Shizan Fang 
email: shizan.fang@u-bourgogne.fr.
  
Zhongmin Qian 
email: zhongmin.qian@maths.ox.ac.uk
  
Vorticity, Helicity, Intrinsinc geometry for Navier-Stokes equations

Keywords: Vorticity, Helicity, Intrinsinc geometry for Navier-Stokes equations 35Q30, 58J65 Vorticity, helicity, intrinsic Ricci tensor, De Rham-Hodge Laplacian, Navier-Stokes equations

come    

Introduction

The Navier-Stokes equation in a domain of R n is a system of partial differential equations

∂ t u t + (u t • ∇)u t -ν∆u t + ∇p t = 0, ∇ • u t = 0, u| t=0 = u 0 , (1.1) 
which describes the evolution of the velocity u t and the pressure p t of an incompressible viscous fluid with kinematic viscosity ν > 0. The model of periodic boundary conditions for (1.1) on a torus T n has been introduced to simplify mathematical considerations. In [START_REF] Ebin | Groups of diffeomorphisms and the motion of an incompressible fluid[END_REF], Navier-Stokes equations on a compact Riemannian manifold M have been considered using the framework of the group of diffeomorphisms of M initiated by V. Arnold in [START_REF] Arnold | Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l' hydrodynamique des fluides parfaits[END_REF]; where the Laplace operator involved in the text of [START_REF] Ebin | Groups of diffeomorphisms and the motion of an incompressible fluid[END_REF] is de Rham-Hodge Laplacian , however, the authors said in the note added in proof that the convenient Laplace operator comes from deformation tensor.

In this article, we would like to explore the rich geometry coded in the Navier-Stokes equation on a manifold. Let ∇ be the Levi-Civita connection on M . For a vector field A on M , the deformation tensor Def (A) is a symmetric tensor of type (0, 2) defined by

(Def A)(X, Y) = 1 2 ∇ X A, Y + ∇ Y A, X , X, Y ∈ X (M), (1.2) 
where X (M ) is the space of vector fields on M . Then Def : TM → S 2 T * M maps a vector field to a symmetric tensor of type (0, 2). Let Def * : S 2 T * M → TM be the adjoint operator.

In [START_REF] Mitrea | Navier-Stokes equations on Lipschitz domains in Riemannian manifolds[END_REF] or in [START_REF] Taylor | Partial Differential Equations III: Nonlinear Equations[END_REF] (see page 493), the authors considered the following Laplacian ˆ = 2Def * Def .

(1.3)

They considered the Navier-Stokes equation with viscosity described by ˆ , namely

∂ t u t + ∇ ut u t + ν ˆ u t = -∇p t , div(u t ) = 0, u| t=0 = u 0 , (1.4) 
The reader may also refer to [START_REF] Pierfelice | The incompressible Navier-Stokes equations on non-compact manifolds[END_REF] in which the author considered the same equation as (1.4) on a complete Riemnnian manifold with negative curvature. Variational principles in the class of incompressible Brownian martingales in the spirit of [START_REF] Arnold | Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l' hydrodynamique des fluides parfaits[END_REF] were established recently in [START_REF] Cipriano | Navier-Stokes equations and diffusions on the group of homeomorphisms of the torus[END_REF][START_REF] Arnaudon | Lagrangian Navier-Stokes diffusions on manifolds: variational principle and stability[END_REF][START_REF] Arnaudon | Stochastic Lagrangian flows on some compact manifolds[END_REF][START_REF] Arnaudon | Generalized stochastic Lagrangian paths for the Navier-Stokes equation[END_REF] for the Navier-Stokes equation (1.4).

In this work, we will concerned with a complete Riemannian manifold M of dimension n, with Ricci curvature bounded from below. We are interested in the following Navier-Stokes equation on M defined with the De Rham-Hodge Laplacian ,

∂ t u t + ∇ ut u t + ν u t = -∇p t , div(u t ) = 0, u| t=0 = u 0 , (1.5) 
where u(x, t) denotes the velocity vector field at time t, and p(x, t) models the pressure. If no confusion may arise, we will use u t (resp. p t ) to denote the vector field u(•, t) (resp. p(•, t)) for each t.

