
HAL Id: hal-02312816
https://hal.science/hal-02312816v1

Submitted on 17 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Thermal conductivity and transport modes in glassy
GeTe 4 by first-principles molecular dynamics

Thuy-Quynh Duong, Carlo Massobrio, Guido Ori, Mauro Boero, Évelyne
Martin

To cite this version:
Thuy-Quynh Duong, Carlo Massobrio, Guido Ori, Mauro Boero, Évelyne Martin. Thermal conduc-
tivity and transport modes in glassy GeTe 4 by first-principles molecular dynamics. Physical Review
Materials, 2019, 3 (10), �10.1103/PhysRevMaterials.3.105401�. �hal-02312816�

https://hal.science/hal-02312816v1
https://hal.archives-ouvertes.fr


Thermal conductivity and transport modes in glassy GeTe4

by first-principles molecular dynamics

Thuy-Quynh DUONG
Univ. Lille, CNRS, Centrale Lille,

ISEN, Univ. Valenciennes,
UMR 8520 - IEMN, F-59000 Lille, France

Carlo MASSOBRIO, Guido ORI, Mauro BOERO
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First principles molecular dynamics is employed to investigate thermal transport in glassy GeTe4,
a subsystem of several ternary phase-change materials. As a first result, we found modes localized
on a few atoms in the vibrational density of states. The thermal transport is further rationalized
by calculating the thermal conductivity for a range of system sizes and shapes via the approach-
to-equilibrium methodology. By considering the length dependence of the thermal conductivity, we
provide evidence of propagative modes with mean free paths as long as 6 nm, i. e. well beyond short
range order distances. Extrapolation of our bulk thermal conductivity to macroscopic sizes is in
full agreement with the experimental values. Finally, we assess phenomenological models developed
for the thermal conductivity of disordered materials, by enriching their intrinsic significance via the
insertion in their analytical expression of values obtained via first principles molecular dynamics.

I. INTRODUCTION

Materials in a disordered phase have an increasing im-
portance in technology [1–3]. For instance, glassy chalco-
genides are used in next generation non-volatile mem-
ories. The principle of such devices is to assign a bit
value to the material state, i.e. crystalline or disordered,
through phase switching obtained via Joule heating.
Thermal management is a major concern when develop-
ing phase-change random access memories (PCRAM), in
particular to limit the amount of energy needed to induce
the phase switching, and avoid wasting a significant part
of it or cross-talking to neighboring units [4]. Optimiz-
ing the thermal design requires an in-depth understand-
ing of the heat transport in different parts/phases of the
PCRAM. However, in spite of the strong drive of these
technological requirements, heat transport in disordered
materials remains elusive.

In principle, the lack of order beyond nearest neigh-
bor distances in disordered materials is not compatible
with the notion of phonons. However, in the case of
amorphous silicon, both theory [5, 6] and experiments
[7] concur that propagative modes do exist and the heat
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carriers can travel distances as high as micrometers. An
additional contribution to thermal conductivity has been
ascribed to diffusive modes, i.e. modes clustering in or-
der to transport heat but lacking a well-defined mean free
path, or having mean free paths smaller than the nearest
neighbor distances. Apart from the case of amorphous
silicon, propagative modes have not been identified in
other amorphous materials [8]. The question arises on
whether this is the case because their mean free paths
are under the resolution of experimental probes (i. e.
≈ 5 nm) or they are actually absent in any other dis-
ordered system. On the theoretical side, evidence of
such modes could be collected by calculating the ther-
mal conductivity as a function of the size along the heat
transport direction. Nowadays, it is possible to achieve
this goal in a quantitative fashion, by relying on first-
principles molecular dynamics (FPMD) in the framework
of density functional theory (DFT). However, given the
high computational cost of the Green-Kubo[9] or direct
methods [10], FPMD have to be combined with more
tractable, alternative approaches. With this purpose in
mind, we calculated via FPMD the thermal conductiv-
ity of a disordered material (glassy GeTe4) [11] by tak-
ing advantage of the approach-to-equilibrium molecular
dynamics (AEMD) methodology [12]. In this first joint
application of FPMD and AEMD, we showed that the
inherent time intervals are within the reach of FPMD, in
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spite of a substantial temporal relaxation from an out-of-
equilibrium situation (phase 2 of AEMD) featuring two
adjacent parts of a periodic volume kept at different tem-
peratures (phase 1 of AEMD). The thermal conductivity
of glassy GeTe4 was severely underestimated (by a factor
of ten), due to the existence of unavoidable size effects in
terms of both dimensions parallel and perpendicular to
the direction of thermal transport. To substantiate this
statement, further calculations were carried out in Ref.
13, by duplicating the cell dimensions in the direction of
thermal transport (from N=185 to N=370 atoms). We
found an increase of the thermal conductivities by a fac-
tor of three. Despite these instructive indications, the
quest for a precise understanding of thermal transport in
glassy GeTe4 calls for further calculations and analyses.
One has to account for larger sizes and various geome-
tries along (longitudinally) and across (transversally) the
direction of the heat flux. Moreover, it is desirable to
elucidate the mechanism of thermal transport in terms
of vibrational properties.

