-tenant architecture
focusing on maximizing the acceptation of new VNFCs.
Therefore, we reserve resources in priority on links and
nodes where they are abundant, saving them where they
are scarce for further requests with potentially stronger
requirements. Note that this strategy facilitates the ability
of VNFs to scale up/out with the workload, as it spares
free resources on many network nodes. This effect is not
measured in this paper. The NFVO places requests one
by one as they arrive without any prior knowledge of
future requests. We formalize this strategy as an Integer
Linear Programming (ILP) problem using the notations
summarized in Table I.

Table I
Notations

Name Description
V Set of VNFs to be placed
N Set of nodes of the network

Succ(v ∈ V) Outgoing neighboring VNF of v ∈ V
Succ(i ∈ N) Outgoing neighboring nodes of i ∈ N

Bv,w Bandwidth requested to connect
v ∈ V and w ∈ Succ(v)

Bi,j Bandwidth available on the directed link
from i ∈ N to j ∈ Succ(i)

Sv Storage requested by v ∈ V
Si Storage available at i ∈ N

Cv Compute requested by v ∈ V
Ci Compute available at i ∈ N

Dv,w Maximum delay between v ∈ V and w ∈ Succ(v)
Di,j Delay of the directed link from i ∈ N to j ∈ Succ(i)

T v Processing delay of v ∈ V
∆ Maximum VNFC end-to-end delay

P (X) Price of the resource X

1) Variables: Path and VNF embedding are respec-
tively defined by variables x and y. xv,w

i,j equals 1 if the
traffic sent from v ∈ V to w ∈ Succ(v) uses the directed
link from i ∈ N to j ∈ Succ(i), 0 otherwise. yv

i equals 1
if v ∈ V is hosted by i ∈ N , 0 otherwise.

2) Objectives: Costs associated to bandwidth (1), stor-
age (2) and CPU (3) allocation:∑

(v,w)∈V

∑
(i,j)∈N

xv,w
i,j ∗B

v,w ∗ P (Bi,j) (1)

∑
i

∑
v

yv
i ∗ Sv ∗ P (Si) (2)

∑
i

∑
v

yv
i ∗ Cv ∗ P (Ci) (3)

We want to give priority to placing VNFs on nodes/links
with abundant resources and to preserve nodes/links with
scarce resources for future and more demanding requests.
To make it costly to install a VNF/path on a node/link
with few remaining resources, we associate a price corre-
sponding to the inverse of the remaining resources:

P (Bi,j) = 1
Bi,j

;P (Si) = 1
Si

;P (Ci) = 1
Ci

(4)

To solve the problem, we scalarize our costs with custom
coefficients α, β and γ and minimize the result:

minα ∗ (1) + β ∗ (2) + γ ∗ (3) (5)

3) Constraints: The entry and exit nodes of the chain
are represented by two fictive VNFs (entryV NF and
exitV NF) without any resource needs, so yentryV NF

entryNode = 1
and yexitV NF

exitNode = 1. The path continuity is enforced by (6)
while (7) ensures that there are no loops along the path
between two consecutive VNFs.

∑
j∈N

xv,w
j,i −

∑
j∈N

xv,w
i,j + yv

i − yw
i = 0,

∀i ∈ N, ∀(v, w) ∈ V (6)∑
j∈N

xv,w
j,i + yv

i ≤ 1,∀i ∈ N, ∀(v, w) ∈ V (7)

Each VNF must be placed exactly once:∑
i∈N

yv
i = 1,∀v ∈ V (8)

Embedding must respect VNF constraints regarding
bandwidth capacity and delay :∑

(v,w)∈V

xv,w
i,j ∗B

v,w ≤ Bi,j ,∀(i, j) ∈ N (9)

∑
(i,j)∈N

xv,w
i,j ∗Di,j ≤ Dv,w,∀(v, w) ∈ V (10)

Node resources must not be exceeded:∑
v∈V

yv
i ∗ Cv ≤ Ci,∀i ∈ N (11)

∑
v∈V

yv
i ∗ Sv ≤ Si,∀i ∈ N (12)

VNFC embedding must respect the maximum end-to-
end delay acceptable for the full NS:

∑
(v,w)∈V

∑
(i,j)∈N

xv,w
i,j ∗Di,j +

∑
v∈V

∑
i∈N

yv
i ∗ T v ≤ ∆ (13)

IV. VNF placement in a multi-tenant
architecture

The problem presented in Section III requires a detailed
knowledge of the network topology and resources, which
is impossible in a multi-tenant architecture. When the
infrastructure and the orchestration service are owned
by different actors, VIMs will be reluctant to disclose
confidential data and will rather present an abstraction
of the network to the NFVO. Therefore, we introduce
a two step computation. First, the NFVO performs the
placement over abstracted topologies proposed by the
VIMs, resulting in a first placement of the VNFs. Then,
each concerned VIM must in turn run the algorithm to de-
termine the final placement within its infrastructure and
update its abstract graph based on resource consumption.

