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The exponential growth of smart devices in all aspects of everyday life leads to make common the collection of high frequency data. Those data can be seen as multivariate functional data: quantitative entities evolving along time, for which there is a growing needs of methods to summarize and understand them. The database that have motivated our project is supplied by the historical French electricity provider whose aim is to detect poorly insulated buildings, anomalies or long periods of absence. Their motivation is to answer COP24 requirements to reduce energy waste and to adapt electric load. To this end, a novel co-clustering model for multivariate functional data is defined. The model is based on a functional latent block model which assumes for each block a probabilistic distribution for multivariate functional principal component scores. A Stochastic EM algorithm, embedding a Gibbs sampler is proposed for model inference, as well as model selection criteria for choosing the number of co-clusters.

Introduction

Sensor networks are undergoing a great expansion in several domains such as industry 4.0, environment, transport, defense, smart cities, etc. The emergence of small size sensors at a reduced cost leads to an increasing use of connected devices for the mainstream.

These sensors are put into smart houses to simultaneously follow, at a high frequency, the temperature of different rooms and the outdoor temperature for example. Those data can also be correlated to the electric consumption of the household. Studying electric consumption allows cities to have a better network management, users to reduce their energetic cost, and electric providers to adapt a strategy to meet demand. It is also an opportunity to gather customers consumption data and therefore improve customer knowledge. EDF, the historical and main French electricity provider, plans to access smart meters data every half an hour, which means 17472 measures per year for each of its 27 million clients. In the near future, many other information will be collected simultaneously by EDF thanks to IoT devices on all production facilities (nuclear power stations, hydrolic centrals, windmills, ...). Indeed, having the opportunity to cluster both wind production and electric consumption would allow a better steering of the energy use in order to use at the right time what is produced by the windmill for example. One of the major challenge of those devices is that they represent a mass of data to store and analyze. Thus, it may be necessary to build summaries allowing an easier storage and analysis. One way to achieve that is to cluster those data into homogeneous groups. In this work, we focus on the analysis of three features observed on a set of households: power consumption, indoor temperature and outdoor temperature. Of course, the proposed model can be extended to any set of multivariate temporal series.

There is an abundant literature on understanding electricity consumption patterns.

Simplest methods are based on averaging electric consumption per day and then applying a hierarchical clustering on those averaged values [START_REF] Gouveia | Understanding electricity consumption patterns in households through data fusion of smart meters and door to door surveys[END_REF]. Other works rely on studying temporal series monitored for a month with fuzzy methods such as fuzzy c-means algorithm [START_REF] Zhou | Discovering residential electricity consumption patterns through smart-meter data mining: A case study from china[END_REF], but those methods neglect the time dependency inherent in such data. Thus, extensions of k-means methods are proposed to take into account the temporal component through preprocessing steps before applying the k-means algorithm [START_REF] Tureczek | Electricity consumption clustering using smart meter data[END_REF] or with a dynamic k-means clustering algorithm where the similarity distances are calculated taking into account all Euclidean distances between each pair of objects at the same time stamp [START_REF] Benitez | Dynamic clustering segmentation applied to load profiles of energy consumption from spanish customers[END_REF]. The same authors also proposed a dynamic clustering algorithm where two objects are compared thanks to a final distance which is the average of all comparisons of objects features [START_REF] Benitez | Dynamic clustering of residential electricity consumption time series data based on hausdorff distance[END_REF]. Contrary to the previous methods, the dynamic of the data is taken into account by decomposing the temporal series into smaller linear surfaces which are compared by applying a Hausdorff-based similarity distance. Lastly, [START_REF] Bouveyron | The Functional Latent Block Model for the Co-Clustering of Electricity Consumption Curves[END_REF] study households electric consumption monitored for two years and proposed an algorithm that allows to cluster simultaneously households and days of measurements that have the same pattern. This method is based on both functional data analysis and co-clustering techniques that will be developed later in this paper. However, all of these works share one restrictive characteristic: they are limited to the study of only one functional variable.

In the present work, we want to follow three variables: electricity consumption, indoor and outdoor temperature. Such data can be seen as multivariate functional data: multiple quantitative entities evolving along time collected simultaneously for a same individual [START_REF] Ramsay | Functional data analysis[END_REF][START_REF] Bouveyron | Model-Based Clustering and Classification for Data Science: With Applications in R[END_REF]. In order to analyze and understand such data, it may be interesting to identify subgroups of individuals (households here) that have the same profile for these three quantities. For example, to understand the profile of consumption depending on both indoor and outdoor temperatures in order to adapt the electric production or detect poorly insulated buildings. However, analyzing these profiles over a long period of time is in practice complex because it represents a large amount of data. The window of time that practitioners are used to analyze is the day (24 hours).