Here we achieve these goals by calculating the thermal
conductivity of g-GeTe4 for four systems differing by the
simulation box dimensions (see Fig. 1). We are able
to extract the asymptotic behavior of the thermal con-
ductivity as a function of system size in the direction of
thermal transport and gather information on the sensi-
tivity to the transversal extension of the simulation box.
In terms of vibrational properties, we infer the existence
of localized and extended modes.

The present paper is organized as follows. In section
II we provide details on the computational methodology
and present the atomic models of the GeTe4 glass that we
characterize from the structural and vibrational point of
view. Section III A focuses on the vibrational properties,
while section III B is devoted to the calculation of the
thermal conductivity. In section IV, phenomenological
models for heat transport are revisited in light of the
results obtained from our FPMD calculations, thereby
allowing to assess their predictive power. Conclusions
are contained in sections V.

II. FPMD METHODOLOGY AND MODEL
CONSTRUCTION

First-principles molecular dynamics simulations were
carried out using the Car-Parrinello [14] method as imple-
mented in the CPMD code [42]. In the DFT framework,
we used the exchange functional of Becke [15] and the cor-
relation part of Lee, Yang and Parr [16] (BLYP). FPMD
results on glassy g-GeTe4 made available in a previous
work highlighted the better performances of BLYP when
compared to PBE [17] in terms of agreement with avail-
able experimental data. For these reasons, the present
FPMD study relies on BLYP for the production of the
temporal trajectory exploited to convey information on
the thermal properties. Other relevant technical details
go as follows. Core-valence interactions are described via

norm-conserving pseudo-potential as devised according
to the prescription of Troullier and Martins [18]. A plane-
wave basis set is chosen for the representation of the va-
lence electrons with an energy cutoff of 50 Ry. The Bril-
louin zone integration is restricted to the Γ point as le-
gitimate for calculations on extended (and non-metallic)
disordered systems. In line with the rationale developed
in Ref. 19 we accounted for dispersion forces by adopting
the Grimme-D2 formula proposed by Grimme [19, 20].

As detailed in Ref. 19, the structure of glassy GeTe4

resulting from this choice (BLYP and the Grimme-D2
dispersion forces) is close to the one pertaining to a chem-
ically ordered network (CON) of tetrahedra. This can be
appreciated by comparing the corresponding CON and
BLYP-D2 partial coordination numbers (Table I).

