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Abstract

The exponential growth of smart devices in all aspects of everyday life leads to
make common the collection of high frequency data. Those data can be seen as mul-
tivariate functional data: quantitative entities evolving along time, for which there is
a growing needs of methods to summarize and understand them. The database that
have motivated our project is supplied by the historical French electricity provider
whose aim is to detect poorly insulated buildings, anomalies or long periods of ab-
sence. Their motivation is to answer COP24 requirements to reduce energy waste
and to adapt electric load. To this end, a novel co-clustering model for multivariate
functional data is defined. The model is based on a functional latent block model
which assumes for each block a probabilistic distribution for multivariate functional
principal component scores. A Stochastic EM algorithm, embedding a Gibbs sampler
is proposed for model inference, as well as model selection criteria for choosing the
number of co-clusters.

Keywords: latent block model, multivariate functional PCA, SEM-Gibbs algorithm, elec-
tricity consumption.
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1 Introduction

Sensor networks are undergoing a great expansion in several domains such as industry 4.0,

environment, transport, defense, smart cities, etc. The emergence of small size sensors

at a reduced cost leads to an increasing use of connected devices for the mainstream.

These sensors are put into smart houses to simultaneously follow, at a high frequency,

the temperature of different rooms and the outdoor temperature for example. Those data

can also be correlated to the electric consumption of the household. Studying electric

consumption allows cities to have a better network management, users to reduce their

energetic cost, and electric providers to adapt a strategy to meet demand. It is also

an opportunity to gather customers consumption data and therefore improve customer

knowledge. EDF, the historical and main French electricity provider, plans to access smart

meters data every half an hour, which means 17472 measures per year for each of its 27

million clients. In the near future, many other information will be collected simultaneously

by EDF thanks to IoT devices on all production facilities (nuclear power stations, hydrolic

centrals, windmills, ...). Indeed, having the opportunity to cluster both wind production

and electric consumption would allow a better steering of the energy use in order to use at

the right time what is produced by the windmill for example. One of the major challenge

of those devices is that they represent a mass of data to store and analyze. Thus, it may be

necessary to build summaries allowing an easier storage and analysis. One way to achieve

that is to cluster those data into homogeneous groups. In this work, we focus on the analysis

of three features observed on a set of households: power consumption, indoor temperature

and outdoor temperature. Of course, the proposed model can be extended to any set of

multivariate temporal series.

There is an abundant literature on understanding electricity consumption patterns.
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Simplest methods are based on averaging electric consumption per day and then applying

a hierarchical clustering on those averaged values (Gouveia et al., 2015). Other works

rely on studying temporal series monitored for a month with fuzzy methods such as fuzzy

c-means algorithm (Zhou et al., 2017), but those methods neglect the time dependency

inherent in such data. Thus, extensions of k-means methods are proposed to take into

account the temporal component through preprocessing steps before applying the k-means

algorithm (Tureczek et al., 2018) or with a dynamic k-means clustering algorithm where

the similarity distances are calculated taking into account all Euclidean distances between

each pair of objects at the same time stamp (Benitez et al., 2014). The same authors

also proposed a dynamic clustering algorithm where two objects are compared thanks to

a final distance which is the average of all comparisons of objects features (Benitez et al.,

2016). Contrary to the previous methods, the dynamic of the data is taken into account

by decomposing the temporal series into smaller linear surfaces which are compared by

applying a Hausdorff-based similarity distance. Lastly, Bouveyron et al. (2017) study

households electric consumption monitored for two years and proposed an algorithm that

allows to cluster simultaneously households and days of measurements that have the same

pattern. This method is based on both functional data analysis and co-clustering techniques

that will be developed later in this paper. However, all of these works share one restrictive

characteristic: they are limited to the study of only one functional variable.

In the present work, we want to follow three variables: electricity consumption, indoor

and outdoor temperature. Such data can be seen as multivariate functional data: multiple

quantitative entities evolving along time collected simultaneously for a same individual

(Ramsay and Silverman, 2005; Bouveyron et al., 2019). In order to analyze and understand

such data, it may be interesting to identify subgroups of individuals (households here) that
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have the same profile for these three quantities. For example, to understand the profile of

consumption depending on both indoor and outdoor temperatures in order to adapt the

electric production or detect poorly insulated buildings. However, analyzing these profiles

over a long period of time is in practice complex because it represents a large amount of

data. The window of time that practitioners are used to analyze is the day (24 hours).

Consequently the observed time period is cut into daily observations. The data set under

study is consequently a large table, where rows correspond to households and columns to

days, and in which each elements is a set of three curves: electricity consumption, indoor

and outdoor temperatures.

To analyze such table, we propose to simultaneously cluster the rows into homogeneous

groups of households and the columns into homogeneous groups of days. Such kind of

analysis is called co-clustering (Govaert and Nadif, 2013). The co-clustering will result in

exhibiting homogeneous blocks of households and days having similar behaviour according

to the three functional variables under study.

