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Controlling the NDF shape is mandatory to represent more complex micro-surface distributions, as
pointed out by several authors [8, 1, 5, 3, 4, 10, 9].

Moreover, to be efficiently included in rendering systems, a NDF has to come with an analytical Smith
GAF derivation and importance sampling schemes. This latter should be ideally implemented with visible
normal importance sampling as proposed in [7]. To our knowledge, only Beckmann [2] and GGX [12]
distributions offer all these features. These distributions are also the most used in rendering engines. In
the following, we first propose a classification of NDFs which allows to derive new general distributions
with more control on the shape (skewness, kurtosis, lobe shift and width) called Skewed Generalized
T-Distribution (SGTD).

The second part of this document contains the mathematical justifications concerning the SGTD
and its sub-configurations. We provide all the mathematical details for the normalization factor, GAF
computation and importance sampling when these features can be analytically computed with conventional
methods. When analytical computations are not available, some approximate solutions can be found: we
voluntary let this in future work.
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Isotropic Anisotropic Norm. Factor A Imp. Sampl. Smith GAF (Λ)
SGTD Eq. 1 − Eq. 5 and 6 − −
GTD Eq. 13 Eq. 14 Eq. 15 and 16 − −
SGND Eq. 22 − − (Eq. 23, µ = 0) − (Eq. 34, µ = 0) −
STD Eq. 25 − Eq. 26 and 27 − −
GND Eq. 28 Eq. 29 − (Eq. 30, µ = 0) − −
SND Eq. 31 − Eq. 32 and 33 −
Student’s TD Eq. 35 Eq. 36 Eq. 37 − (see [10], µ = 0) − (see [10], µ = 0)
Shifted Beck. Eq. 38 Eq. 39 A = 1 − (see [12], µ = 0) − (see [12], µ = 0)
Shifted GGX Eq. 40 Eq. 41 Eq. 42 − (see [12], µ = 0) − (see [12], µ = 0)

Table 1: SGTD and sub-configurations with references to equations for each feature. Symbols − stand
for unresolved (i.e. with no direct analytical expression) features. Note that for some configurations, a
feature could be resolved for a restricted version (e.g. for SGND with the normalization factor which can
be computed for unshifted version µ = 0).

1 NDFs classification using SGTD

Beckmann [2] and especially GGX [12] distributions are currently considered as the standard in computer
graphics. Their shape is only controlled by one roughness parameter σ which drives the lobe width. Un-
fortunately, real material normal distributions exhibit more complex shapes as mentioned by Holzschuch
et al. [9], who also propose a generalization of Beckmann’s distribution, called Generalized Normal Distri-
bution (GND). GND includes an additional parameter γ which characterizes the lobe’s flattening (called
here tailedness), defining the drop at the origin. Ribardiere et al. [10] proposed to use an even more
general distribution, Student’s T-Distribution (Student’s TD), with an equivalent tailedness parameter γ.
Student’s TD encompasses GGX when γ = 2 and tends to Beckmann when γ → ∞. They also derive
a more general formulation which allows to include the Hyper-Cauchy Distribution (HCD) as a specific
configuration of Student’s TD. HCD was first introduced by Wellems et al. [13] and used to fit measured
BRDF by Butler and Marciniak [4]. All these configurations control the shape through two parameters:
σ for the lobe width and γ for its tailedness. Contrary to GND, Student’s TD comes with the analytic Λ
function to derive the Smith GAF expression. An open question concerns the degree of control required
on the NDF shape for fitting parameters, designing and rendering materials, and if such a control can
be reached by an existing distribution. All the previous distributions are in fact sub-families of a more
general distribution, the Skewed Generalized T-Distribution (SGTD), introduced in financial statistics by
Theodossiou [11]. We propose a 5 parameters distribution dedicated to NDFs representation, with the
following controls:

σ > 0 7−→ lobe width

γ >
3

2
7−→ tailedness

p > 1 7−→ kurtosis
µ > 0 7−→ lobe shift

−1 < λ < 1 7−→ skewness

Note that all the lobe characteristics (shifting, width, kurtosis, tailedness) are defined by the above
parameters. The isotropic representation is thus given by the following expression:

DSGTD(m) =
A

π σ2 cos4 θ
(

1 + (| tan θ−µ|)2p
(γ−1)σ2pC

)γ ,
3



with A, the normalization factor (its analytical form is given in supplemental material) and C =
(λ Sign (tan θ − µ) + 1)2p.