TABLE I: Partial coordination numbers.
CON BLYP-D2

nGeGe 0 0.37
nGeTe 4 3.60
nTeGe 1 0.91
nTeTe 1 1.40

In such arrangements, the large majority of Te atoms
can be found in the GeTe4 tetrahedron or in Ten con-
figurations, a third possibility being the involvement in
connections between a given tetrahedron and a Ten chain.
It is useful to point out that BLYP (with or without the
Grimme-D2 correction) favors the tetrahedral coordina-
tion together with a strong tendency to chemical order,
unlike PBE for which nPBE−D2

TeTe = 2.47 (see Ref. 19).
Our methodology for the calculation of the thermal

conductivity relies on an accurate control of the ionic
temperature on distinct parts of the system. To this
end we employed the Nosé-Hoover thermostat [21, 22]
on the ionic degrees of freedom. For the electronic
degrees of freedom, adiabatic conditions are ensured
via the Blöchl–Parrinello [23] thermostat. However,
this second thermostat was suppressed whenever the
ionic thermostat was not activated to avoid unnecessary
thermal control of the electronic degrees of freedom.
This is, for instance, the case of phase 2 in the AEMD
procedure. The integration step is 5 a.u. (0.12 fs)
throughout our calculations.

The initial configuration containing N=215 atoms, 43
Ge and 172 Te, is selected from the BLYP trajectory pro-
duced at T= 300 K in Ref. 19. This first model, here-
after termed B, consists in a cubic supercell of edge equal
to 19.24 Å. To assess the dependence of our calculated
thermal conductivity in terms of system dimensions along
and across the direction of thermal transport, model B
was replicated and/or rotated to obtain the three addi-
tional systems B2, B2r and B3 shown in Fig. 1.

The characteristics of the 4 models are given in Table
II.

For the calculation of the vibrational density, we re-
sorted to a finite difference method implemented in the
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FIG. 1: The four atomic models studied in the present work.
L is the cell length in the heat transport direction. The rep-
resentations were obtained using iRASPA [24].

TABLE II: Characteristics of the 4 models.

Name N Section (Å2) L (Å) (as in Fig. 1)
B 215 19.24×19.24 19.24
B2 430 19.24×19.24 38.48
B3 645 19.24×19.24 57.72
B2r 430 19.24×38.48 19.24

CPMD code on a set of configurations of the B model.

III. THERMAL PROPERTIES

A. Analysis of vibrational modes

Thermal properties of glassy GeTe4 can be rationalized
in terms of vibrational features inferred from FPMD sim-
ulations. To this aim one can begin from the considera-
tion that glassy GeTe4 is a semiconductor [19] with ther-
mal transport dominated by the ionic contribution. The
eigenvalues and eigenvectors are obtained in the standard
way by diagonalization of the Hessian. The vibrational
density of states calculated for model B is given in Fig.
2. We obtain a sharp peak, the so-called boson peak, also
evidence in inset, observed systematically in disordered
materials. Recently this peak has been attributed [25] to
a competition between elastic mode propagation and dif-
fusive damping (propagons and diffusons respectively in
the taxonomy of Ref. 5). The location of the peak at 120
cm−1 corresponds to the experimental value attributed
to the corner sharing tetrahedral units in GeTe4 [26–28].

We have employed the vibrational eigenvectors to
quantify the localization of the vibrational modes by cal-
culating the participation ratio pn (see Fig. 3 for model
B) defined as [29, 30]:

pn(ωn) =

(
N∑
i=1

‖~ei(ωn)‖2
)2

/

(
N

N∑
i=1

(
‖~ei(ωn)‖2

)2)
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FIG. 2: Vibrational density of states (vDOS). A Gaussian
broadening of 5 cm−1 has been employed. In inset, vDOS
divided by the frequency square ω2.

for a mode of eigenvalue ωn and eigenvector ~ei(ωn). The
participation ratio of a fully delocalized vibrational mode
is equal to 1, while at the extreme opposite (localiza-
tion on a single atom), it drops to 1/N . The shape of
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FIG. 3: Participation ratio of the vibrational modes. Model
B.