Consequently the observed time period is cut into daily observations. The data set under study is consequently a large table, where rows correspond to households and columns to days, and in which each elements is a set of three curves: electricity consumption, indoor and outdoor temperatures.

To analyze such table, we propose to simultaneously cluster the rows into homogeneous groups of households and the columns into homogeneous groups of days. Such kind of analysis is called co-clustering [START_REF] Govaert | Co-Clustering[END_REF]. The co-clustering will result in exhibiting homogeneous blocks of households and days having similar behaviour according to the three functional variables under study.

One of the most famous model for co-clustering is the Latent Block Model (LBM, [START_REF] Govaert | Co-Clustering[END_REF]). According to the LBM, the elements of a block are modeled by a parametric distribution. Each block is therefore interpretable thanks to the blockdistribution's parameters. Moreover, model selection criterion, such as the ICL criterion [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF], can be used for model selection purpose, including the choice of the number of co-clusters. This technique proved its efficiency for the co-clustering of numerous types of data: continuous [START_REF] Nadif | Algorithms for model-based block gaussian clustering[END_REF], nominal [START_REF] Bhatia | blockcluster: An R Package for Model Based Co-Clustering[END_REF], binary [START_REF] Laclau | Co-clustering through Optimal Transport[END_REF], ordinal [START_REF] Jacques | Model-Based Co-clustering for Ordinal Data[END_REF][START_REF] Corneli | Co-Clustering of ordinal data via latent continuous random variables and a classification EM algorithm[END_REF], functional data [START_REF] Bouveyron | The Functional Latent Block Model for the Co-Clustering of Electricity Consumption Curves[END_REF][START_REF] Chamroukhi | Model-Based Co-Clustering of Multivariate Functional Data[END_REF][START_REF] Slimen | Model-Based Co-clustering for Functional Data[END_REF] or even mixed-type data [START_REF] Selosse | Model-based co-clustering for mixed type data[END_REF]. [START_REF] Slimen | Model-Based Co-clustering for Functional Data[END_REF] proposed a co-clustering algorithm based on a vectorial LBM applied on the functional principal components scores of the curves. [START_REF] Bouveyron | The Functional Latent Block Model for the Co-Clustering of Electricity Consumption Curves[END_REF] extended this work by proposing a functional latent block model assuming that the functional principal components of the curves are block-specific and live into a low-dimensional subspace. [START_REF] Chamroukhi | Model-Based Co-Clustering of Multivariate Functional Data[END_REF] presented another co-clustering model based on a latent block model where the probability density function is estimated thanks to a regression model with a hidden logistic process. In the present work, a co-clustering algorithm for multivariate functional data is proposed as an extension of [START_REF] Bouveyron | The Functional Latent Block Model for the Co-Clustering of Electricity Consumption Curves[END_REF] to the multivariate case. Moreover, a more flexible probabilistic model is presented.

The paper is organized as follows. Section 2 presents the co-clustering model and Section 3 its inference. Results of the algorithm on simulated data is presented in Section 4. Section 5 is dedicated to the application on electricity consumption and indoor and outdoor temperatures. Our algorithm succeed in detecting poor insulated buildings and periods of low consumption. Then a discussion concludes the paper in Section 6.

A co-clustering model for multivariate functional data

Functional data, which are the observations of a random variable living into a infinite dimensional space, are in practice observed only at a finite set of time points. Consequently, a first step in functional data analysis is the reconstruction of the functional nature of data. This aspect is discussed in the second part of this section, just after having introduced the notations. Then, the proposed co-clustering model for multivariate functional data is presented.

Data and notations

Let x = (x ij ) 1≤i≤n,1≤j≤p be the data table of dimension n × p, where each element x ij is a multivariate curve x ij = (x 1 ij (t), . . . , x S ij (t)) with t ∈ [0, T ]. Let us recall that i is the row index, j is the column index and s corresponds to the component of the multivariate curves. In our application i refers to the household, j to the day and s either to electricity consumption, indoor or outdoor temperature. Nevertheless, the model and its inference presented in this work can be used for any other matrix of multivariate functional data.