A complete classification can be proposed from Beckmann and GGX to SGTD, including Student’s TD
or GND. Figure 1 illustrates this classification and the relationship from different interesting configurations.
Note that GND and Student’s TD are presented here in their shifted version (µ 6= 0) even if they are usually
used in their unshifted version (µ = 0) in [9] and [10] respectively.

Figure 1: The Skewed Generalized T-Distribution [14] (SGTD) tree: Yellow blocks represent shape in-
variant distributions coming with anisotropy. For the sake of readability, some configurations (Laplacian
distributions and Cauchy ones) are not mentioned.

The shape invariance property [6, 8] defines the invariance of both the NDF shape and the masking
function when the surface configuration is stretched. A shape invariant NDF can be written as follows:

f
(

tan θ
σ

)
σ2 cos4 θ

.

Such a formulation also helps to derive anisotropic derivations of the distribution.
Unfortunately, SGTD does not come with importance sampling and analytical Smith GAF, required

for path tracing applications. Though, interesting sub-configurations can be produced by fixing some of its
five parameters. SGTD is not shape invariant due to the skewness parameter λ in factor C, and anisotropy
cannot be derived using this property. Fixing λ to 0 corresponds to a pruning in the classification tree
(Figure 1), so as to only select all sub-configurations starting from GTD: All the selected distributions
are shape invariant and thus anisotropy can be easily derived. Expressions for each configuration and
mathematical development for GAF computations and importance sampling (which cannot be analytically
obtained in most cases) are provided in the next sections of this document.
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2 Skewed Generalized T-Distribution (SGTD)

As presented in the paper, SGTD expression is given by

DSGTD(m) =
A

π σ2 cos4 θ
(

1 + (| tan θ−µ|)2p
(γ−1)σ2pC

)γ (1)

with

A = the normalization factor
C = (λ Sign (tan θ − µ) + 1)2p .

and

σ > 0 7−→ controls the lobe width,

γ >
3

2
, p > 1 7−→ the kurtosis,

µ > 0 7−→ the lobe shift,
−1 < λ < 1 7−→ the skewness.

This NDF is not shape invariant [6, 8] and thus cannot be given in an anisotropic form.

2.1 Normalization factor

The distribution have to normalized i.e.

A

πσ2

∫ 2π

ϕ=0

∫ π
2

θ=0

tan θ

cos2 θ

(
1 +

| tan θ − µ|2p

(γ − 1)σ2p (λ Sign(tan θ − µ) + 1)2p

)−γ
dθ dϕ = 1. (2)

With cos2 θ = 1
1+tan2 θ

and the substitution t = tan θ, we obtain

A

πσ2

∫ ∞
t=0

t

(
1 +

|t− µ|2p

(γ − 1)σ2p (λ Sign(t− µ) + 1)2p

)−γ
dt = 1. (3)

Note that t−µ > 0 if t > µ and the integral can be split in two parts, removing the absolute and the sign
components

A

(∫ µ

t=0
t

(
1 +

(µ− t)2p

σ2p(γ − 1)(1− λ)2p

)−γ
dt+

∫ ∞
t=µ

t

(
1 +

(t− µ)2p

σ2p(γ − 1)(1 + λ)2p

)−γ
dt

)
=
σ2

2
. (4)

Let’s denote I1 the first integral and I2 the second one, we have

A =
σ2/2

I1 + I2
(5)

with

I1 = µ2

(
2F1

(
γ,

1

2p
, 1 +

1

2p
,

−µ2p

σ2p(γ − 1)(1− λ)2p

)
− 1

2
2F1

(
γ,

1

p
, 1 +

1

p
,

−µ2p

σ2p(γ − 1)(1− λ)2p

))