There are a few works [START_REF] Kobayashi | On the Navier-Stokes equations on manifolds with curvature[END_REF][START_REF] Temam | Inertial forms of Navier-Stokes equations on the sphere[END_REF] which support this choice of . The probabilistic representation formulae behave better with Navier-Stokes equation (1.5) (see [START_REF] Constantin | A stochastic Lagrangian representation of the three-dimensional incompressible Navier-Stokes equations[END_REF][START_REF] Fang | Constantin and Iyer's representation formula for the Navier-Stokes equations on manifolds[END_REF][START_REF] Fang | Nash embedding, shape operator and Navier-Stokes equation on a Riemannian manifold[END_REF]). Our preference here for is motivated by its good geometric behavior and its deep links with Stochastic Analysis. See for example [START_REF] Bakry | Etude des transformations de Riesz dans les variétés à courbure de Ricci minorée[END_REF][START_REF] Bismut | Mécanique aléatoire[END_REF][START_REF] Bismut | Large deviations and Malliavin calculus[END_REF][START_REF] Driver | A Cameron-Martin type quasi-invariance theorem for Brownian motion on a compact manifold[END_REF][START_REF] Driver | Heat equation derivative formulas for vector bundles[END_REF][START_REF] Elworthy | Stochastic differential equations on manifolds[END_REF][START_REF] Elworthy | Bismut formulae for differential forms[END_REF][START_REF] Elworthy | On the geometry of diffusion operators and stochastic flows[END_REF][START_REF] Fang | Stochastic analysis on the path space of a Riemannian manifold[END_REF][START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF][START_REF] Kunita | Stochastic flows and Stochastic differential equations[END_REF][START_REF] Malliavin | Formule de la moyenne, calcul des perturbations et théorie d'annulation pour les formes harmoniques[END_REF][START_REF] Stroock | An introduction to the analysis of paths on a Riemannian manifold[END_REF]. From the view of kinetic mechanics, the viscosity effect of a non-homogeneous fluid should be mathematically described by the Bochner Laplacian of the velocity vector field, where the metric tensor describes the local viscosity distribution. On the other hand, the de Rham-Hodge Laplacian operating on one forms is mathematically more appealing. By invoking de Rham-Hodge Laplacian in the model, according to the Bochner identity, one then produces a no-physical additional term which is however linear in the velocity. An additional linear term in the Navier-Stokes equation will not alter the fundamental difficulty, nor to alter the physics of the fluid flows, which justify the use of de Rham-Hodge Laplacian. There is also a good reason too to consider Navier-Stokes equations on manifolds, if one wants to model the global behavior of the pacific ocean climate for example.

Let's first say a few words on the definition of on vector fields. There is a one-to-one correspondence between the space of vector fields X (M ) and that of differential 1-forms Λ 1 (M ). Given a vector field A (resp. differential 1-form ω), we shall denote by à (resp. ω ) the corresponding differential 1-form (resp. vector field). To see more intuitively these correspondences, let's explain on a local chart U : as usual, we denote by { ∂ ∂x 1 , . . . , ∂ ∂xn } the basis of the tangent space T x M and by {dx 1 , . . . , dx n } the dual basis of T *

x M , called the co-tangent space at x, that is, dx i ( ∂ ∂x j ) = δ ij . The inner product in T x M as well as the one in the dual space T * x M will be denoted by , , while the duality between T * x M and T x M will be denoted by ( , ). Set

g ij = ∂ ∂x i , ∂ ∂x j . Let u be a vector field on M , on U , u = n i=1 u i ∂ ∂x i , then ũ admits the expression ũ = n i=1 n j=1 g ij u j dx i .
Let g ij = dx i , dx j . Then the matrix (g ij ) is the inverse matrix of (g ij ). For a differential 1-form ω = n j=1 ω j dx j , the associated vector field ω # has the expression

ω # = n i=1 n =1 g i ω ∂ ∂x i . Concisely (ω, A) = ω # , A = ω, Ã , A ∈ X (M ), ω ∈ Λ 1 (M ).
Now for A ∈ X (M ), the De-Rham Hodge Laplacian A is defined by

A = ( Ã) # , = dd * + d * d,
where d * is adjoint operator of exterior derivative d. Then we have the following relation

M ( ω, A) dx = M ω, Ã dx = M ω, Ã dx = M (ω, A) dx
where dx denotes the Riemannian measure on M . The classical Bochner-Weitzenböck reads as

A = -∆A + Ric(A), A ∈ X (M ), (1.6) 
where Ric is the Ricci tensor on M and ∆A = Trace(∇∇A), characterized by

- M ∆A, A dx = M |∇A| 2 dx. (1.7)
Let T : X (M ) → X (M ) be a tensor of type (1, 1), and denote by T # : Λ 1 (M ) → Λ 1 (M ) its adjoint defined by

(T # ω, A) = (ω, T (A)), A ∈ X (M ), (1.8) 
where we used notation Λ p (M ) to denote the space of differential p-forms on M .