Functional data reconstruction

In practice, the functional expressions of the curves x s ij (t) are not known and we only have access to discrete observations at a finite set of times: x s ij (t 1 ), x s ij (t 2 ), .... A common way to reconstruct the functional form is to assume that the observations can be decomposed into a finite dimensional space spanned by a basis of functions. So each observed curve

x s ij (1 ≤ i ≤ n, 1 ≤ j ≤ p, 1 ≤ s ≤ S)
can be expressed as a linear combination of basis functions {φ s r } r=1,...,Rs :

x s ij (t) = Rs r=1 c s ijr φ s r (t)
with R s the number of basis functions. These basis functions can be for instance Fourier bases, spline bases, etc. The automatic choice of this basis (as well as the number of basis functions) is an open problem (Jacques and Preda, 2014a). In practice, this choice is done empirically such that the reconstruction is judged reasonable by the expert. Estimation of the basis expansion coefficients c s ijr is classically done by least squares smoothing. We refer the reader to [START_REF] Ramsay | Functional data analysis[END_REF] for a complete survey on this aspect. Let c = (c ij ) ij be the whole data set of coefficients, where c ij = (c 1 ij1 , . . . , c 1 ijR 1 , . . . , c S ij1 , . . . , c S ijR S ) contains the coefficients for individual i at day j which corresponds to the concatenation of coefficients c s ijr for all S functional variables. Let c i = (c ij ) j be the coefficients for the ith individual and similarly c j = (c ij ) i the coefficients for day j.

For clarity of the presentation, the same number of basis functions as well as the same basis function {φ r } r=1,...,R is considered for each component of the multivariate functional variable. But extension is straightforward.

The proposed latent block model

The aim of a co-clustering model is to define row and column partitions in order to summarize the data matrix x into smaller subgroups, usually called blocks. Let z = (z ik ) 1≤i≤n,1≤k≤K be the row partition of the n rows into K groups, and w = (w jl ) 1≤j≤p,1≤l≤L the column partition of the p columns into L groups, such as z ik = 1 if row i belongs to row-cluster k and 0 otherwise (and similarly for w jl ). Thus, one block is defined by a set of curves which belong to a row and column cluster such as z ik w jl = 1.

Let us first assume that z and w partitions are independent:

p(c; θ) = z∈Z w∈W p(z; θ)p(w; θ)p(c|z, w; θ) (1)
where Z the set of all possible rows partitions into K groups and W the set of all possible columns partitions into L groups. Let α k and β l be the row and column mixing proportions (belonging to [0, 1] and summing to 1), such that p(z; θ) = ik α z ik k and p(w; θ) = jl β w jl l . Let us also assume that, conditionally on (z, w), the basis expansion coefficients c ij are independent and generated by a block-specific distribution: p(c|z, w; θ) = ijkl p(c ij ; θ kl ) z ik w jl . Thus,

p(c; θ) = z∈Z w∈W ik α z ik k jl β w jl l ijkl p(c ij ; θ kl ) z ik w jl (2)
Depending on the grid of the study window, the studied time series can be very long leading to high dimensional coefficients c ij . In order to suggest a parsimonious data modelling, we further suppose that the curves of each block kl (k = 1, ..., K, l = 1, ..., L) can be described into a low-dimensional functional latent subspace specific to each cluster, with intrinsic dimension d kl < S × R, through a principal component analysis for multivariate functional data (MFPCA, (Jacques and Preda, 2014b)) performed per block.

MFPCA is an extension of PCA for functional data [START_REF] Ramsay | Functional data analysis[END_REF] to the multivariate functional case, representing the multivariate curves by a vector of principal scores into an eigen space formed by multivariate eigen functions. Thus each multivariate curve x ij , conditionally to its belonging to block (k, l), can be represented by its scores δ ij = (δ ijr ) 1≤r≤SR , with S × R the maximum number of non null principal components. Let us also define for later use Q kl , a matrix of dimension SR × SR of eigen functions coefficients, which describes the linear mapping from the original space of c ij to the low-dimensional subspace.

Conditionnaly to the block belonging, the scores are assumed to follow a Gaussian distribution with a parsimonious parametrization of the covariance matrix:

δ kl ijr ∼ N (µ kl , ∆ kl ), (3) 
with µ kl ∈ R SR and ∆ kl the diagonal covariance matrix defined as follows:

∆ kl =              a kl1 0 . . . 0 a kld kl 0 0 b kl 0 . . . 0 b kl                       d kl          SR -d kl
where a kl1 > . . . > a kld kl > b kl . With this assumption on ∆ kl , the first d kl eigenvalues express the main part of the variability of the data, while the remaining ones reflect the noise and are modeled by a unique parameter b kl . Thus, the space formed by the d kl first eigen functions is a low-dimensional space which contains the main part of information about the data of a given block. The remaining information is considered as noise and modeled by a reduced number of parameters.

Thus, we can infer the distribution of one block curves coefficients according to:

c ij |z ik w jl = 1 ∼ N (U kl µ kl , U kl Σ kl U t kl + Ξ kl ), (4) 
where:

• Q kl = [U kl , V kl ] with U kl of size SR×d kl , V kl of size SR×(SR-d kl ) with U t kl U kl = I d kl , V t kl V kl = I SR-d kl and U t kl V kl = 0.
• Σ kl is the matrix diag(a kl1 , ..., a kld kl ).