I2 =
(γ − 1)1/p(λ+ 1)2σ2

(
2µ

σ(γ−1)1/2p(1+λ)
Γ(γ − 1/2p)Γ(1 + 1/2p) + Γ(γ − 1/p)Γ(1 + 1/p)

)
2Γ(γ)

(6)

with Γ(x =) the Eulerian gamma function and 2F1 the Gauss hypergeometric function.
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2.2 GAF computation

The GAF is computed using the same process as previously proposed in [?, 6, 12]. The normal distribution
is first expressed in the slopes space:

PSGTD22 (r, q) = DSGTD(θm) ∗ cos4 θm =
A

π σ2θ

(
1 +

(|
√
r2+q2−µ|)2p

(γ−1)σ2p
(
λ Sign(

√
r2+q2−µ)+1

)2p

)γ , (7)

with r2 + q2 = tan2 θm. The one dimensional distribution of slopes in the incidence plane is given by:

PSGTD2 (q) =

∫ ∞
−∞

PSGTD22 (r, q) dr

=
A(γ − 1)γσ2pγ−2

π

∫ ∞
−∞

(γ − 1)σ2p +
|
√
r2 + q2 − µ|2p(

λ Sign(
√
r2 + q2 − µ) + 1

)2p


−γ

dr. (8)

Finally, the GAF G1(θ) is defined as:

GSTD1 (θ) =
1

1 + ΛSGTD(θ)
, (9)

where

ΛSGTD(θ) =
1

cot θ

∫ +∞

cot θ
(q − cot θ)PSGTD2 (q) dq. (10)

Equation 8 and consequently Equation 10 cannot be computed analytically. A solution is to precompute
Λ and store it in a table indexed by the SGTD parameters and θ. Due to the number of parameter, this
table can be large in the case of SGTD.

2.3 Importance sampling

The microfacet normalm is sampled according to the probability density function pdfSGTD(m) = DSGTD(m)|m·
n| and its associated cumulative distribution function:

cdfSGTD(m) =

∫ ϕm

ϕ=0

∫ θm

θ=0
DSGTD(m) cos(θ) sin(θ) dθ dϕ, (11)

We first sample the microfacet azimuthal angle ϕm; the elevation angle θm is sampled secondly. The choice
of ϕm is independent of θm and SGTD is isotropic, thus

ϕm = 2πξ1

with ξ1 is a uniform random number in [0, 1).
Knowing the azimuthal angle ϕm, the cdf to sample θm is:

cdfSGTD(θm|ϕm) =
2A

σ2

∫ θm

θ=0

tan(θ)

cos2(θ)

(
1 +

| tan θ − µ|2p

(γ − 1)σ2p (λ Sign(tan θ − µ) + 1)2p

)−γ
dθ = ξ2 (12)

with, here again, ξ2 a second uniform random number in [0, 1). Analytically invert this cdf is not trivial:
the computation result exhibits a sum of Gauss hypergeometric functions 2F1 which is not invertible.
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3 Generalized T-Distribution (GTD): λ = 0

The isotropic expression of GTD is:

DGTD(m) =
A

π σ2 cos4 θ
(

1 + (| tan θ−µ|)2p
(γ−1)σ2p

)γ . (13)

This function is shape invariant and its anisotropic form is:

DGTD(m) =
A

π σxσy cos4 θ
(

1 + B(ϕ)p(| tan θ−µ|)2p
(γ−1)

)γ (14)

avec B(ϕ) = cos2 ϕ
σ2
x

+ sin2 ϕ
σ2
y

.

3.1 Normalization factor

With the same mathematical development as for SGTD, we have

A =
σ2/2

I1 + I2
(15)

with

I1 = µ2

(
2F1

(
γ,

1

2p
, 1 +

1

2p
,
−µ2p

σ2p(γ − 1)

)
− 1

2
2F1

(
γ,

1

p
, 1 +

1

p
,
−µ2p

σ2p(γ − 1)

))

I2 =
(γ − 1)1/pσ2

(
2µ

σ(γ−1)1/2p
Γ(γ − 1/2p)Γ(1 + 1/2p) + Γ(γ − 1/p)Γ(1 + 1/p)

)
2Γ(γ)

(16)

For the anisotropic version, σ2 = σxσy.