In the space of R 3 , the inner product between two vectors u, v will be noted by u • v. The vorticity ξ t of a velocity u t is a vector field defined as ξ t = ∇ × u t . When u t is a solution to Navier-Stokes equation (1.1), then ξ t satisfies the following heat equation

dξ t dt + ∇ ut ξ t -ν∆ξ t = ∇ s ξt u t (1.9)
where ∇ s u t is the symmetric part of ∇u t , such that ∇ s ξt u t • v = Def u t (ξ t , v) with Def introduced in (1.2). How to interpret the term ∇ s ξt u t ? From (1.9), a formal computation leads to 1 2

d dt R 3 |ξ t | 2 dx + ν R 3 |∇ξ t | 2 dx = R 3
Def (u t )(ξ t , ξ t ) dx.

(1.10) Since K. Itô introduced the tool of stochastic parallel translations along paths of Brownian motion on a Riemannian manifold, especially after the works by Eells, Elworthy, Malliavin and Bismut (see for example [START_REF] Malliavin | Formule de la moyenne, calcul des perturbations et théorie d'annulation pour les formes harmoniques[END_REF][START_REF] Eells | Stochastic dynamical system, Control theory and topics in functional analysis[END_REF][START_REF] Bismut | Large deviations and Malliavin calculus[END_REF]), there are profound involvements of Stochastic Analysis in the study of linear second order partial differential equations and in Riemannian geometry [START_REF] Bakry | Etude des transformations de Riesz dans les variétés à courbure de Ricci minorée[END_REF][START_REF] Stroock | An introduction to the analysis of paths on a Riemannian manifold[END_REF][START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF][START_REF] Li | On the strong L p -Hodge decomposition over complete Riemannian manifolds[END_REF]. The purpose of this work is to geometrically explain the right hand side of (1.10). To this end, we will consider Navier-Stokes equation in a geometric framework in order that suitable geometric meaning could be found.

In what follows, we present the organisation of the paper and main results. In Section 2, first we follow more or less the exposition of [START_REF] Taylor | Partial Differential Equations III: Nonlinear Equations[END_REF]. To a solution u t to Navier-Sokes equaion (1.5), we associate a differential 2-form ωt which is the exterior derivative of ũt ; a heat equation for ωt will be established with involvement of ∇ s u t . When M is of dimension 3, the Hodge star * operator sends ωt to a differential 1-form ω t . In flat case of R 3 , ω t = ∇ × u t . We call such ω t the vorticity of u t ; a heat equation for ω t is also obtained in Section 2. In second part of Section 2, the a priori evolution equation for ω t is established. Using heat semi-group e -t on differential forms as well as Bismut formulae, the existence of weak solutions in the sense of Leray to Navier-Stokes equation (1.5) over any intervall [0, T ] is proved under suitable hypothesis on boundedness of Ricci tensor : to our knowledge, these results are new while comparing to recent results obtained in [START_REF] Pierfelice | The incompressible Navier-Stokes equations on non-compact manifolds[END_REF]. In Section 3, we give an exposition of the involvement of Stochastic Analysis on Riemannian manifolds; stochastic differential equations on M , defining the Brownian motion with drift u ∈ L 2 ([0, T ], H 1 (M )) of divergence free is proved to be stochastic complete; then ω t admits a probabilistic representation. By introducing a suitable metric compatible affine connection on M , a Brownian motion with drift u on M can be obtained by rolling without friction flat Brownian motion of R n on M with respect to it : it was a main idea in [START_REF] Malliavin | Formule de la moyenne, calcul des perturbations et théorie d'annulation pour les formes harmoniques[END_REF][START_REF] Eells | Stochastic dynamical system, Control theory and topics in functional analysis[END_REF], and well developed in [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF]. So to a velocity u t , we associate a metric compatible connection ∇ t on M , which admits the following global expression