the participation ratio is remindful of what observed in
other glasses [29, 31–33]. The modes at low frequency, i.e.
lower than the boson peak frequency, involve as many as
50 % of the atoms while more localized vibrations (de-
fined as locons in Ref. 5) appear around 200 and 300
cm−1. Fig. 4 exemplifies the difference between an ex-
tended and a localized mode. The number of atoms sig-
nificantly involved in vibrational modes is considerably
higher at 120 cm−1 than at 300 cm−1. We recall that
the modes localized on a few atoms, the locons, do not
contribute to the heat transport.
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FIG. 4: Atomic displacements for an extended mode at 120
cm−1 and a localized mode at 300 cm−1. Large dots represent
Te atoms, small dots are Ge atoms. The color code, from
black to light red is an expression of the atomic displacement
(Disp.) ‖~ei‖2/mi (mi being the mass of atom i). The analysis
has been carried out for model B.

B. Thermal conductivity via AEMD: basic
foundations and results

We calculate the thermal conductivity via the
approach-to-equilibrium molecular dynamics (AEMD)
method [12]. Within this technique, a thermal process
can be described by relying on a thermal transient and,
in particular, its decay time. This leads to a reduction
in computational time by at least one order of magni-
tude when compared to other molecular dynamics ap-
proaches, thereby allowing for affordable applications of
FPMD [11].

It is instructive to recall the main features of the
AEMD method. A given system is divided in two blocks,
kept at different temperatures (hot and cold) during a
first phase termed phase 1 (see Fig. 1). Due to peri-
odicity, hot and cold blocks are infinitely propagated in
space. At the end of phase 1 one releases the tempera-
ture difference between the blocks, leading to a transient
regime (phase 2) characterized by the decrease (increase)
in temperature of the hot (cold) block. The underlying
conceptual framework views the transient regime of phase
2 as the transient regime of the heat equation expressed
through a Fourier series, providing a direct access to the
determination of the thermal conductivity.

Fig. 5 shows that the process consisting of phases 1

and phase 2 can be readily followed in time by FPMD.
The target temperature here is Tt=130 K, corresponding
to the minimum of the mean free paths of heat carriers
as indicated by Zhang et al. [34] via their measurements.
Size effects are unavoidable in the AEMD methodology
[35]. They manifest themselves when the heat carrier
mean free paths are larger than the computational cell.
For this reason, it is preferable to work at a temperature
minimizing the mean free paths. Also, the choice of a
temperature larger than the Debye temperature prevents
from the consideration of quantum effects. For glassy
GeTe4, Zhang et al [34] measured a Debye temperature
of 110 K. Taken altogether, the above considerations led
us to choose a target temperature of 130 K.
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FIG. 5: Temperatures in the hot (red line) and cold (blue
line) block during the 2 phases of AEMD, and in models B,
B2, B2r and B3.

First we equilibrated our full computational sample at
the temperature T= 230 K (see Fig. 5). We then form
the two blocks of Fig. 1 by applying a local thermostat
at 230 K to the atoms of the hot block and at 30 K to the
atoms of the cold block. Upon application of these two
local thermostats, a temperature difference of ∆T0=200
K is obtained in less than 1 ps (see Fig. 5). Typically,
the thermostats are applied during 10 ps, although a du-
ration as long as 80 ps have been tested in a previous
work [11]. For model B3, phase 1 lasts only 2.5 ps, due
to the higher computational cost of FPMD for a system
containing 645 atoms. The duration of phase 1 does not
have a significant impact on the final result provided the
asymptotic decay time is carefully extracted from phase
2 by discarding a short initial transient, occurring in the
thermal transition between phase 1 (canonical ensemble,
two thermostats) and phase 2 (microcanonical ensemble).