One of the most famous model for co-clustering is the Latent Block Model (LBM,

(Govaert and Nadif, 2013)). According to the LBM, the elements of a block are modeled

by a parametric distribution. Each block is therefore interpretable thanks to the block-

distribution’s parameters. Moreover, model selection criterion, such as the ICL criterion

(Biernacki et al., 2000), can be used for model selection purpose, including the choice of the

number of co-clusters. This technique proved its efficiency for the co-clustering of numerous

types of data: continuous (Nadif and Govaert, 2008), nominal (Bhatia et al., 2014), binary

(Laclau et al., 2017), ordinal (Jacques and Biernacki, 2018; Corneli et al., 2019), functional

data (Bouveyron et al., 2017; Chamroukhi and Biernacki, 2017; Slimen et al., 2018) or even

mixed-type data (Selosse et al., 2019).
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Slimen et al. (2018) proposed a co-clustering algorithm based on a vectorial LBM ap-

plied on the functional principal components scores of the curves. Bouveyron et al. (2017)

extended this work by proposing a functional latent block model assuming that the func-

tional principal components of the curves are block-specific and live into a low-dimensional

subspace. Chamroukhi and Biernacki (2017) presented another co-clustering model based

on a latent block model where the probability density function is estimated thanks to a

regression model with a hidden logistic process. In the present work, a co-clustering al-

gorithm for multivariate functional data is proposed as an extension of Bouveyron et al.

(2017) to the multivariate case. Moreover, a more flexible probabilistic model is presented.

The paper is organized as follows. Section 2 presents the co-clustering model and

Section 3 its inference. Results of the algorithm on simulated data is presented in Section

4. Section 5 is dedicated to the application on electricity consumption and indoor and

outdoor temperatures. Our algorithm succeed in detecting poor insulated buildings and

periods of low consumption. Then a discussion concludes the paper in Section 6.

2 A co-clustering model for multivariate functional

data

Functional data, which are the observations of a random variable living into a infinite

dimensional space, are in practice observed only at a finite set of time points. Consequently,

a first step in functional data analysis is the reconstruction of the functional nature of data.

This aspect is discussed in the second part of this section, just after having introduced

the notations. Then, the proposed co-clustering model for multivariate functional data is

presented.
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2.1 Data and notations

Let x = (xij)1≤i≤n,1≤j≤p be the data table of dimension n × p, where each element xij is

a multivariate curve xij = (x1ij(t), . . . , x
S
ij(t)) with t ∈ [0, T ]. Let us recall that i is the

row index, j is the column index and s corresponds to the component of the multivariate

curves. In our application i refers to the household, j to the day and s either to electricity

consumption, indoor or outdoor temperature. Nevertheless, the model and its inference

presented in this work can be used for any other matrix of multivariate functional data.

2.2 Functional data reconstruction

In practice, the functional expressions of the curves xsij(t) are not known and we only have

access to discrete observations at a finite set of times: xsij(t1), x
s
ij(t2), .... A common way

to reconstruct the functional form is to assume that the observations can be decomposed

into a finite dimensional space spanned by a basis of functions. So each observed curve

xsij (1 ≤ i ≤ n, 1 ≤ j ≤ p, 1 ≤ s ≤ S) can be expressed as a linear combination of basis

functions {φsr}r=1,...,Rs :

xsij(t) =
Rs∑
r=1

csijrφ
s
r(t)

with Rs the number of basis functions. These basis functions can be for instance Fourier

bases, spline bases, etc. The automatic choice of this basis (as well as the number of basis

functions) is an open problem (Jacques and Preda, 2014a). In practice, this choice is done

empirically such that the reconstruction is judged reasonable by the expert. Estimation of

the basis expansion coefficients csijr is classically done by least squares smoothing. We refer

the reader to Ramsay and Silverman (2005) for a complete survey on this aspect. Let c =

(cij)ij be the whole data set of coefficients, where cij = (c1ij1, . . . , c
1
ijR1

, . . . , cSij1, . . . , c
S
ijRS

)
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contains the coefficients for individual i at day j which corresponds to the concatenation

of coefficients csijr for all S functional variables. Let ci = (cij)j be the coefficients for the

ith individual and similarly cj = (cij)i the coefficients for day j.

For clarity of the presentation, the same number of basis functions as well as the same

basis function {φr}r=1,...,R is considered for each component of the multivariate functional

variable. But extension is straightforward.

2.3 The proposed latent block model

The aim of a co-clustering model is to define row and column partitions in order to

summarize the data matrix x into smaller subgroups, usually called blocks. Let z =

(zik)1≤i≤n,1≤k≤K be the row partition of the n rows into K groups, and w = (wjl)1≤j≤p,1≤l≤L

the column partition of the p columns into L groups, such as zik = 1 if row i belongs to

row-cluster k and 0 otherwise (and similarly for wjl). Thus, one block is defined by a set

of curves which belong to a row and column cluster such as zikwjl = 1.

Let us first assume that z and w partitions are independent:

p(c; θ) =
∑
z∈Z

∑
w∈W

p(z; θ)p(w; θ)p(c|z, w; θ) (1)

where Z the set of all possible rows partitions into K groups and W the set of all possible

columns partitions into L groups. Let αk and βl be the row and column mixing proportions

(belonging to [0, 1] and summing to 1), such that p(z; θ) =
∏

ik α
zik
k and p(w; θ) =

∏
jl β

wjl

l .