A. The topology abstraction
Over the years, network topology abstraction has mo-

tivated a lot of research works [12]. Those works mostly
focus on QoS routing over several independent networks.
However, since they are not intended to place VNFs, they
do not consider the resources of the nodes. In order to be
efficient, the abstraction must display a trade off between
the accuracy of the information (to allow the NFVO to
compute a correct path) and how to hide internal details.

The main abstractions for a network topology are the
single node, the star and the full mesh [13]. The single
node approach is not accurate enough, and the mesh
approach fails to represent the node resources. Moreover,
computing a full mesh for each possible VNF placement
is computationally intractable. Thus we focus on dividing
the network in sub-networks, or clusters, each represented
by an asymmetric weighed star abstraction. The trade-
off is now on the number of sub-networks to consider
and their size to get the most representative abstrac-
tion while ensuring the non-disclosure of the confidential
elements. The division in sub-networks may follow pre-
existing administrative divisions or a specific algorithm.
We use the algorithm presented in [14] that identifies
the clusters based on the link betweenness metric. The
size of the clusters is arbitrary and must optimize both
computational time and abstraction quality. Each cluster
is represented by a star abstract topology including a
central node (nucleus) connected via abstracted links
(spokes) to the cluster border nodes, themselves connected
to neighboring clusters. We choose the nucleus as the
node with the highest centrality in the cluster (i.e. the
easiest to reach from any point of the cluster, in average),
and dimension it with the sum of all non-border nodes
resources. We set the parameters of each spoke with

the best possible value, determined by running multiple
Dijkstra algorithms between the border node of the spoke
and the nucleus focusing on one parameter at a time.
Despite its simplicity, this aggressive approach has been
proved quite effective in [15]. We add derivations in the
star by keeping the links connecting the sub-network’s
border nodes to ease the transition from one cluster to
the other. By construction, the central nucleus becomes a
very attractive node for the objective function, potentially
hiding a large number of access nodes with few resources.
We mitigate this problem by redefining each price of (4)
as the lower price for this resource among the nodes the
nucleus represents.

B. The heuristic in a Mono-tenant architecture
The VNFCPP is NP-complete [10], so computing times

can become unbearable when the size of the network or the
VNFC increases. Most of the works presented in Section II
propose heuristics to fasten the resolution, but they are
generally based on a specific version of the VNFCPP and
do not adapt well to an evolution of the problem param-
eters. We propose to extend the abstraction technique
used in the multi-tenant scenario to define a heuristic that
works with any form of VNFCPP.
When the topology is too large to perform the ILP, the

NFVO artificially divides its topology view into several
clusters of limited sizes. Note that the abstraction process
can be done offline if the topology is not expected to vary
quickly over time. The execution of the ILP on abstracted
topologies gives a first placement solution that associates
each cluster with a set of VNFs to host. The algorithm
transforms these results into parameters and executes the
ILP a second time on each cluster of the abstract topology.
Since the initial ILP is not modified, this heuristic can be
applied to any variant of the VNFCPP.

V. Simulations and results
We evaluate the efficiency of our algorithms, using the

Gurobi solver and a 12 logical cores Intel Xeon E5-2630.

A. Parameters
1) The topology structure: We selected five flat back-

bone topologies from SDNLib: Atlanta, Brain, Cost, Ger-
many50 and Giul39 and designed two custom typical edge
topologies: Edge51 (see Figure 1) and Edge39.