3.2 GAF computation

The normal distribution in the slopes space is

PSGTD22 (r, q) = DSGTD(θm) ∗ cos4 θm =
A

π σ2θ

(
1 +

(|
√
r2+q2−µ|)2p
(γ−1)σ2p

)γ , (17)

with r2 + q2 = tan2 θm. The one dimensional distribution of slopes in the incidence plane is given by:

PGTD2 (q) =

∫ ∞
−∞

PSGTD22 (r, q) dr

=
A(γ − 1)γσ2pγ−2

π

∫ ∞
−∞

(
(γ − 1)σ2p + |

√
r2 + q2 − µ|2p

)−γ
dr. (18)

Finally, the GAF G1(θ) is defined as:

GSTD1 (θ) =
1

1 + ΛGTD(θ)
, (19)

where

ΛGTD(θ) =
1

cot θ

∫ +∞

cot θ
(q − cot θ)PGTD2 (q) dq. (20)

Equation 18 and consequently Equation 20 cannot be computed analytically.

3.3 Importance sampling

Here again, computation leads to invertible cdf .
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4 Skewed Generalized Normal Distribution (SGND): γ →∞
SGND can be derived from SGTD using Taylor series expansion:

DSGTD(m) =
A

π σ2 cos4 θ
(

1 + | tan θ−µ|2p
(γ−1)σ2pC

)γ
=

A

π σ2 cos4 θ

(
+∞∑
k=0

(
−γ
k

)(
| tan θ − µ|2p

Cσ2p

)k)

=
A

π σ2 cos4 θ

(
+∞∑
k=0

γ(γ + 1) · · · (γ + k − 1)

(γ − 1)kk!

(
−| tan θ − µ|2p

Cσ2p

)k)
(21)

with
C = (λ Sign (tan θ − µ) + 1)2p .

In the case of SGND where lim
γ→+∞

γ(γ+1)···(γ+k−1)
(γ−1)k

= 1, we obtain

DSGND(m) =
A

π σ2 cos4 θ
exp

(
−| tan θ − µ|2p

Cσ2p

)
(22)

This distribution is not shape invariant and thus anisotropy cannot be derived directly.

4.1 Normalization factor

The normalization factor leads intractable integral but can be computed for unshifted version with µ = 0.
In that case, the normalization factor is given by:

A =
p

(1 + λ)2Γ(1
p)

(23)

4.2 GAF computation

The function λ cannot be analytically obtained with SGND.

4.3 Importance sampling

Importance sampling cannot be derived for the shifted version. However, it can be computed when µ = 0.
As SNGD is isotropic, ϕm = 2πξ1.

cdfSGTD(θm) =
2A

σ2

∫ tan θm

t=0
t exp

(
−| tan θ − µ|2p

(1 + λ)2pσ2p

)
dt = ξ2

⇒ −(1 + λ)2A

p

[
Γ

(
1

p
,

t2p

(1 + λ)2pσ2p

)]tan θm

0

= ξ2

⇒ Γ

(
1

p
,

tan2p θm
(1 + λ)2pσ2p

)
= Γ(1/p)ξ2

⇒ tan2p θm
(1 + λ)2pσ2p

= Γ−1
u (1/p, ξ2)

⇒ θm = arctan
(

(1 + λ)σΓ−1
u (1/p, ξ2)

1
2p

)
(24)

with Γ−1
u the inverse of the normalized upper incomplete gamma function.
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5 Skewed T-Distribution (STD): p = 2

Its expression for the isotropic case (STD is not shape invariant) is given by

DSGTD(m) =
A

π σ2 cos4 θ
(

1 + (| tan θ−µ|)2
(γ−1)σ2C

)γ (25)

with

C = (λ Sign (tan θ − µ) + 1)2 .