Let us also assume that, conditionally on (z, w), the basis expansion coefficients cij are inde-

pendent and generated by a block-specific distribution: p(c|z, w; θ) =
∏

ijkl p(cij; θkl)
zikwjl .

Thus,

p(c; θ) =
∑
z∈Z

∑
w∈W

∏
ik

αzikk
∏
jl

β
wjl

l

∏
ijkl

p(cij; θkl)
zikwjl (2)
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Depending on the grid of the study window, the studied time series can be very long

leading to high dimensional coefficients cij. In order to suggest a parsimonious data mod-

elling, we further suppose that the curves of each block kl (k = 1, ..., K, l = 1, ..., L) can be

described into a low-dimensional functional latent subspace specific to each cluster, with

intrinsic dimension dkl < S × R, through a principal component analysis for multivariate

functional data (MFPCA, (Jacques and Preda, 2014b)) performed per block.

MFPCA is an extension of PCA for functional data (Ramsay and Silverman, 2005)

to the multivariate functional case, representing the multivariate curves by a vector of

principal scores into an eigen space formed by multivariate eigen functions. Thus each

multivariate curve xij, conditionally to its belonging to block (k, l), can be represented

by its scores δij = (δijr)1≤r≤SR, with S × R the maximum number of non null principal

components. Let us also define for later use Qkl, a matrix of dimension SR× SR of eigen

functions coefficients, which describes the linear mapping from the original space of cij to

the low-dimensional subspace.

Conditionnaly to the block belonging, the scores are assumed to follow a Gaussian

distribution with a parsimonious parametrization of the covariance matrix:

δklijr ∼ N (µkl,∆kl), (3)

with µkl ∈ RSR and ∆kl the diagonal covariance matrix defined as follows:
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∆kl =



akl1 0

. . .

0 akldkl

0

0

bkl 0

. . .

0 bkl



 dkl

 SR− dkl

where akl1 > . . . > akldkl > bkl. With this assumption on ∆kl, the first dkl eigenvalues

express the main part of the variability of the data, while the remaining ones reflect the

noise and are modeled by a unique parameter bkl. Thus, the space formed by the dkl first

eigen functions is a low-dimensional space which contains the main part of information

about the data of a given block. The remaining information is considered as noise and

modeled by a reduced number of parameters.

Thus, we can infer the distribution of one block curves coefficients according to:

cij|zikwjl = 1 ∼ N (Uklµkl, UklΣklU
t
kl + Ξkl), (4)

where:

• Qkl = [Ukl, Vkl] with Ukl of size SR×dkl, Vkl of size SR×(SR−dkl) with U t
klUkl = Idkl ,

V t
klVkl = ISR−dkl and U t

klVkl = 0.

• Σkl is the matrix diag(akl1, ..., akldkl).

• Ξkl is the noise variance matrix of size SR × SR such that ∆kl = Qt
kl(UklΣklU

t
kl +

Ξkl)Qkl.
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Thus, θkl = (µkl, akl, bkl, Qkl) and the whole set of model parameters is denoted by

θ = (αk, βl, θkl)1≤k≤K,1≤l≤L.

In order to provide more parsimonious models, additional assumptions can be made on

the different parameters akl·, bkl and dkl, considering that they are common over cluster, over

dimension, etc. This approach allows to generate a family of submodels of the general model

introduced above. In this paper, we will detail the inference procedure to the submodel

assuming aklm = akl,∀m = 1, ..., dkl, since a good behaviour has been observed in practice.

Nevertheless, the co-clustering method presented here can be derived for all models of the

family extension, following the approach detailed in Schmutz et al. (2018).

3 Model inference

3.1 Model inference through a SEM-Gibbs algorithm

In co-clustering, the goal is to estimate the unknown row and column partitions zik and wjl.

Usually in mixture model, the maximum a posteriori rule is used, based on the estimation

of model parameter θ maximizing the observed log-likelihood:

l(θ; c) =
∑
z,w

log p(c; θ). (5)

Proof of this result is provided in Supplementary material A2. LBM implies a double

missing structure (z and w) which makes inference harder than in a classical mixture

model. Indeed, the use of the well known EM algorithm is not possible because the E

step will need the computation of too much terms, which is not tractable in practice. We

propose to use the stochastic version of the EM algorithm, embedding a Gibbs sampler for
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generating the row and column partitions without having to compute their joint probability

distribution (Keribin et al., 2010).

Starting from an initial column partition w(0) and initial parameter value θ(0), the qth

iteration of the partial SEM-Gibbs algorithm alternates between:

• SE step (Gibbs sampling): Alternates the two following steps until convergence:

– simulate z(q+1)|c, w(q) according to:

p(zik = 1|c, w(q); θ(q)) =
α
(q)
k fk(ci|w(q); θ(q))∑

k′ α
(q)
k′ fk′(ci|w(q); θ(q))

with fk(ci|w(q); θ(q)) =
∏

jl p(cij; θ
(q)
kl )w

(q)
jl .

– simulate w(q+1)|c, z(q+1) according to:

p(wjl = 1|c, z(q+1); θ(q)) =
β
(q)
l fl(cj|z(q+1); θ(q))∑

l′ β
(q)
l′ fl′(cj|z(q+1); θ(q)).

with fl(cj|z(q+1); θ(q)) =
∏

ik p(cij; θ
(q)
kl )z

(q)
ik .