∇ t X Y = ∇ X Y - 2 n -1 K t (X, Y ), X, Y ∈ X (M )
where K t (X, Y ) = Y, u t X -X, Y u t : it gives rise to a connection with torsion T t which is not of skew-symmetric. Section 4 is devoted to compute the associated intrinsic Ricci tensor Ric t which was first introduced by B. Driver in [START_REF] Driver | A Cameron-Martin type quasi-invariance theorem for Brownian motion on a compact manifold[END_REF] as follows:

Ric t (X) = Ric t (X) + n i=1 (∇ t e i T t )(X, e i ),
where Ric t is the Ricci tensor associated to ∇ t and {e 1 , . . . , e n } is an orthonormal basis at tangent spaces. The formula (1.10) has the following geometric counterpart for 3D Riemannian manifold M , 1 2

d dt M |ω t | 2 dx + ν M |∇ω t | 2 dx = 1 2ν M (ω t , u t ) 2 dx -ν M ( Ric t,# ω t , ω t ) dx. (1.11)
As well as vorticity ω t is not orthogonal to velocity u t , a phenomenon of helicity (ω t , u t ) will appear. Formula (1.11) says how helicity and intrinsic Ricci tensor fit into the evolution of vorticity in time and in space. Section 5 is devoted to interpretation of main results obtained in Section 4 in the framework of vector calculus. Finally in Section 6, we collect and prove technical results used previously.

2 Vorticity, Helicity and their evolution equations Let u t be a (smooth) solution to the Navier-Stokes equation on M ,

∂ t u t + ∇ ut u t + ν u t = -∇p t , div(u t ) = 0, u| t=0 = u 0 . (2.1)
Transforming Equation (2.1) into differential forms, ũt satisfies

∂ t ũt + ∇ ut ũt + ν ũt = -dp t , d * ũt = 0, ũ| t=0 = ũ0 . (2.2) Let ωt = dũ t , (2.3) 
which is a differential 2-form. For vector fields X, v on M , Lie derivative L satisfies the product rule, that is,

L v (ũ, X) = (L v ũ, X) + (ũ, L v X), where L v (ũ, X) = (∇ v ũ, X) + (ũ, ∇ v X).
By taking v = u, we get

(L u ũ -∇ u ũ, X) = (ũ, ∇ u X -L u X) = (ũ, ∇ X u) = u, ∇ X u = 1 2 (d|u| 2 , X)
which yields that

L u ũ -∇ u ũ = 1 2 d|u| 2 . (2.4) 
By definition L u = i u d + di u where i u denotes the interior product by u, so the exterior derivative d commutes with L u since dL u = L u d = di u d, and therefore by using (2.4),

d∇ u ũ = dL u ũ = L u dũ.
It is obvious that d = d . Then by acting d on the two sides of (2.2), we get

∂ t ωt + L ut ωt + ν ωt = 0, ω| t=0 = ω0 . (2.5) Remark 2.1. Since d * ũ = 0, by definition (2.
3), d * ω = d * dũ = ũ, and therefore, as admits a spectral gap, ũ can be solved by

ũ = -1 (d * ω).
It is sometimes more convenient to use covariant derivatives. To do this, let β be a differential p-form and T : X (M ) → X (M ) be a tensor of type [START_REF] Airault | Integration by parts formulas and dilatation vector fields on elliptic probability space[END_REF][START_REF] Airault | Integration by parts formulas and dilatation vector fields on elliptic probability space[END_REF]. Define for X 1 , . . . , X p , (β T )(X 1 , . . . , X p ) = β(T (X 1 ), X 2 , . . . , X p ) + . . . + β(X 1 , . . . , X p-1 , T (X p )).

(2.6)

If β is a 2-form and T = ∇u, then for X, Y ∈ X (M ),

(β ∇u)(X, Y ) = β(∇ X u, Y ) + β(X, ∇ Y u).
(2.7)

In the same way as for proving (2.4), we have

(L v β -∇ v β)(X, Y ) = β(∇ X v, Y ) + β(X, ∇ Y v) = (β ∇v)(X, Y ).
Now replacing L u ω by ∇ u ω + ω ∇u in (2.5), we obtain the following form

∂ t ωt + ∇ ut ωt + ν ωt = -ω t ∇u t , ω| t=0 = ω0 . (2.8)
Proposition 2.2. Let ∇ sk u be the skew-symmetric part of ∇u, that is,

∇ sk u, X ⊗ Y = 1 2 ∇ X u, Y -∇ Y u, X .
Then ω ∇ sk u = 0.