Focusing on phase 2, we first recall that AEMD is rem-
iniscent of the heat conduction problem for a ring [36].
The solution T (t, z) along the transport direction z is a
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Fourier series [12]:

T (t, z) = Tt+

∞∑
m=0

2∆T0

(2m+ 1)π
sin

(
2π(2m+ 1)

L
z

)
e−(2m+1)2t/τ

(2)
with the decay time τ related to the thermal diffusivity
D as follows

1

τ
=

4π2

L2
D (3)

The diffusivity of a material of thermal conductivity κ,
number density ρ and heat capacity C is equal to D =
κ/(Cρ). By considering the dominant contribution of the
Fourier series (m=0) (a decaying sine) one obtains

T (t, z)− Tt ∝ ∆T0 sin

(
2πz

L

)
e−t/τ . (4)

The Fourier series (Eq. 2) can be applied to express the
temperature difference between the two blocks

∆T (t) =
2

L

∫ L/2

0

T (t, z)dz − 2

L

∫ L

L/2

T (t, z)dz (5)

under the form featuring the dominant contribution

∆T (t) ∝ ∆T0e
−t/τ . (6)

Therefore, provided we can demonstrate that the temper-
ature profile and the temperature difference ∆T do obey
Eqs. 4 and 6, the decay time τ of the thermal transient
gives access to the thermal conductivity κ via:

κ =
L2

4π2

C.ρ

τ
. (7)

To ensure full consistency between the underlying the-
ory of thermal transport and the AEMD implementation
we check the form of the temperature profile and the time
behavior of the temperature difference. These quantities
(T (z) and ∆T (t)) are given respectively in Figs. 6 and
7 during phase 2 for models B, B2, B2r and B3, and an
initial temperature difference of 200 K. The temperature
profiles have a sine form, as shown by the sine functions
superimposed on the AEMD results. Concerning Fig. 6
we adopted the same range for the z range regardless of
their different longitudinal extension, by replicating the
temperature profiles of models B, B2r and B2 as allowed
by the periodic boundaries conditions.

The AEMD temperature difference ∆T (t) evolves to a
very good extend according to an exponential decay (Fig.
7). The exponential fit allows determining the decay time
τ for each system. In model B3 one observes a short
transient to be attributed to the short duration of phase
1 (2.5 ps see Fig. 5). This does not prevent either from
the observation of an asymptotic exponential regime on
25 ps for an amplitude of 100 K, or from determining the
relevant decay time τ .
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averaged during phase 2 of AEMD. The black lines are the
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legend.

The last ingredient to obtain the thermal conductivity
from Eq. 7 is the heat capacity C that we calculated
from the variation of the total energy versus temperature
(Fig. 8). The curve is linear and its slope gives a heat
capacity of C = 1.024C0, the Dulong and Petit value
being C0 = 3NkB. When repeating the calculation for
models B2 and B3 we did not observe any noticeable
size effects. The average value, used in the following, is
C = (1.025± 0.003)C0.

Our results for the thermal conductivity are presented
in Fig. 9. In particular, for model B, we tested two val-
ues for the initial difference in temperature ∆T0 and two
values for the duration of phase 1. It was found that an
initial ∆T0 of 200 K contributes to reducing the statisti-
cal uncertainty, while the length of phase 1 duration has a
negligible effect [11, 13]. Regarding the dimension trans-
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verse to the heat flux, the results for model B2r, larger
than for model B, indicate that this parameter has an
impact on the results, at least for small sizes, thereby
confirming the validity of our global approach that con-
sisted in taking systems of four distinct geometries.

A dependence on the size of the system through the
box length L (or, equivalently, on the periodicity of the
blocks thermally constrained to be hot or cold) is notice-
able in Fig. 9 by confirming preliminary results of Ref. 13
for the range [0-4] nm. Interestingly, the thermal conduc-
tivity goes on increasing even when the box length in the
direction of heat transport is 6 nm (system B3). This can
be interpreted by invoking a propagation of heat carriers
(propagons) up to distances of 6 nm at least. Propagons

are identified both in calculations and experiments via
a dependence of the thermal conductivity on the sample
size or via a thermal conductivity versus mean free paths
spectroscopy technique [7]. In a recent review of thermal
transport in amorphous materials, Winger et al. [8] re-
ported that propagons have been identified in amorphous
silicon (a-Si) but no variation of the thermal conductivity
with size has been detected in oxide glasses, such SiO2,
HfO2, Al2O3 and TiO2. To the best of our knowledge, no
evidence of propagons has ever been reported on chalco-
genide glasses. Here we prove that propagons, although
with mean free paths drastically lower than in a-Si, do
exist also in glassy chalcogenides as g-GeTe4. One might
even conjecture that this could be the case for the oxide
glasses since so far no thermal characterization below 5
nm has been achieved while this range of dimensions is
readily accessible to FPMD.