2) The resource distribution: We study the impact of
resource distribution with three scenarios. In the Low
concentration (L) scenario, the nodes and links of all
topologies have exactly the same resources: the nodes
have 80 CPU units and 100 storage units and the links
have 1000 bandwidth units. This is unlikely to happen
in real life where central datacenters have much more
capacity than edge ones. The other scenarios focus on
the topologies with comparable number of nodes and
links: Edge39, Edge51, Giul39 and Germany50. The total
amount of resources in the network is the same as in the

first scenario but the node resource distribution changes.
Nodes are categorized in access, aggregation and core
nodes (which is straightforward for Edge39 and Edge51).
We classify Giul39 nodes (resp. Germany50) by selecting
the same amount of node in each category as with Edge39
(resp. Edge51), according to their centrality. The highest
centrality corresponds to core nodes since high-capacity
nodes are likely to be placed at strategic location in the
network. In the Medium concentration (M) scenario, each
node category has 33% of the network total amount of
resources whereas in the High concentration (H) scenario
core, aggregation and access nodes detain respectively
60%, 30% and 10% of the total amount of resources.

3) VNF delay tolerance: We study the influence of
the latency constraint of the end-to-end NS and between
the VNFs on the overall chain placement by fixing each
link delay to 100 units and considering a large range
of delay bounds. We determine the bounds by introduc-
ing a variable called delay factor. A delay bound takes
into account the topology diameter in order to obtain
comparable results between topologies. The delay factor
takes the values 50, 100, 150, 200, 300, 400 and 800.
For each network service, we randomly select the end-to-
end latency constraint ∆ and Dv,w the latencies between
VNFs using (14) and (15).

delayFactor ∗ networkDiameter
4 ≤ ∆ ≤

numberOfV nfs ∗ (delayFactor ∗ networkDiameter ∗ 2
+maxProcessingDelay) (14)

0 ≤ Dv,w ≤ delayFactor ∗ networkDiameter
2 (15)

A delay factor of 50 corresponds to an average delay
between VNFs of one hop, while for a delay factor of 400,
it is equivalent to the diameter of the network.

4) NS lifespans: NS lifespans represent the time a
NS will be present in the network. For convenience, the
measure of the time in our experiment is based on the
reception of requests. For example, the first NS may
indicate a lifespan of 200 requests. When the 200th request
is received, the NS expires and the reserved resources are
released. As for delay tolerance, lifespan values depend on
the topology. Indeed, in our model, the resources of the
topology are directly proportional to its size. For the same
lifespan a small topology such as Atlanta could be satu-
rated while a large one like Brain would have barely dent
its resources. For each topology we define the inflexion
point as the number of requests from which the acceptance
rate of both our ILP and the baseline algorithm (see V-B)
become very low, marking the beginning of the saturation
of the network.We analyze eleven lifespan values for each
topology (from 10% to 100% of the inflexion point, plus
the infinite lifespan). An approximation of the value of
the inflexion point is sufficient since its purpose is just to
allow a good distribution of the lifespan measurements.

G
er

m
an

yL
C

os
tL

A
tl

an
ta

L
G

iu
l3

9L
E

dg
e3

9L
E

dg
e5

1L
B

ra
in

L
E

dg
e3

9M
G

er
m

an
yM

G
iu

l3
9M

E
dg

e5
1M

E
dg

e3
9H

G
iu

l3
9H

G
er

m
an

yH
E

dg
e5

1H

0

10

20

Im
pr

ov
em

en
t

(%
)

Flat topology
Edge topology
Low concentration
Medium concentration
High concentration
Mean

Figure 2. Performance of the ILP compared to a bandwidth-only
optimization strategy

5) Other parameters: The value of the following pa-
rameters are chosen randomly in consistency with [5], [6],
[8], [9] and [11]. Chains comprise between 2 and 5 VNFs.
Any VNF consumes between 0 and 10 CPU and storage
units, and the link between two consecutive VNFs requests
between 1 and 10 bandwidth units. We choose arbitrarily
a delay of treatment for each VNF between 0 and 100.
Entry and Exit points of the chain are randomly chosen
in the network, and may eventually be the same. In order
to improve the readability of the results, we filter the NS
requests submitted to the network to ensure that they are
feasible when the network is empty.