5.1 Normalization factor

Starting from Equations 5 and 6 for SGTD, we have

A =
σ2/2

I1 + I2
(26)

with

I1 = µ2

(
2F1

(
γ,

1

2
,
3

2
,

−µ2

σ2(γ − 1)(1− λ)2

)
− 1

2
2F1

(
γ, 1, 2,

−µ2

σ2(γ − 1)(1− λ)2

))

I2 =
(γ − 1)(λ+ 1)2σ2

(
2µ

σ
√
γ−1(1+λ)

Γ(γ − 1/2)
√
π

2 + Γ(γ − 1)
)

2Γ(γ)
(27)

5.2 GAF computation

The function λ cannot be analytically obtained with STD.

5.3 Importance sampling

Computation leads to invertible cdf .
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6 Generalized Normal Distribution (GND): γ →∞, λ = 0

For unshifted version of GND, we let the reader to the paper [9] for GAF computation and importance
sampling. Its anisotropic expression is

DGND(m) =
A

π σ2 cos4 θ
exp

(
−| tan θ − µ|2p

σ2p

)
. (28)

This function is shape invariant and its anisotropic form is:

DGND(m) =
A

π σxσy cos4 θ
exp

(
−(B(ϕ)p| tan θ − µ|)2p

)
(29)

avec B(ϕ) = cos2 ϕ
σ2
x

+ sin2 ϕ
σ2
y

.

6.1 Normalization factor

The normalization factor leads intractable integral but can be computed for unshifted version with µ = 0.
In that case, the normalization factor is given by:

A =
p

Γ(1/p)
. (30)

6.2 GAF computation

No analytical GAF computation.

6.3 Importance sampling

Importance sampling cannot be derived directly for the shifted case. As shown in [9] for the unshifted
case, φm can be sampled uniformly over 2π (the obtained cdf is not invertible) and the choice of θm can
be done by importance.
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7 Skewed Normal Distribution (SND): γ →∞, p = 1

DSND(m) =
A

π σ2 cos4 θ
exp

(
−| tan θ − µ|2

Cσ2

)
(31)

with
C = (λ Sign (tan θ − µ) + 1)2 .

This distribution is not shape invariant in its shifted version and thus anisotropy cannot be derived
directly.

7.1 Normalization factor

The normalization factor is given by:

A =
σ2

I
(32)

with

I = (1 + λ)2σ2 + (1− λ)2σ2

(
exp

(
−µ2

σ2(1 ∗ λ)

)
− 1

)
+ (1 + λ)σµ

√
π

+(1− λ)σµ
√
πerf

(
µ

(1− λ)σ

)
(33)

7.2 GAF computation

No analytical GAF computation.

7.3 Importance sampling

Importance sampling cannot be derived for the shifted version. However, it can be computed when µ = 0.
As SND is isotropic, ϕm = 2πξ1.

cdfSND(θm) =
2A

σ2

∫ tan θm

t=0
t exp

(
−| tan θ − µ|2

(1 + λ)2σ2

)
dt = ξ2

= A(1 + λ)2 −A(1 + λ)2 exp

(
tan2 θ

σ2(1 + λ)2

)
= ξ2

⇒ θm = arctan

(
− log(1− ξ2)

σ2(1 + λ)2

)
. (34)
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8 Student’s T-Distribution (Student’s TD): p = 1, λ = 0

For unshifted version of Student’s TD, we let the reader to the paper [10] for GAF computation and
importance sampling.

The isotropic expression of Student’s TD is:

DStudTD(m) =
A

π σ2 cos4 θ
(

1 + (| tan θ−µ|)2
(γ−1)σ2

)γ . (35)

This function is shape invariant and its anisotropic form is:

DStudTD(m) =
A

π σxσy cos4 θ
(

1 + (B(ϕ)| tan θ−µ|)2
(γ−1)

)γ (36)

avec B(ϕ) = cos2 ϕ
σ2
x

+ sin2 ϕ
σ2
y

.