• Ξ kl is the noise variance matrix of size SR × SR such that ∆ kl = Q t kl (U kl Σ kl U t kl + Ξ kl )Q kl .
Thus, θ kl = (µ kl , a kl , b kl , Q kl ) and the whole set of model parameters is denoted by

θ = (α k , β l , θ kl ) 1≤k≤K,1≤l≤L .
In order to provide more parsimonious models, additional assumptions can be made on the different parameters a kl• , b kl and d kl , considering that they are common over cluster, over dimension, etc. This approach allows to generate a family of submodels of the general model introduced above. In this paper, we will detail the inference procedure to the submodel assuming a klm = a kl , ∀m = 1, ..., d kl , since a good behaviour has been observed in practice.

Nevertheless, the co-clustering method presented here can be derived for all models of the family extension, following the approach detailed in [START_REF] Schmutz | Clustering multivariate functional data in group-specific functional subspaces[END_REF].

3 Model inference

Model inference through a SEM-Gibbs algorithm

In co-clustering, the goal is to estimate the unknown row and column partitions z ik and w jl .

Usually in mixture model, the maximum a posteriori rule is used, based on the estimation of model parameter θ maximizing the observed log-likelihood:

l(θ; c) = z,w log p(c; θ).
(5)

Proof of this result is provided in Supplementary material A2. LBM implies a double missing structure (z and w) which makes inference harder than in a classical mixture model. Indeed, the use of the well known EM algorithm is not possible because the E step will need the computation of too much terms, which is not tractable in practice. We propose to use the stochastic version of the EM algorithm, embedding a Gibbs sampler for generating the row and column partitions without having to compute their joint probability distribution [START_REF] Keribin | Estimation d'un modèle à blocs latents par l'algorithme SEM[END_REF].

Starting from an initial column partition w (0) and initial parameter value θ (0) , the qth iteration of the partial SEM-Gibbs algorithm alternates between:

• SE step (Gibbs sampling): Alternates the two following steps until convergence:

simulate z (q+1) |c, w (q) according to:

p(z ik = 1|c, w (q) ; θ (q) ) = α (q) k f k (c i |w (q) ; θ (q) ) k α (q) k f k (c i |w (q) ; θ (q) ) with f k (c i |w (q) ; θ (q) ) = jl p(c ij ; θ (q) kl ) w (q) jl .
simulate w (q+1) |c, z (q+1) according to:

p(w jl = 1|c, z (q+1) ; θ (q) ) = β (q) l f l (c j |z (q+1) ; θ (q) ) l β (q) l f l (c j |z (q+1) ; θ (q) ). with f l (c j |z (q+1) ; θ (q) ) = ik p(c ij ; θ (q) kl ) z (q)
ik .

• M step: Update of θ (q+1) . The update of each parameter can be done in the same way than [START_REF] Schmutz | Clustering multivariate functional data in group-specific functional subspaces[END_REF]. The mixing proportion and the block mean are updated by:

α

(q+1) k = 1 n i z (q+1) ik and β (q+1) l = 1 p j w (q+1) jl , -µ (q+1) kl = 1 n (q+1) kl ij c z (q+1) ik w (q+1) jl ij with n (q+1) kl = ij z (q+1) ik w (q+1) jl .
For the variance parameters a kl , b kl and Q kl , let us define the sample covariance matrix C kl of block kl:

C (q) kl = 1 n (q) kl n i=1 p j=1 z (q+1) ik w (q+1) jl (c ij -µ (q) kl ) t (c ij -µ (q) kl ).
Let also introduce W the SR × SR matrix of inner products: W = T 0 φ t (t)φ(t)dt, with φ(t) the matrix that gathers basis functions of all S functional variables: 

φ(t) =         φ 11 (t) ... φ 1R (
        .
Then,

• the d kl first columns of the matrix of eigen functions coefficients

Q (q)
kl are updated by the eigen functions coefficients associated with the largest eigenvalues of

W 1/2 C (q) kl W 1/2 ,
• the variance parameters a (q+1) kl , are updated by the mean of the d kl largest eigenvalues

of W 1/2 C (q) kl W 1/2 , • the variance parameters b kl are updated by 1 R-d kl (trace(W 1/2 C (q) kl W 1/2 ) -d kl a (q) kl ).
Proofs of those results are available in Supplementary material A3, A4 and A5.

In brief, the SEM-Gibbs algorithm is run for a given number of iterations. After a burn-in period, the final estimation θ of the parameters is obtained by the mean of the sample distribution (without the burn-in iterations). Then, a new Gibbs sampler is used to sample (ẑ, ŵ) according to θ, and the final partition (ẑ, ŵ) is obtained by the marginal mode of this sample distribution.