• M step: Update of θ(q+1). The update of each parameter can be done in the same

way than Schmutz et al. (2018). The mixing proportion and the block mean are

updated by:

– α
(q+1)
k = 1

n

∑
i z

(q+1)
ik and β

(q+1)
l = 1

p

∑
j w

(q+1)
jl ,

– µ
(q+1)
kl = 1

n
(q+1)
kl

∑
ij c

z
(q+1)
ik w

(q+1)
jl

ij with n
(q+1)
kl =

∑
ij z

(q+1)
ik w

(q+1)
jl .

For the variance parameters akl, bkl and Qkl, let us define the sample covariance matrix Ckl

of block kl:

C
(q)
kl =

1

n
(q)
kl

n∑
i=1

p∑
j=1

z
(q+1)
ik w

(q+1)
jl (cij − µ(q)

kl )t(cij − µ(q)
kl ).
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Let also introduce W the SR × SR matrix of inner products: W =
∫ T
0
φt(t)φ(t)dt, with

φ(t) the matrix that gathers basis functions of all S functional variables:

φ(t) =


φ11(t) ... φ1R(t) 0 ... 0 ... 0 ... 0

0 ... 0 φ21(t) ... φ2R(t) ... 0 ... 0

...

0 ... 0 0 ... 0 ... φS1(t) ... φSR(t)

.

Then,

• the dkl first columns of the matrix of eigen functions coefficients Q
(q)
kl are updated by

the eigen functions coefficients associated with the largest eigenvalues ofW 1/2C
(q)
kl W

1/2,

• the variance parameters a
(q+1)
kl , are updated by the mean of the dkl largest eigenvalues

of W 1/2C
(q)
kl W

1/2,

• the variance parameters bkl are updated by 1
R−dkl

(trace(W 1/2C
(q)
kl W

1/2)− dkla(q)kl ).

Proofs of those results are available in Supplementary material A3, A4 and A5.

In brief, the SEM-Gibbs algorithm is run for a given number of iterations. After a

burn-in period, the final estimation θ̂ of the parameters is obtained by the mean of the

sample distribution (without the burn-in iterations). Then, a new Gibbs sampler is used

to sample (ẑ, ŵ) according to θ̂, and the final partition (ẑ, ŵ) is obtained by the marginal

mode of this sample distribution.

Initialization of the algorithm As said previously, our algorithm relies on a SEM-

Gibbs algorithm. This algorithm needs to be initialized with values for column partitions

and parameters. In practice, column and row partitions are initialized, and corresponding
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initial parameter values are deduced. To this end, three initialization strategies are avail-

able here : random, k-means and funFEM. In the random case, partitions are randomly

sampled from a multinomial distribution with uniform probabilities. k-means strategy con-

sists of initializing partitions with those obtained by k-means method directly applied on

discretized data. Finally, funFEM aims to initialize partitions by applying the funFEM

algorithm (Bouveyron et al., 2015). We will see later, in the numerical experimentation

section, that funFEM is the one that gives the best results.

3.2 Choice of the number of clusters

We now discuss the choice of the hyper-parameters K and L, i.e. the number of row clusters

and column clusters respectively. The choice of these hyper-parameters is viewed here as

a model selection problem. Well established model selection tools are Akaike information

criterion (AIC, (Akaike, 1974)), Bayesian information criterion (BIC, (Schwarz, 1978)) and

Integrated Classification Likelihood (ICL, (Biernacki et al., 2000)). However, in the co-

clustering case, the likelihood is not tractable for the same reason than the EM algorithm

is not usable. Consequently, AIC and BIC are not tractable. Conversely, the ICL criterion

can be considered since it relies on the completed log-likelihood, which is tractable. Adapted

to our model, the ICL criterion is:

ICL(K,L) = log p(c, ẑ, ŵ; θ̂)− K − 1

2
log(n)− L− 1

2
log(p)− ν

2
log(np)

where ν = KLSR + 2KL +
∑

kl dkl(SR −
dkl+1

2
) is the number of continuous parameters

per block and

log p(c, ẑ, ŵ; θ̂) =
∏
ik

ẑiklog(αk) +
∏
jl

ŵjllog(βl) +
∑
ijkl

ẑikŵjllog p(cij; θ̂kl).
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The couple (K,L) leading to the highest ICL value is selected as the most appropriate

number of row and column clusters.

4 Numerical experimentation on simulated data

This section presents numerical experiments on simulated data in order to illustrate the

behavior of the proposed methodology in presence of different noise ratio in data and

to study the selection of the number of row and column clusters. The R code for our

multivariate functional co-clustering algorithm is available under request and will be soon

available on CRAN as an R package.

For all examples, we set to 50 iterations the burn-in period of the algorithm and the

SEM-Gibbs maximal number of iterations is set to 100.

4.1 Introductory example

4.1.1 Simulation setup

A sample of n = 100 bivariate curves are simulated with K = 4, L = 3 and p = 100. The

proportions of row clusters α used is (0.2,0.4,0.1,0.3) and column clusters β is (0.4,0.3,0.3).