The idea of resorting to a system more extended
than B3 in direction of heat transport is not necessarily
tractable in view of the associated computational cost.
One can instead take advantage of the collected data for
B2 and B3 in order to extrapolate our results using the
equation developed by Alvarez and Jou [37]. This rela-
tionship describes the ballistic to diffusive regime inher-
ent in non-local effects observed at small sizes in AEMD
[38]:

κ(L) = κ∞
L2

2π2l2

√1 + 4

(
πl

L

)2

− 1

 , (8)

where κ∞ is the thermal conductivity at saturation and
l is a mean free path. The fit is reported as a black line
in Fig. 9. The thermal conductivity converges to a value
of 0.15 W K−1 m−1 with a statistical uncertainty of 0.01
W K−1 m−1. The thermal conductivity of g-GeTe4 has
been measured by Zhang et al. [34] using a parallel tem-
perature conductance (PTC) technique. They obtained
a value of 0.14 W K−1 m−1 at 130 K. We conclude that
the extrapolation to infinite (macroscopic) sizes of our
calculations is in excellent agreement with this measure-
ment.

IV. VALIDITY OF PHENOMENOLOGICAL
MODELS

The availability of the vibrational spectrum, heat ca-
pacity and thermal conductivity of g-GeTe4 allows estab-
lishing the predictive power of phenomenological models
for glasses. This issue is of paramount importance both
from the fundamental and applied point of view since
fully reliable models are needed to guide the design of
thermoelectric or memory devices.

In what follows, three models will be under scrutiny.
The first is based on the gas kinetic equation, the second
is the so-called “minimum thermal conductivity” model
by Cahill and Pohl [39, 40] and the third is due by Agne
et al. [41]. The first two models assume that thermal
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transport is due to propagative heat carriers, while the
third one was developed under the hypothesis of the ex-
istence of diffusons.

Focusing on the first model, the gas kinetic equation
relates the thermal conductivity to three quantities: the
volumetric specific heat capacity c = C/V of the excita-
tions providing the thermal transport, the sound velocity
v at which they propagate and the mean free path be-
tween scattering events l:

κKin =
1

3
cvl (9)

The value of l obtained from our κ(L) results is employed,
i.e. l = 3.2 nm (Fig. 9). The speed of sound can be ob-
tained from our FPMD calculations since the alternation
of hot and cold blocks inherent in phase 1 of AEMD leads
to a deformation wave that superimposes to the temper-
ature profile during phase 2, as shown in Fig. 10. The
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FIG. 10: Oscillations in the temperature evolution of the hot
and cold blocks. The statistical noise is attenuated by apply-
ing a sliding average on intervals of 600 fs.

temperature curves have been numerically derived in Fig.
11 so as to obtain the position of the minima in the hot
temperature curve and maxima in the cold one. This pro-
cedure has been repeated as a function of the cell length
(Fig. 12) and leads to a sound velocity v = 1 nm/ps.
Therefore, the estimate of the thermal conductivity from
the gas kinetic theory is κKin =1.36 W K−1 m−1, nearly
ten times larger than the result of our calculation.

The model by Cahill and Pohl [39, 40] views propaga-
tion of heat as due to coupling of harmonic oscillators.
In this model the oscillating entities are regions of size
equal to half the vibration wavelength. The analytical
expression resulting from this hypothesis is:

κCP =
(π

6

) 1
3

kBρ
2
3

∑
i

vi

(
T

Θi

)2 ∫ Θi
T

0

x3ex

(ex − 1)2
dx

(10)
where the sum is taken over the longitudinal and two
transverse sound modes and Θi = vi(~/kB)(6π2ρ)

1
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FIG. 11: Derivatives of temperatures shown in Fig. 10.
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FIG. 12: Sound velocity extracted from the oscillations in the
temperature evolution with time.