Initialization of the algorithm As said previously, our algorithm relies on a SEM-Gibbs algorithm. This algorithm needs to be initialized with values for column partitions and parameters. In practice, column and row partitions are initialized, and corresponding initial parameter values are deduced. To this end, three initialization strategies are available here : random, k-means and funFEM. In the random case, partitions are randomly sampled from a multinomial distribution with uniform probabilities. k-means strategy consists of initializing partitions with those obtained by k-means method directly applied on discretized data. Finally, funFEM aims to initialize partitions by applying the funFEM algorithm [START_REF] Bouveyron | The discriminative functional mixture model for a comparative analysis of bike sharing systems[END_REF]. We will see later, in the numerical experimentation section, that funFEM is the one that gives the best results.

Choice of the number of clusters

We now discuss the choice of the hyper-parameters K and L, i.e. the number of row clusters and column clusters respectively. The choice of these hyper-parameters is viewed here as a model selection problem. Well established model selection tools are Akaike information criterion (AIC, [START_REF] Akaike | A new look at the statistical model identification[END_REF]), Bayesian information criterion (BIC, [START_REF] Schwarz | Estimating the dimension of a model[END_REF]) and Integrated Classification Likelihood (ICL, [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF]). However, in the coclustering case, the likelihood is not tractable for the same reason than the EM algorithm is not usable. Consequently, AIC and BIC are not tractable. Conversely, the ICL criterion can be considered since it relies on the completed log-likelihood, which is tractable. Adapted to our model, the ICL criterion is:

ICL(K, L) = log p(c, ẑ, ŵ; θ) - K -1 2 log(n) - L -1 2 log(p) - ν 2 log(np)
where

ν = KLSR + 2KL + kl d kl (SR -d kl +1
2 ) is the number of continuous parameters per block and

log p(c, ẑ, ŵ; θ) = ik ẑik log(α k ) + jl ŵjl log(β l ) + ijkl ẑik ŵjl log p(c ij ; θkl ).
The couple (K, L) leading to the highest ICL value is selected as the most appropriate number of row and column clusters.

Numerical experimentation on simulated data

This section presents numerical experiments on simulated data in order to illustrate the behavior of the proposed methodology in presence of different noise ratio in data and to study the selection of the number of row and column clusters. The R code for our multivariate functional co-clustering algorithm is available under request and will be soon available on CRAN as an R package.

For all examples, we set to 50 iterations the burn-in period of the algorithm and the SEM-Gibbs maximal number of iterations is set to 100.

Introductory example

Simulation setup

A sample of n = 100 bivariate curves are simulated with K = 4, L = 3 and p = 100. The proportions of row clusters α used is (0.2,0.4,0.1,0.3) and column clusters β is (0.4,0.3,0.3).

The first functional variable is designed from four different functions that are used as blocks mean at 31 equi-spaced time points, t = 0, 1/30, 2/30, ..., 1:

x ij (t)|z ik w jl = 1 ∼ N (m kl (t), s 2 ),
where s = 0.3 and the mean function is taken from

m 11 = m 21 = m 33 = m 42 = f 1 , m 12 = m 22 = m 31 = f 2 , m 13 = m 32 = f 3 et m 23 = m 41 = m 43 = f 4 , with f 1 (t) = sin(4πt), f 2 (t) = 0.75-0.51 t∈]0.7,0.9[ , f 3 (t) = h(t)/max(h(t)) where h(t) = N (0.2, √ 0.02) and f 4 (t) = sin(10πt).
Then the second variable is designed according to the same process than the first one but with four different functions: f 1 (t) = cos(4πt), f 2 (t) = 0.75 -0.51 t∈]0.2,0.4[ , f 3 (t) = h(t)/max(h(t)) where h(t) = N (0.2, √ 0.05) and f 4 (t) = cos(10πt). The block means functions are shown in Figure 1.

Starting from this simulation setting, five scenarios are build by adding some noise fraction within the blocks by randomly simulating a percentage τ of curves using other block means: 0% (scenario 1), 10% (scenario 2), 30% (scenario 3), 50% (scenario 4) and 80% (scenario 5).

Figure 1: Block means functions for the first variable (top) and second variable (bottom)

Results

In order to illustrate the good behaviour of our algorithm in the case of noisy data and to compare the influence of algorithm initialization on co-clustering results, 20 simulations have been performed for each scenario with both k-means, funFEM and random initializations. The algorithm is applied for K = 4 and L = 3 and with Fourier smoothing with 15 basis functions. The quality of estimated partitions is assessed with the Adjusted Rand Index (ARI, [START_REF] Rand | Objective criteria for the evaluation of clustering methods[END_REF]).

Results are shown in Figure 2. We can see that co-clustering results are almost perfect for the 4 first scenarios with funFEM initialization, and the 2 first scenarios for k-means initialization. As expected, the algorithm performance decreases while noise increases, but median ARI value is always above 0.8 in the case of four first scenarios with k-means and funFEM initialization. Moreover k-means initialization performs better than random when the noise ratio is upper than 50%. And the funFEM initialization performs better than the k-means one.