The first functional variable is designed from four different functions that are used as blocks

mean at 31 equi-spaced time points, t = 0, 1/30, 2/30, ..., 1:

xij(t)|zikwjl = 1 ∼ N (mkl(t), s
2),

where s = 0.3 and the mean function is taken from m11 = m21 = m33 = m42 = f1,

m12 = m22 = m31 = f2, m13 = m32 = f3 et m23 = m41 = m43 = f4, with f1(t) = sin(4πt),

f2(t) = 0.75−0.51t∈]0.7,0.9[, f3(t) = h(t)/max(h(t)) where h(t) = N (0.2,
√

0.02) and f4(t) =

15



sin(10πt). Then the second variable is designed according to the same process than the

first one but with four different functions: f1(t) = cos(4πt), f2(t) = 0.75 − 0.51t∈]0.2,0.4[,

f3(t) = h(t)/max(h(t)) where h(t) = N (0.2,
√

0.05) and f4(t) = cos(10πt). The block

means functions are shown in Figure 1.

Starting from this simulation setting, five scenarios are build by adding some noise

fraction within the blocks by randomly simulating a percentage τ of curves using other

block means: 0% (scenario 1), 10% (scenario 2), 30% (scenario 3), 50% (scenario 4) and

80% (scenario 5).
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Figure 1: Block means functions for the first variable (top) and second variable (bottom)
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4.1.2 Results

In order to illustrate the good behaviour of our algorithm in the case of noisy data and

to compare the influence of algorithm initialization on co-clustering results, 20 simulations

have been performed for each scenario with both k-means, funFEM and random initial-

izations. The algorithm is applied for K = 4 and L = 3 and with Fourier smoothing with

15 basis functions. The quality of estimated partitions is assessed with the Adjusted Rand

Index (ARI, (Rand, 1971)).

Results are shown in Figure 2. We can see that co-clustering results are almost perfect

for the 4 first scenarios with funFEM initialization, and the 2 first scenarios for k-means

initialization. As expected, the algorithm performance decreases while noise increases, but

median ARI value is always above 0.8 in the case of four first scenarios with k-means and

funFEM initialization. Moreover k-means initialization performs better than random when

the noise ratio is upper than 50%. And the funFEM initialization performs better than

the k-means one.

To conclude, in view of the good behaviour of funFEM initialization in both previous

examples, we recommend to use firstly funFEM initialization rather than the two others

available in the algorithm.
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Figure 2: Results of ARI for each scenario for k-means (top), random (middle) and funFEM

(bottom) initialization
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Table 1: Number of times each partition is selected by ICL for 20 simulations (in percent).

Highlighted rows and columns correspond to the actual values for K and L.

Scenario τ = 0 Scenario τ = 0.1

K/L 2 3 4 5 6 K/L 2 3 4 5 6

2 0 0 0 0 0 2 0 0 0 0 0

3 0 0 0 0 0 3 0 0 0 0 0

4 0 100 0 0 0 4 0 100 0 0 0

5 0 0 0 0 0 5 0 0 0 0 0

6 0 0 0 0 0 6 0 0 0 0 0

Scenario τ = 0.3 Scenario τ = 0.5

K/L 2 3 4 5 6 K/L 2 3 4 5 6

2 0 0 0 0 0 2 0 0 0 0 0

3 0 0 0 0 0 3 0 0 0 0 0

4 0 100 0 0 0 4 0 90 0 0 0

5 0 0 0 0 0 5 0 10 0 0 0

6 0 0 0 0 0 6 0 0 0 0 0

4.2 Model selection

In this section, the selection of the number of clusters is investigated. Data are generated

as previously. The simulation setting is repeated 20 times with n = 500, p = 500 and

t = 30. The algorithm is run for 2 to 6 clusters with funFEM initialization and the best

model selected by ICL is noted down. Results are shown in Table 1.

Model selection with funFEM is perfect with a noise ratio from 0 to 30% of the data
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volume. Then, as expected, the performance of the criterion decreases, for a noise ratio of

50% the ICL criterion gets back to the true partition in 90% of cases.

5 Co-clustering for energy waste detection in French

households

This section focus on the analysis of French households’ electric consumption according to

their indoor and outdoor temperatures. With more and more involvement of the main-

stream on environmental issues and with the COP24 aim of evaluating government efforts

to tackle against global warming, it is important to find ways to save energy. This type of

data can help detecting potentially poor insulated homes and target those households with

rehabilitation offers which would lead to less energy waste.

5.1 Data

This data set deals with electric consumption, indoor temperature and outdoor temperature

of 356 French households representatives of metropolitan France. It has been provided by

EDF company, a French electricity provider. Data are collected every 30 minutes for 173

days (48 time points per day, cf. Figure 3), from July 2009 to December 2009. Their

objectives are to model insulation efficiency, detect weeks of absence in order to adapt

electric load and evaluate the impact of indoor temperature on the electric consumption.

The data set contains some missing observations. Since the first step of our analysis consists

in estimating the basis expansion approximations of the curves, it is not a problem if there

is some missing observations (except if they are at the beginning or at the end of the
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period). Indeed, smoothing the data into a basis expansion can be performed even if some

of the 48 time points are not observed. Nevertheless, we remove from the analysis daily

curves with too many missing time points (more than 41) or for which missing values occur

at the beginning or at the end of the period.