Proof. Fix x ∈ M and let {e 1 , . . . , e n } be an orthonormal basis of T x M . Then

∇ sk X u = n i,j=1
∇ sk e i u, e j X, e i e j = n i,j=1

dũ(e i , e j ) X, e i e j = n j=1 ω(X, e j ) e j , so that

ω(∇ sk X u, Y ) = n j=1 ω(X, e j )ω(e j , Y ) = ω(∇ sk Y u, X).
Combing these relations and Definition (2.6), we have

(ω ∇ sk u)(X, Y ) = ω(∇ sk X v, Y ) + ω(X, ∇ sk Y v) = 0.
Let ∇ s u be the symmetric part of ∇u, that is

∇ s u, X ⊗ Y = 1 2 ∇ X u, Y + ∇ Y u, X .
∇ s u is called the rate of strain tensor in the literature on fluid dynamics. Therefore Equation (2.8) can be written in the following form:

∂ t ωt + ∇ ut ωt + ν ωt = -ω t ∇ s u t , ω| t=0 = ω0 .
(2.9)

In the case where dim(M ) = 2 or 3, Equation (2.9) can be simplified using Hodge star operator * . Assume that M is oriented and ω n is the n-form of Riemannian volume, let

ω = * ω, which is a (n -2) form such that ω ∧ α = ω, α Λ n-2 ω n , foranyα ∈ Λ n-2 (M ), or β ∧ * ω = ω, β Λ 2 ω n , foranyβ ∈ Λ 2 (M ).
Proposition 2.3. Let ω be a p-form on M and div(u) = 0. Then ∇ u ( * ω) = * (∇ u ω).

Proof. Let β be a p-form. Then β ∧ * ω = β, ω ω n . Taking the covariant derivative with respect to u, the left hand side gives

∇ u β ∧ ( * ω) + β ∧ ∇ u ( * ω) = ∇ u β, ω ω n + β ∧ ∇ u ( * ω),
while the right hand side gives

∇ u β, ω ω n + β, ∇ u ω ω n = ∇ u β, ω ω n + β ∧ * ∇ u ω as ∇ u ω n = 0. Therefore β ∧ ∇ u ( * ω) = β ∧ ( * ∇ u ω) holds for any p-form β, the result follows. Proposition 2.4. Assume dim(M ) = 3. Then * ωt ∇ s u = -( * ω t ) ∇ s u.
(2.10)

Proof. Fix x ∈ M ; let {e 1 , e 2 , e 3 } be an orthonormal basis of T x M , {ẽ 1 , ẽ2 , ẽ3 } be the dual basis of T * x M . Let {i 1 , i 2 , i 3 } be a direct permutation of {1, 2, 3}, and ω = ẽi 1 ∧ ẽi 2 . Then (ω ∇ s u)(X, Y ) = (∇ s X u) i 1 Y i 2 -Y i 1 (∇ s X u) i 2 + (∇ s Y u) i 2 X i 1 -X i 2 (∇ s Y u) i 1 = 3 j=1 (∇ s e j u) i 1 X j Y i 2 -(∇ s e j u) i 2 X j Y i 1 + (∇ s e j u) i 2 X i 1 Y j -(∇ s e j u) i 1 X i 2 Y j = 3 j=1 (∇ s e j u) i 1 X j Y i 2 -X i 2 Y j + 3 j=1 (∇ s e j u) i 2 X i 1 Y j -X j Y i 1 .
It follows that

ω ∇ s u = 3 j=1 (∇ s e j u) i 1 ẽj ∧ ẽi 2 + 3 j=1 (∇ s e j u) i 2 ẽi 1 ∧ ẽj .
More precisely

ω ∇ s u = (∇ s e i 1 u) i 1 ẽi 1 ∧ ẽi 2 + (∇ s e i 2 u) i 2 ẽi 1 ∧ ẽi 2 + (∇ s e i 3 u) i 1 ẽi 3 ∧ ẽi 2 + (∇ s e i 3 u) i 2 ẽi 1 ∧ ẽi 3 . Since 3 j=1 (∇ s e i j u) i j = Trace(∇u) = div(u) = 0, therefore finally we get * (ω ∇ s u) = -(∇ s e i 3 u) i 1 ẽi 1 -(∇ s e i 3 u) i 2 ẽi 2 -(∇ s e i 3 u) i 3 ẽi 3 . (2.11)
On the other hand, * ω = ẽi 3 , so that