B. Global optimization evaluation
We evaluate the performance of our ILP by comparing it

with a baseline solution that only considers the bandwidth
optimisation (α = 1, β = 0 and γ = 0 in (5)). We chose
the coefficients of our ILP α = 1, β = 4 and γ = 7 to
compensate for the disparity in resources. Measures in this
section were obtained as follows : for a given algorithm
and set of parameters (topology, lifespan, delay factor)
the performance is the averaged number of embedded NSs
computed over 2.000 requests after the inflexion point.
Figure 2 provides an overview per topology of the

improvement obtained with the ILP compared to the base-
line in terms of number of embedded NS. Each boxplot
is composed of 77 results obtained with the 7 values of
the delay parameter and the 11 values of the lifespan
parameter. We observe that the higher the concentration
the better the improvement, especially when the concen-
tration is High. In practice, the High distribution seems
more likely to happen as access nodes may be composed
of one cabinet, or even one computer, whereas central
datacenter resources are often considered as infinite. This
confirms our hypothesis: it is crucial to spare nodes with

102030405060708090100∞

50
100

150
200

300
400

800

0

20

lifespan(%) delay factor

im
pr
ov
em

en
t
(%

)

Figure 3. Performance of the ILP vs. baseline in Edge51 topology
under high resource concentration

few resources so as not to reject future NSs with strong
latency requirements due to a lack of nodes with resources
close enough to meet them. The lack of impact of the
topology type (flat or edge) can be explained by their
small size: the path length from an access node to a
central node is quite similar. Lastly, we can see that even
for High concentration the median improvement remains
under 5%, while the mean improvement lies between 5%
and 10%. Top performance can reach 15% to 23%. In order
to explain those disparities we will take a closer look to
the best performing topology (Edge51) in Figure 3.

Figure 3 has the same general aspect for each topology
and for other resource concentrations (although scales
differ), but for size limitation reasons we cannot show
them all. The best improvement is for delay factors of 50,
100, 150. Higher delay factors leads to very weak latency
constraints and the VNFCs can involve long detours to
take resources in the core nodes when other options are
exhausted, reducing the benefit of sparing resources in the
access. On the contrary, requests with strong latency con-
straints benefit from good resource management because
they could no longer be accepted in the event of resource
depletion in an area. The improvement is maximized for
lifespans between 30% and 40% of the number of requests
at the inflexion point. With lower lifespans the network
is underused, and a wise placement is useless. Higher
lifespans saturate the network and only the requests that
require small resources are accepted.

C. Heuristic evaluation
We evaluated our heuristic considering a wide range of

sizes for edge topologies (based on the Edge39 scheme).
We generated topologies, referred to as edgeN, composed
of N core nodes, N clusters of aggregation nodes inter-
connected by the core with 2 ∗ N + 1 aggregation nodes
divided into two layers in each cluster, and 4 ∗ N access
nodes connected to each aggregation node.

We first analyze the performance of the heuristic against
the holistic ILP. The network is divided into clusters
composed of a maximum of 100 elements and each request
tries to place 10 VNFs. Each node has 80 CPU units and
60 storage units, and each link has 800 bandwidth units.

ed
ge
2

ed
ge
3

ed
ge
4

ed
ge
5

ed
ge
6

ed
ge
7

ed
ge
8

92

94

96

98

Topology

Pe
rf
or
m
an

ce
ra
tio

(%
) Normal

First request

Figure 4. Heuristic cumulative acceptation ratio vs. holistic solution

0 1 2 3 4

10−1

100

101

of nodes (·103)

Ru
nt

im
e

(s
)

ILP
Heuristic

(a) 10 VNFs
Cluster max size=100

0 5 10 15 20

101

102

of nodes (·103)

Ru
nt

im
e

(s
)

ILP
Heuristic

(b) 20 VNFs
Cluster max size=3000

Figure 5. Heuristic vs holistic solution runtime

The delay factor is 100. We compare the cumulative accep-
tation ratio of the heuristic during two phases: when the
network is empty (first request) and before the inflexion
point (“normal”). The Figure 4 shows the efficiency of the
heuristic since we achieve a performance ratio between
93% and 96% between the first request and the inflexion
point. When the network is empty the first request is
accepted 96% of the time due to our aggressive abstraction
method that may propose paths that are more appealing
than feasible paths but that do not fit in the physical
infrastructure. We analyzed the computational time of our
heuristic versus the holistic ILP. We take into account the
time required by the heuristic to reserve and release the
resources, as it implies additional computations. Although
the heuristic can be multi-threaded, we use only one
thread in all our experiments. The Figure 5a shows that
although runtimes are comparable on small instances,
heuristic runtime remains stable while network size grows.
We increased the sizes of the networks, we doubled the
number of VNFs to be placed and allowed the heuristic to
form clusters of up to 3000 nodes. The results, presented
in Figure 5b, are very similar to the previous ones pointing
out that our heuristic can handle large-scale problems
without facing increased computation times.