The functional form of the whole database is reconstructed using a Fourier smoothing

with 15 basis functions. Our algorithm has been applied with funFEM initialization with

a varying number of row and column clusters, from 2 to 20 on normalized data. The ICL

criteria is used to choose an appropriate number of row and column clusters.

Table 2: ICL values for the 10 first partitions

Number of row clusters K Number of column clusters L ICL

5 14 -3944668

5 13 -3946480

5 11 -3951143

4 14 -3958896

3 13 -3961862

5 10 -3963644

4 12 -3966577

3 14 -3967567

6 8 -3968532

6 9 -3970104
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Figure 3: Raw data for one individual and one day of measurement
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Figure 4: Proportion of households in row clusters (top) and days in column clusters

(bottom)
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5.2 Results

According to ICL, the best partition is with 5 row clusters and 14 column clusters (cf.

Table 2). Clusters proportions can be seen on Figure 4.

The obtained block clusters can be described with their mean curves. Since the number

of column clusters is large, we focus our interpretation on four typical column clusters in

order to ease the analysis: Figure 5 plots the mean curves for row-cluster 1 to 5 and column

cluster 1, 6, 10 and 14. The whole set of mean curves is plotted in supplementary material

A1 (Figures 10, 11 and 12).

On average French households indoor temperature is between 17◦C and 25◦C over the

6 months measurement period (Figure 5) and whatever the geographical location (Figure

8). Presumably it is more dictated by the way of life than by the area climate type. For

instance, the third cluster of households (row-cluster) is the one with the lowest electric

consumption (third row on Figure 7) although it is distributed all over the country (blue

points on Figure 8). This cluster may correspond to well insulated houses or households

whose heating system is not electrical. The first and second cluster of households (red and

black points on Figure 8) have a medium consumption (first and second rows on Figure

7) and are distinguished by the outdoor temperature (first and second rows on Figure 6)

which is a bit more flat for the first cluster (red): the delta of temperature for one day is

less important for red households on the measured period than for black ones. The fifth

cluster of households (orange points on Figure 8) have a high and uncontrolled electricity

consumption (last row on Figure 7) and an indoor temperature well below the one of other

clusters on the whole time period (last row on Figure 5). We may suppose that those

households belong to retired persons who have periods of extended vacations because they

are the only one where the indoor temperature stays at 15◦C during 4 time periods. Those
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households are also the only ones with a very variable aspect of the indoor temperature

mean curves and consumption curves, it may be explained by switching on and off their

heating system many times along a day, whereas other households may be equipped with

a timer that holds the wanted temperature. Lastly, the fourth cluster of households (pink

points on Figure 8) has a very high electricity consumption (about twice that of other

clusters) whereas the outdoor temperature is not especially lower (fourth row on Figure 6)

and the indoor temperature not especially greater (between 18◦C to 22◦C, fourth row on

Figure 5). Those households may be poor insulated and it may be important to alert them

on their consumption in order to assist them in reducing their invoices by undertaking

renovations to their property and also to reduce their ecological footprint.

Finally, Figure 9 presents the distribution of the column clusters (clusters of days)

along the period under study. Note that there is no link between the color of the row and

column clusters. We can see that the pink cluster (14th column cluster) corresponds to the

coldest days of the period (outdoor temperature below 5◦C). For those days the electric

consumption of all households is higher than their average one on the other periods (last

column on Figure 7).

To the contrary, the hottest days where mainly in July (first and second column cluster

on Figure 12 ). We can see that the maximum electric consumption reached in a day

does not differ a lot between those days and days of medium outdoor temperatures. We

suppose that for these periods the main consumption areas are other electric devices than

the heating system.
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Figure 5: Co-clustering results for indoor temperature for column cluster 1, 6, 10 and 14
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Figure 6: Co-clustering results for outdoor temperature for column cluster 1, 6, 10 and 14
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Figure 7: Co-clustering results for electric consumption for column cluster 1, 6, 10 and 14
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Figure 8: Geographical position of households by row clusters (colored by cluster)
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Figure 9: Calendar position of column clusters (colored by cluster)
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To conclude, the analysis of this large multivariate functional data set with the co-

clustering model has allowed the distinction of different habits profiles. Those results have

especially highlighted that French households’ electric consumption and indoor temperature

do not depend on the geographical location and thus on the outdoor temperature, but more

on the way of life of people and the insulation level. Actions can be undertaken to further

raise awareness on the impact of reducing their environmental footprint by reducing their

indoor temperature to a maximum value of, at least, 21◦C. Moreover some households

have been identified by their abnormally high electric consumption, those houses should be

targeted by the electric provider with rehabilitation offers to reduce their energy waste.