( * ω) (∇ s u)(X) = ( * ω)(∇ s X u) = 3 j=1 (∇ s e j u) i 3 X j .
It follows that

( * ω) (∇ s u) = (∇ s e i 1 u) i 3 ẽi 1 + (∇ s e i 2 u) i 3 ẽi 2 + (∇ s e i 3 u) i 3 ẽi 3 (2.12)
Now combing (2.11), (2.12), and by symmetry of ∇ s u, we get (2.10).

Corollary 2.5. Let dim(M ) = 3 and ω t = * ω t . Then

∂ t ω t + ∇ u ω t + ν ω t = ω t (∇ s u t ). (2.13)
Proof. First note that * = * (see [START_REF] Warner | Foundations of differentiable manifolds and Lie groups[END_REF], p. 221), so (2.13) follows from Proposition 2.3 and Proposition 2.4.

Remark 2.6. Since * * = (-1) p(n-p) on p-form, so for n = 3, ωt = * ω t and in the case where admits a spectral gap, the following relation holds

ũt = -1 d * ( * ω t ) . (2.14)
Proposition 2.7. In the smooth case, it holds

1 2 d dt M |u t | 2 dx + ν M |∇u t | 2 dx = -ν M Ric u t , u t dx. (2.15) Proof. Remark first that M ∇ ut u t , u t dx = 1 2 M L ut |u t | 2 dx = 0 and M ∇p, u t dx = 0.
Then using equation (2.1), we get Then the following a priori estimate holds

1 2 d dt M |u t | 2 dx + ν M u t , u t dx = 0.
1 2 ||u t || 2 2 + ν t 0 ||∇u s || 2 2 ds ≤ 1 2 ||u 0 || 2 2 exp(2νtκ + ), (2.17) 
where κ + = sup{κ, 0}.

Proof. Using (2.16) and (2.15), we get inequality

1 2 d dt M |u t | 2 dx + ν M |∇u t | 2 dx ≤ νκ M |u t | 2 dx ≤ νκ + M |u t | 2 dx. Let ψ(t) = 1 2 ||u t || 2 2 + ν t 0 ||∇u s || 2 2 ds. Then ψ satisfies inequality ψ(t) ≤ 1 2 ||u 0 || 2 2 + 2νκ + t 0 ψ(s) ds.

Gronwall lemma yields (2.17).

In what follows, we will establish the existence of weak solutions in Leray sense over any [0, T ] and

u ∈ L 2 ([0, T ], H 1 (M )) ∩ L ∞ ([0, T ], L 2 (M )).
To this end, we will use the heat semi-group T t = e -t /2 to regularize vector fields. Let v be a continuous vector field on M with compact support and define T t v = (T t ṽ) # . Then T t v solves the heat equation

∂ ∂t + 1 2 (T t v) = 0.
By ellipticity of (see for example [START_REF] Warner | Foundations of differentiable manifolds and Lie groups[END_REF]), (t, x) → (T t v)(x) is smooth. It was shown in [START_REF] Fang | Heat semi-group and generalized flows on complete Riemannian manifolds[END_REF] that div(T t v) = T M t (div(v)), where T M t denotes heat semi-group on functions. Hence T t preserves the space of divergence free vector fields. By (6.14) 

T t v → v in L p .
Consider a family of smooth functions

ϕ ε ∈ C ∞ c (M ) with compact support such that 0 ≤ ϕ ε ≤ 1, ϕ ε (x) = 1 for x ∈ B(x M , 1/ε) and sup ε>0 ||∇ϕ ε || ∞ < +∞, (2.19) 
where x M is a fixed point of M . For ε > 0, we define