Here we consider the same sound velocity for the three
modes, and proceed to a numerical integration giving a
value of κCP = 0.16 W K−1 m−1, in very good agreement
with the value we calculated.

Finally, let us consider the model proposed by Agne
and co-workers [41] fully based on diffusons, i. e. without
involving the notion of mean free path. The diffusivity
of coupled harmonic oscillators is calculated assuming an
isotropic material, leading to a thermal conductivity that
reads

κDiff =
1

π
n

1
3 kBωavg (11)

For ωavg we can take the average oscillator frequency that
we calculated from the vibrational density of states (≈
140 cm−1). The resulting thermal conductivity is equal
to κDiff = 0.06 W K−1 m−1. As expected, this estimate is
lower than the thermal conductivity calculated by FPMD
since it does not account for propagative modes.

The values obtained with the above models are re-
ported in Fig. 13 together with our FPMD calculation
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FIG. 13: Thermal conductivities as obtained via the
phenomenological models considered in our analysis
(diffusons[41], minimum thermal conductivity by Cahill
and Pohl [39, 40] and gas kinetic theory). The models have
been enriched by FPMD calculated values of specific thermal
properties (see text). A comparison is carried out with our
FPMD calculation and with experimental measurements [34].

and the experimental data. Despite its qualitative foun-
dations and purposes, it appears that the minimum ther-
mal conductivity model by Cahill and Pohl is the most
realistic one after inclusion (in the expression of the ther-
mal conductivity) of a property (the sound velocity) eval-
uated by FPMD calculations.

V. CONCLUSIONS

We reported a first-principles molecular dynamics
study (supplemented by a DFT-based analysis of vibra-
tional modes) of the thermal properties of the GeTe4

glass. Glassy GeTe4 is close in composition to phase-
change chalcogenides at the core of modern non-volatile
memory devices. The vibrational spectrum revealed the
existence of localized modes. We rationalized thermal
transport by calculating the thermal conductivity via the
approach-to-equilibrium methodology applied to four dis-
tinct systems differing by the size and/or the shape of the
computational box. Striking evidence is collected on the
occurrence of propagative modes extending up to 6 nm.
By asymptotic extrapolation of our calculations we ob-
tained a thermal conductivity equal to 0.15 ± 0.01 W

K−1 m−1 at 130 K for the bulk, in excellent agreement
with the experimental value. As a final piece of informa-
tion, we have revisited phenomenological models of heat
transport by including in their analytical expression spe-
cific quantities calculated via FPMD. The assumption of
a diffusion-mediated transport made by Agne et al.[41]
leads to a sever underestimate of the thermal conduc-
tivity, in line with the importance of propagative modes
not included in this model. On the other hand, the min-
imum thermal conductivity approach by Cahill and Pohl
[39, 40], enriched by FPMD calculations of the sound
velocity, agrees well with our extrapolated value.

This work is a breakthrough toward precise under-
standing of the heat transport in disordered materials,
since it highlights the existence of propagative modes
well beyond the first-neighbor distances in a system other
than disordered silicon. The mean free paths of the
heat carriers in the present chalcogenide glass falls in
the nanometer range and yet they are too small to be ac-
cessible to measurements, currently hampering any ex-
perimental confirmation. Overall, it appears that the
combined use of FPMD and AEMD is well suited to de-
scribe heat transport and obtain realistic values of the
thermal conductivity, due to the treatment of transients
containing invaluable information on thermal transport
at the nanoscale.
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[3] D. Banerjee, Ö. Vallin, K. M. Samani, S. Majee, S.-L.
Zhang, J. Liu, and Z.-B. Zhang, Nano Energy 44, 89
(2018).
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