6 Discussion and conclusion

This work was motivated by the will to detect poor insulated buildings and long periods

of absence in order to reduce energy waste. The proposed co-clustering model answers

both objectives, which will allow EDF company to alert users on their over-consumption

and advise them on renovation work. Furthermore, the field of operational applications

of co-clustering methods for multivariate functional curves is wide at EDF company. For

instance, it can help design new marketing offers or services such as co-clustering load

curves and photo-voltaic production data in order to identify clusters with low yields or

detect anomalies. In the future, EDF will have more and more data coming from con-

nected devices, like connected thermostats or connected weather stations, this data flood

deserves to be classified to ease it interpretation. The proposed algorithm answers this

need. The co-clustering method for multivariate functional data, allows to cluster both in-

dividuals and variables simultaneously. The proposed approach relies on a functional latent
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block model, which assumes for each block a probabilistic distribution for the scores of the

multivariate curves obtained from a multivariate functional principal component analysis.

Model inference relies on a SEM-Gibbs algorithm which alternates a SE-step where row

and column partitions are simulated according to Gibbs algorithm, and a M-step where

model parameters are updated thanks to the previous simulated partitions. Lastly, the best

number of row and column clusters is selected thanks to the ICL criterion. As far as the

authors know, it is the first algorithm available for functional multivariate co-clustering.
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SUPPLEMENTARY MATERIAL

A1. Co-clustering results for K = 5 and L = 14

Figure 10: Co-clustering results for electric consumption
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Figure 11: Co-clustering results for indoor temperature
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Figure 12: Co-clustering results for outdoor temperature
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A2. Log-likelihood formula, proof of Equation 5:

l(θ) =
n∑
i=1

SR∑
j=1

K∑
k=1

L∑
l=1

zikwjllog(πklf(cij, θkl))

=
n∑
i=1

SR∑
j=1

K∑
k=1

L∑
l=1

zikwjllog(
πkl

(2π)SR/2|Σkl|1/2
exp(−1

2
(cij − µkl)tΣ−1(cij − µkl)))

=
n∑
i=1

SR∑
j=1

K∑
k=1

L∑
l=1

zikwjl[log(πkl)−
1

2
log|Σkl| −

SR

2
log(2π)− 1

2
(cij − µkl)tΣ−1(cij − µkl)]

= −1

2

n∑
i=1

SR∑
j=1

K∑
k=1

L∑
l=1

zikwjl[−2log(πkl) + dkllog(akl) + (SR− dkl)log(bkl)

+ (cij − µkl)tΣ−1(cij − µkl)]−
nSR

2
log(2π)

Let nkl =
∑n

i=1

∑SR
j=1 zikwjl be the number of block kl curves,

l(θ) = −1

2

K∑
k=1

L∑
l=1

nkl[−2log(πkl) + dkllog(akl) + (SR− dkl)log(bkl)

+
1

nkl

n∑
i=1

SR∑
j=1

zikwjl(cij − µkl)tQkl∆
−1
kl Q

t
kl(cij − µkl)]−

nSR

2
log(2π)

The quantity (cij − µkl)tQkl∆
−1
kl Q

t
kl(cij − µkl) is a scalar, so it is equal to it trace:

1

nkl

n∑
i=1

SR∑
j=1

zikwjl(cij − µkl)tQkl∆
−1
kl Q

t
kl(cij − µkl) =

1

nkl

n∑
i=1

SR∑
j=1

zikwjltr((cij − µkl)tQkl∆
−1
kl Q

t
kl(cij − µkl)).

Well tr([(cij − µkl)tQkl]× [∆−1kl Q
t
kl(cij − µkl)]) = tr([∆−1kl Q

t
kl(cij − µkl)]× [(cij − µkl)tQkl]),
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consequently:

1

nkl

n∑
i=1

SR∑
j=1

zikwjl(cij − µkl)tQkl∆
−1
kl Q

t
kl(cij − µkl)

=
1

nkl

n∑
i=1

SR∑
j=1

zikwjltr(∆
−1
kl Q

t
kl(cij − µkl)(cij − µkl)tQkl)

= tr(∆−1kl Q
t
kl[

1

nkl

n∑
i=1

SR∑
j=1

zikwjl(cij − µkl)t(cij − µkl)]Qkl)

= tr(∆−1kl Q
t
klCklQkl),

where Ckl = 1
nkl

∑n
i=1

∑SR
j=1 zikwjl(cij −µkl)t(cij −µkl) is the empirical covariance matrix of

the k-th element of the mixture model. The ∆kl matrix is diagonal, so we can write:

1

nkl

n∑
i=1

SR∑
j=1

zikwjl(cij − µkl)tQkl∆
−1
kl Q

t
kl(cij − µkl) =

dkl∑
j=1

qtkljW
1/2CklW

1/2qklj

aklj

+
SR∑

j=dkl+1

qtkljW
1/2CklW

1/2qklj

bkl
,

where qklj is j-th column of Qkl.