To conclude, in view of the good behaviour of funFEM initialization in both previous examples, we recommend to use firstly funFEM initialization rather than the two others available in the algorithm. 

Model selection

In this section, the selection of the number of clusters is investigated. Data are generated as previously. The simulation setting is repeated 20 times with n = 500, p = 500 and t = 30. The algorithm is run for 2 to 6 clusters with funFEM initialization and the best model selected by ICL is noted down. Results are shown in Table 1.

Model selection with funFEM is perfect with a noise ratio from 0 to 30% of the data volume. Then, as expected, the performance of the criterion decreases, for a noise ratio of 50% the ICL criterion gets back to the true partition in 90% of cases.

Co-clustering for energy waste detection in French households

This section focus on the analysis of French households' electric consumption according to their indoor and outdoor temperatures. With more and more involvement of the mainstream on environmental issues and with the COP24 aim of evaluating government efforts to tackle against global warming, it is important to find ways to save energy. This type of data can help detecting potentially poor insulated homes and target those households with rehabilitation offers which would lead to less energy waste. The data set contains some missing observations. Since the first step of our analysis consists in estimating the basis expansion approximations of the curves, it is not a problem if there is some missing observations (except if they are at the beginning or at the end of the period). Indeed, smoothing the data into a basis expansion can be performed even if some of the 48 time points are not observed. Nevertheless, we remove from the analysis daily curves with too many missing time points (more than 41) or for which missing values occur at the beginning or at the end of the period.

Data

The functional form of the whole database is reconstructed using a Fourier smoothing with 15 basis functions. Our algorithm has been applied with funFEM initialization with a varying number of row and column clusters, from 2 to 20 on normalized data. The ICL criteria is used to choose an appropriate number of row and column clusters. 

Results

According to ICL, the best partition is with 5 row clusters and 14 column clusters (cf.

Table 2). Clusters proportions can be seen on Figure 4.

The obtained block clusters can be described with their mean curves. Since the number of column clusters is large, we focus our interpretation on four typical column clusters in order to ease the analysis: Figure 5 plots the mean curves for row-cluster 1 to 5 and column cluster 1, 6, 10 and 14. The whole set of mean curves is plotted in supplementary material A1 (Figures 10,11 and 12).

On average French households indoor temperature is between 17 • C and 25 • C over the 6 months measurement period (Figure 5) and whatever the geographical location (Figure 8). Presumably it is more dictated by the way of life than by the area climate type. For instance, the third cluster of households (row-cluster) is the one with the lowest electric consumption (third row on Figure 7) although it is distributed all over the country (blue points on Figure 8). This cluster may correspond to well insulated houses or households whose heating system is not electrical. The first and second cluster of households (red and black points on Figure 8) have a medium consumption (first and second rows on Figure 7) and are distinguished by the outdoor temperature (first and second rows on Figure 6) which is a bit more flat for the first cluster (red): the delta of temperature for one day is less important for red households on the measured period than for black ones. The fifth cluster of households (orange points on Figure 8) have a high and uncontrolled electricity consumption (last row on Figure 7) and an indoor temperature well below the one of other clusters on the whole time period (last row on Figure 5). We may suppose that those households belong to retired persons who have periods of extended vacations because they are the only one where the indoor temperature stays at 15 • C during 4 time periods. Those households are also the only ones with a very variable aspect of the indoor temperature mean curves and consumption curves, it may be explained by switching on and off their heating system many times along a day, whereas other households may be equipped with a timer that holds the wanted temperature. Lastly, the fourth cluster of households (pink points on Figure 8) has a very high electricity consumption (about twice that of other clusters) whereas the outdoor temperature is not especially lower (fourth row on Figure 6) and the indoor temperature not especially greater (between 18 • C to 22 • C, fourth row on Figure 5). Those households may be poor insulated and it may be important to alert them on their consumption in order to assist them in reducing their invoices by undertaking renovations to their property and also to reduce their ecological footprint.

Finally, Figure 9 presents the distribution of the column clusters (clusters of days)

along the period under study. Note that there is no link between the color of the row and column clusters. We can see that the pink cluster (14th column cluster) corresponds to the coldest days of the period (outdoor temperature below 5 • C). For those days the electric consumption of all households is higher than their average one on the other periods (last column on Figure 7).

To the contrary, the hottest days where mainly in July (first and second column cluster on Figure 12 ). We can see that the maximum electric consumption reached in a day does not differ a lot between those days and days of medium outdoor temperatures. We suppose that for these periods the main consumption areas are other electric devices than the heating system. 