VI. Conclusion and perspectives
In this paper, we propose an algorithm that solves

the Virtual Network Function Chain Placement Problem
allowing a fine management of the resources in order to

satisfy the greatest number of requests. We show how
network resource concentration and request constraints
influence the Virtual Network Function Chain placement,
unlike the topology structure. For multi-tenant archi-
tectures, we propose a method allowing the Virtualized
Infrastructure Manager to expose an abstract view of
the infrastructure topology. Leveraging on this approach
we propose an heuristic to solves the Virtual Network
Function Chain Placement Problem in multi-tenant ar-
chitectures and deal with the computational complexity of
the placement, both for mono- and multi-tenant architec-
tures. For future work, we plan to design the abstraction
recursively and quantify the impact of the size of the
clusters, then to investigate the offline re-optimisation of
the placement and Virtual Network Function sharing.

References
[1] “Network Functions Virtualisation, An Introduction, Benefits,

Enablers, Challenges & Call for Action.” ETSI, Oct. 2012.
[2] ETSI GS NFV-MAN 001, “Network Functions Virtualisation

(NFV); Management and Orchestration,” 12 2014, version
1.1.1.

[3] M. Patel, D. Sabella, N. Sprecher, V. Young, and Y. C. Hu,
“Mobile edge computinga key technology towards 5g,” ETSI
white paper, vol. 11, no. 11, 2015.

[4] J. Gil Herrera and J. F. Botero, “Resource Allocation in NFV:
A Comprehensive Survey,” IEEE Transactions on Network and
Service Management, vol. 13, no. 3, pp. 518–532, Sep. 2016.

[5] O. Soualah, M. Mechtri, C. Ghribi, and D. Zeghlache, “Energy
Efficient Algorithm for VNF Placement and Chaining,” in 2017
17th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID). Madrid, Spain: IEEE, May
2017, pp. 579–588.

[6] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual
network functions placement and routing optimization,” in
Cloud Networking (CloudNet), 2015 IEEE 4th International
Conference on. IEEE, 2015, pp. 171–177.

[7] Q. Sun, P. Lu, W. Lu, and Z. Zhu, “Forecast-assisted NFV
service chain deployment based on affiliation-aware vNF place-
ment,” in Global Communications Conference (GLOBECOM),
2016 IEEE. IEEE, 2016.

[8] A. Dwaraki and T. Wolf, “Adaptive Service-Chain Routing
for Virtual Network Functions in Software-Defined Networks.”
ACM Press, 2016, pp. 32–37.

[9] F. Carpio, S. Dhahri, and A. Jukan, “VNF placement
with replication for Loac balancing in NFV networks,” in
Communications (ICC), 2017 IEEE International Conference
on. IEEE, 2017.

[10] Z. Chen, S. Zhang, C. Wang, Z. Qian, M. Xiao, J. Wu, and
I. Jawhar, “A Novel Algorithm for NFV Chain Placement
in Edge Computing Environments,” in 2018 IEEE Global
Communications Conference (GLOBECOM). IEEE, Dec.
2018.

[11] C. Pham, N. H. Tran, S. Ren, W. Saad, and C. S. Hong,
“Traffic-aware and Energy-efficient vNF Placement for Ser-
vice Chaining: Joint Sampling and Matching Approach,” IEEE
Transactions on Services Computing, 2017.

[12] S. Uludag, K.-S. Lui, K. Nahrstedt, and G. Brewster, “Analysis
of topology aggregation techniques for QoS routing,” ACM
Computing Surveys (CSUR), vol. 39, no. 3, p. 7, 2007.

[13] W. C. Lee, “Topology aggregation for hierarchical routing in
ATM networks,” ACM SIGCOMM Computer Communication
Review, vol. 25, no. 2, pp. 82–92, Apr. 1995.

[14] L. C. Freeman, “A set of measures of centrality based on
betweenness,” Sociometry, vol. 40, no. 1, pp. 35–41, Mar. 1977.

[15] T. Korkmaz and M. Krunz, “Source-oriented topology aggre-
gation with multiple QoS parameters in hierarchical networks,”
ACM Transactions on Modeling and Computer Simulation,
vol. 10, no. 4, pp. 295–325, Oct. 2000.