Finally,

l(θ) = −1

2

K∑
k=1

L∑
l=1

nkl[−2log(πkl) + dkllog(akl) + (R− dkl)log(bkl)

+

dkl∑
j=1

qtkljW
1/2CklW

1/2qklj

aklj
+

SR∑
j=dkl+1

qtkljW
1/2CklW

1/2qklj

bkl
] +

nSR

2
log(2π)

37



A3. Parameter Qkl update:

We have to maximize the log-likelihood under the constraint qtkljqklj = 1, with qklj the j th

column of Qkl. This is equivalent to look for a saddle point of the Lagrange function:

L = −2l(θ)−
SR∑
j=1

ωklj(q
t
kljqklj − 1)

where ωklj are Lagrange multipliers. Thus, we can write:

L =
K∑
k=1

L∑
l=1

nkl[dkllog(akl) +

dkl∑
j=1

qtkljW
1/2CklW

1/2qklj

aklj

+ (SR− dkl)log(bkl) +
SR∑

j=dkl+1

qtkljW
1/2CklW

1/2qklj

bklj
− 2log(πkl)kl)]

+
nSR

2
log(2π)−

SR∑
j=1

ωklj(q
t
kjqklj − 1).

Therefore, the gradient of L in relation to qkjl is:

∇qkljL = ∇qklj(
K∑
k=1

L∑
l=1

nkl[

dkl∑
j=1

qtkljW
1/2CklW

1/2qklj

aklj
+

SR∑
j=dkl+1

qtkljW
1/2CklW

1/2qklj

bkl
]

−
SR∑
j=1

ωklj(q
t
kljqklj − 1)).

As a reminder, when W is symmetric, then ∂
∂x

(x−s)TW (x−s) = 2W (x−s) and ∂
∂x

(xTx) =

2x (cf. Petersen and Pedersen (2012)), so:

∇qkljL = nkl[2
W 1/2CklW

1/2

σklj
qklj]− 2ωkljqklj

where σklj is the j-th diagonal term of matrix ∆k.
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Thus,

qtklj∇qkljL = 0 ⇔ ωkljqklj =
nkl
σklj

qtkljW
1/2CklW

1/2qklj

⇔ W 1/2CklW
1/2qklj =

ωkljσklj
nkl

qklj.

qklj is the eigenfunction of W 1/2CklW
1/2 which match the eigenvalue λklj =

ωkljσklj
nkl

=

W 1/2CklW
1/2. We can write qtkljqklm = 0 if j 6= m. So the log-likelihood can be written:

−2l(θ) =
K∑
k=1

L∑
l=1

nkl[dkllog(akl) +

dkl∑
j=1

λklj
akl

+ (SR− dkl)log(bkl) +
R∑

j=dkl+1

λklj
bkl
− 2log(πkl)]

+
nSR

2
log(2π),

we substitute the equation
∑R

j=dkl+1 λklj = tr(W 1/2CklW
1/2)−

∑dkl
j=1 λklj:

−2l(θ) =
L∑
l=1

K∑
k=1

nkl[−2log(πkl) + dkllog(akl) +

dkl∑
j=1

λklj
akl

+ (SR− dkl)log(bkl)

+
1

bkl
(tr(W 1/2CklW

1/2)−
dkl∑
j=1

λklj)] +
nSR

2
log(2π)

=
K∑
k=1

L∑
l=1

nkl[dkllog(akl) +

dkl∑
j=1

λklj(
1

akl
− 1

bkl
) + (SR− dkl)log(bkl)

+ −2log(πkl) +
tr(W 1/2CklW

1/2)

bkl
] +

nSR

2
log(2π).

In order to minimize−2l(θ) compared to qklj, we minimize the quantity
∑K

k=1

∑L
l=1 nkl

∑dkl
j=1 λklj(

1
akl
−

1
bkl

) compared to λklj. Knowing that ( 1
akl
− 1

bkl
) ≤ 0, λkl has to be as high as feasible. So,

the j -th column qklj of matrix Qkl is estimated by the eigen function associated to the j -th

highest eigenvalue of W 1/2CklW
1/2.
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A4. Parameter akl update:

Partial derivative of l(θ) according to akl correspond to:

∂l(θ)

∂akl
= −1

2
nkl(

dkl
akl
−

dkl∑
j=1

qtkjlW
1/2CklW

1/2qkjl

a2kl
)

= −1

2
nkl(

dkl
akl
−

dkl∑
j=1

λklj
a2kl

)

The prerequisite ∂l(θ)
∂akl

= 0 implies:

∂l(θ)

∂akl
= 0

⇔ −1

2
nkl(

dkl
akl
−

dkl∑
j=1

λklj
a2kl

) = 0

⇔ nkldkl
akl

=
nkl
a2kl

dkl∑
j=1

λklj

⇔ akl =
1

dkl

dkl∑
j=1

λklj

with λkl the eigen values of block kl.

A5. Parameter bkl update:

Partial derivative of l(θ) according to bkl correspond to:

∂l(θ)

∂bkl
= −1

2
[
SR− dkl

bkl
−

SR∑
j=dkl+1

qtkljW
1/2CklW

1/2qklj

b2kl
]
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The prerequisite ∂l(θ)
∂bkl

= 0 implies:

−1

2
[
SR− dkl

bkl
−

SR∑
j=dkl+1

qtkljW
1/2CklW

1/2qklj

b2kl
] = 0

⇔ SR− dkl
bkl

=
SR∑

j=dk+1

qtkljW
1/2CklW

1/2qklj

b2k

bkl =
1

SR− dkl
[tr(W 1/2CklW

1/2)−
dkl∑
j=1

λklj]

R-package for co-clustering algorithm: R-package containing code to perform all anal-

yses described in the article. (GNU zipped tar file)
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