Discussion and conclusion

This work was motivated by the will to detect poor insulated buildings and long periods of absence in order to reduce energy waste. The proposed co-clustering model answers both objectives, which will allow EDF company to alert users on their over-consumption and advise them on renovation work. Furthermore, the field of operational applications of co-clustering methods for multivariate functional curves is wide at EDF company. For instance, it can help design new marketing offers or services such as co-clustering load curves and photo-voltaic production data in order to identify clusters with low yields or detect anomalies. In the future, EDF will have more and more data coming from connected devices, like connected thermostats or connected weather stations, this data flood deserves to be classified to ease it interpretation. The proposed algorithm answers this need. The co-clustering method for multivariate functional data, allows to cluster both individuals and variables simultaneously. The proposed approach relies on a functional latent A2. Log-likelihood formula, proof of Equation 5:

l(θ) = n i=1 SR j=1 K k=1 L l=1 z ik w jl log(π kl f (c ij , θ kl )) = n i=1 SR j=1 K k=1 L l=1 z ik w jl log( π kl (2π) SR/2 |Σ kl | 1/2 exp(- 1 2 (c ij -µ kl ) t Σ -1 (c ij -µ kl ))) = n i=1 SR j=1 K k=1 L l=1 z ik w jl [log(π kl ) - 1 2 log|Σ kl | - SR 2 log(2π) - 1 2 (c ij -µ kl ) t Σ -1 (c ij -µ kl )] = - 1 2 n i=1 SR j=1 K k=1 L l=1 z ik w jl [-2log(π kl ) + d kl log(a kl ) + (SR -d kl )log(b kl ) + (c ij -µ kl ) t Σ -1 (c ij -µ kl )] - nSR 2 log(2π)
Let n kl = n i=1 SR j=1 z ik w jl be the number of block kl curves,

l(θ) = - 1 2 K k=1 L l=1 n kl [-2log(π kl ) + d kl log(a kl ) + (SR -d kl )log(b kl ) + 1 n kl n i=1 SR j=1 z ik w jl (c ij -µ kl ) t Q kl ∆ -1 kl Q t kl (c ij -µ kl )] - nSR 2 log(2π)
The quantity (c ij -µ kl ) t Q kl ∆ -1 kl Q t kl (c ij -µ kl ) is a scalar, so it is equal to it trace:

1 n kl n i=1 SR j=1 z ik w jl (c ij -µ kl ) t Q kl ∆ -1 kl Q t kl (c ij -µ kl ) = 1 n kl n i=1 SR j=1 z ik w jl tr((c ij -µ kl ) t Q kl ∆ -1 kl Q t kl (c ij -µ kl )). Well tr([(c ij -µ kl ) t Q kl ] × [∆ -1 kl Q t kl (c ij -µ kl )]) = tr([∆ -1 kl Q t kl (c ij -µ kl )] × [(c ij -µ kl ) t Q kl ]), consequently: 1 n kl n i=1 SR j=1 z ik w jl (c ij -µ kl ) t Q kl ∆ -1 kl Q t kl (c ij -µ kl ) = 1 n kl n i=1 SR j=1 z ik w jl tr(∆ -1 kl Q t kl (c ij -µ kl )(c ij -µ kl ) t Q kl ) = tr(∆ -1 kl Q t kl [ 1 n kl n i=1 SR j=1 z ik w jl (c ij -µ kl ) t (c ij -µ kl )]Q kl ) = tr(∆ -1 kl Q t kl C kl Q kl ),
where

C kl = 1 n kl n i=1 SR j=1 z ik w jl (c ij -µ kl ) t (c ij -µ kl )
is the empirical covariance matrix of the k-th element of the mixture model. The ∆ kl matrix is diagonal, so we can write:

1 n kl n i=1 SR j=1 z ik w jl (c ij -µ kl ) t Q kl ∆ -1 kl Q t kl (c ij -µ kl ) = d kl j=1 q t klj W 1/2 C kl W 1/2 q klj a klj + SR j=d kl +1 q t klj W 1/2 C kl W 1/2 q klj b kl ,
where q klj is j-th column of Q kl .

Finally,

l(θ) = - 1 2 K k=1 L l=1 n kl [-2log(π kl ) + d kl log(a kl ) + (R -d kl )log(b kl ) + d kl j=1 q t klj W 1/2 C kl W 1/2 q klj a klj + SR j=d kl +1 q t klj W 1/2 C kl W 1/2 q klj b kl ] + nSR 2 log(2π)
A3. Parameter Q kl update:

We have to maximize the log-likelihood under the constraint q t klj q klj = 1, with q klj the j th column of Q kl . This is equivalent to look for a saddle point of the Lagrange function:

L = -2l(θ) - SR j=1
ω klj (q t klj q klj -1)

where ω klj are Lagrange multipliers. Thus, we can write: ω klj (q t kj q klj -1).