8.1 Normalization factor

2A

σ2

∫ π/2

θ=0

tan θ(1 + tan2 θ)

θ
(

1 + (| tan θ−µ|)2
(γ−1)σ2

)γ dθ = 1

⇒ A

∫ +∞

T=−µ

T − µ(
1 + T 2

(γ−1)σ2

)γ dT =
σ2

2

⇒ A =
σ2

((γ−1)σ2+µ2)1−γ

(γ−1)γ+1σ2γ −
√
γ−1σµΓ(γ−1/2)

Γ(γ) − 2µ2
2F1(1

2 , γ,
3
2 ,

−µ2
(γ−1)σ2 )

(37)

For the anisotropic version, σ2 = σxσy.

8.2 GAF computation

No analytical GAF computation but the λ function can be found in [10] for the unshifted version.

8.3 Importance sampling

Computation leads to invertible cdf with the shifted version of Student’s TD. However, importance sam-
pling can be derived for the unshifted version [10].
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9 Shifted Beckmann: γ →∞, λ = 0, p = 1

The isotropic expression of Shifted Beckmann is:

DShiftBeck(m) =
1

π σ2 cos4
exp

(
−| tan θ − µ|2

σ2

)
. (38)

This function is shape invariant and its anisotropic form is:

DShiftBeck(m) =
1

π σ2 cos4
exp

(
−B(ϕ)| tan θ − µ|2

)
. (39)

avec B(ϕ) = cos2 ϕ
σ2
x

+ sin2 ϕ
σ2
y

.

9.1 Normalization factor

Starting from the GND expression and fixing p = 1, the shifted Beckmann distribution is already normal-
ized.

9.2 GAF computation

No analytical GAF computation but the λ function can be found in [12] for the unshifted version.

9.3 Importance sampling

Computation leads to non invertible cumulative distribution functions whether for cdf(ϕm) or cdf(θm|ϕm).
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10 Shifted GGX: γ = 2, λ = 0, p = 1

The isotropic expression of Shifted GGX is:

DShiftGGX(m) =
A

π σ2 cos4 θ
(

1 + | tan θ−µ|2
σ2

)2 . (40)

This function is shape invariant and its anisotropic form is:

DShiftGGX(m) =
A

π σxσy cos4 θ (1 +B(ϕ)| tan θ − µ|2)2 (41)

avec B(ϕ) = cos2 ϕ
σ2
x

+ sin2 ϕ
σ2
y

.

10.1 Normalization factor

2A

σ2

∫ π/2

θ=0

tan θ(1 + tan2 θ)

θ
(

1 + (| tan θ−µ|)2
σ2

)2 dθ = 1

⇒ A

∫ +∞

T=−µ

T + µ(
1 + T 2

σ2

)2 dT =
σ2

2

⇒ A =
2σ2

µπσ + 2σ2 + 2µσ arctan
(µ
σ

) (42)

For the anisotropic version, σ2 = σxσy.

10.2 GAF computation

No analytical GAF computation but the λ function can be found in [12] for the unshifted version.

10.3 Importance sampling

Importance sampling is well known for unshifted GGX [12]. For shifted version, the cumulative distribution
function for θ, knowing the ϕ value is given by:

cdf(θ|ϕ) =
2A

σ

∫ tan θ−µ

T=−µ

T + µ(
1 + T 2

σ2

)2 dT = ξ

⇒ 2A

σ

∫ tan θ−µ
σ

X=−µ/σ

σX + µ

(1 +X2)2 dX = ξ

⇒ 2A

σ

µ
(

tan θ−µ
σ

)
− σ

1 +
(

tan θ−µ
σ

)2 + µ arctan

(
tan θ − µ

σ

)
+
µ2/σ + σ

1 + µ2/σ2
− µ arctan

(
−µ
σ

) = ξ

⇒
Y − σ

µ

1 + Y 2
+ arctanY =

σξ

µA
− σ

µ
+ arctan

µ

σ
(43)

with Y = tan θ−µ
σ . Even if this cdf is not directly invertible, efficient strategies (e.g. Newton based method

with bracketing interval) can be adopted.
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