L = K k=1 L l=1
Therefore, the gradient of L in relation to q kjl is:

∇ q klj L = ∇ q klj ( K k=1 L l=1 n kl [ d kl j=1
q t klj W 1/2 C kl W 1/2 q klj a klj + SR j=d kl +1 q t klj W 1/2 C kl W 1/2 q klj b kl ] -SR j=1 ω klj (q t klj q klj -1)).

As a reminder, when W is symmetric, then ∂ ∂x (x-s) T W (x-s) = 2W (x-s) and ∂ ∂x (x T x) = 2x (cf. [START_REF] Petersen | The matrix cookbook[END_REF]), so:

∇ q klj L = n kl [2 W 1/2 C kl W 1/2 σ klj q klj ] -2ω klj q klj
where σ klj is the j-th diagonal term of matrix ∆ k .

Thus, q t klj ∇ q klj L = 0 ⇔ ω klj q klj = n kl σ klj q t klj W 1/2 C kl W 1/2 q klj ⇔ W 1/2 C kl W 1/2 q klj = ω klj σ klj n kl q klj . q klj is the eigenfunction of W 1/2 C kl W 1/2 which match the eigenvalue λ klj = ω klj σ klj n kl = W 1/2 C kl W 1/2 . We can write q t klj q klm = 0 if j = m. So the log-likelihood can be written:

-2l(θ) = In order to minimize -2l(θ) compared to q klj , we minimize the quantity K k=1 L l=1 n kl d kl j=1 λ klj ( 1 a kl -1 b kl ) compared to λ klj . Knowing that ( 1 a kl -1 b kl ) ≤ 0, λ kl has to be as high as feasible. So, the j -th column q klj of matrix Q kl is estimated by the eigen function associated to the j -th highest eigenvalue of W 1/2 C kl W 1/2 . q t klj W 1/2 C kl W 1/2 q klj b 2 kl ] The prerequisite ∂l(θ) ∂b kl = 0 implies:

- 1 2 [ SR -d kl b kl - SR j=d kl +1 q t klj W 1/2 C kl W 1/2 q klj b 2 kl ] = 0 ⇔ SR -d kl b kl = SR j=d k+1 q t klj W 1/2 C kl W 1/2 q klj b 2 k b kl = 1 SR -d kl [tr(W 1/2 C kl W 1/2 ) - d kl j=1 λ klj ]
R-package for co-clustering algorithm: R-package containing code to perform all analyses described in the article. (GNU zipped tar file)
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 2 Figure 2: Results of ARI for each scenario for k-means (top), random (middle) and funFEM (bottom) initialization

  This data set deals with electric consumption, indoor temperature and outdoor temperature of 356 French households representatives of metropolitan France. It has been provided by EDF company, a French electricity provider. Data are collected every 30 minutes for 173 days (48 time points per day, cf. Figure3), from July 2009 to December 2009. Their objectives are to model insulation efficiency, detect weeks of absence in order to adapt electric load and evaluate the impact of indoor temperature on the electric consumption.
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 3 Figure 3: Raw data for one individual and one day of measurement
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 5 Figure 5: Co-clustering results for indoor temperature for column cluster 1, 6, 10 and 14

Figure 6 :Figure 8 :

 68 Figure 6: Co-clustering results for outdoor temperature for column cluster 1, 6, 10 and 14

Figure 11 :

 11 Figure 11: Co-clustering results for indoor temperature

n

  equation R j=d kl +1 λ klj = tr(W 1/2 C kl W 1/2 ) -d kl j=1 λ klj : kl [-2log(π kl ) + d kl log(a kl ) + SR -d kl )log(b kl ) + -2log(π kl ) + tr(W 1/2 C kl W 1/2 )

A4.

  Parameter a kl update: Partial derivative of l(θ) according to a kl correspond to: λ kl the eigen values of block kl. A5. Parameter b kl update: Partial derivative of l(θ) according to b kl correspond to:

  

  

  

  

  

  

  

Table 2 :

 2 ICL values for the 10 first partitions

	Number of row clusters K Number of column clusters L	ICL
	5	14	-3944668
	5	13	-3946480
	5	11	-3951143
	4	14	-3958896
	3	13	-3961862
	5	10	-3963644
	4	12	-3966577
	3	14	-3967567
	6	8	-3968532
	6	9	-3970104

  n kl [d kl log(a kl ) + C kl W 1/2 q klj a klj + (SR -d kl )log(b kl ) +

				d kl j=1 klj W 1/2 SR q t j=d kl+1 q t klj W 1/2 C kl W 1/2 q klj b klj	-2log(π kl )kl)]
	+	nSR 2	log(2π) -	SR j=1
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