F ε (u) = -T ε P ϕ ε ∇ Tεu (ϕ ε T ε u) -νT ε T ε u, u ∈ L 2 (M )
where P is the orthogonal projection from L 2 (M ) to the subspace of vector fields of divergence free. We have

||T ε P ϕ ε ∇ Tεu (ϕ ε T ε u) || 2 ≤ e εκ + /2 ||P ϕ ε ∇ Tεu (ϕ ε T ε u) || 2 ≤ e εκ + /2 ||∇ ϕεTεu (ϕ ε T ε u)|| 2 .
Since ϕ ε is of compact support, we have

||∇ ϕεTεu (ϕ ε T ε u)|| 2 ≤ ||ϕ ε T ε u|| ∞ ||∇(ϕ ε T ε u)|| 2 .
(2.20)

Again due to compact support of ϕ ε , when n = 3, by Sobolev's embedding theorem, there is a constant β(ε) > 0 such that

||ϕ ε T ε u|| ∞ ≤ β(ε) ||ϕ ε T ε u|| H 2 .
For the general case, it is sufficient to bound the uniform norm by the norm of H m with m > n 2 . Proposition 2.9. For any T > 0, there are constants

β 1 , β 2 such that || T ε u|| 2 ≤ β 1 ε ||u|| 2 , ||∇T ε u|| 2 ≤ β 2 √ ε , ε > 0. (2.21)
Proof. We will restate, in Section 6, (2.21) with more precise coefficients dependent of curvatures of M and give a proof based on Bismut formulae obtained in [START_REF] Elworthy | Bismut formulae for differential forms[END_REF][START_REF] Driver | Heat equation derivative formulas for vector bundles[END_REF].

By Proposition 2.9, there are constants β(ε) > 0, β(ε) > 0 such that

||ϕ ε T ε u|| ∞ ≤ β(ε) ||u|| 2 , ||T ε T ε u|| 2 ≤ β(ε) ||u|| 2 . (2.22)
Combining (2.20) and (2.22), there are two constants β 1 (ε) > 0 and β 2 (ε) > 0 such that

||F ε (u)|| 2 ≤ β 1 (ε) ||u|| 2 2 + β 2 (ε)||u|| 2 ,
and F ε is locally Lipschitz. By theory of ordinary differential equation, there is a unique solution u ε to

du ε t dt = F ε (u ε t ), u ε 0 = u 0 ∈ L 2 , div(u ε t ) = 0, (2.23)
up to the explosion time τ .

Theorem 2.10. Assume that ||Ric|| ∞ < +∞ and that R 2 is bounded below. Then for any T > 0, there is a weak solution u ∈ L 2 ([0, T ], H 1 ) to Navier-Stokes equation (2.1) such that

1 2 ||u t || 2 2 + ν t 0 ||∇u s || 2 2 ds ≤ 1 2 ||u 0 || 2 2 exp(2νtκ + ),
where κ is lower bound of Ric and R 2 is the Weitzenböck curvature on 2-differential forms defined in (6.8).

Proof. Rewriting Equation (2.23) in the following explicit form, for t < τ ,

du ε t dt + T ε P ϕ ε ∇ Tεu ε t (ϕ ε T ε u ε t ) + νT ε T ε u ε t = 0. Note that M T ε P ϕ ε ∇ Tεu ε t (ϕ ε T ε u ε t ) , u ε t dx = M ∇ Tεu ε t (ϕ ε T ε u ε t ) , ϕ ε T ε u ε t dx = M L Tεu ε t |ϕ ε T ε u ε t | 2 dx = 0, since div(T ε u ε t ) = 0, and M T ε T ε u ε t , u ε t dx = M |∇T ε u ε t | 2 dx + M Ric(T ε u ε t ), T ε u ε t dx. Hence 1 2 d dt M |u ε t | 2 dx + ν M |∇T ε u ε t | 2 dx = -ν M Ric(T ε u ε t ), T ε u ε t dx ≤ -νκ M |T ε u ε t | 2 dx, or in the form 1 2 ||u ε t || 2 2 + ν t 0 |||∇T ε u ε s || 2 2 ds ≤ 1 2 ||u 0 || 2 2 + νκ + t 0 ||T ε u ε s || 2 2 ds. (2.24)
According to (2.18), above inequality implies that

1 2 ||u ε t || 2 2 ≤ 1 2 ||u 0 || 2 2 + νκ + e εκ + t 0 ||u ε s || 2 2 ds.
Gronwall lemma implies that for t < τ

1 2 ||u ε t || 2 2 ≤ 1 2 ||u 0 || 2 2 exp(tνκ + e εκ + ).
It follows that τ = +∞. Now again by (2.18) and (2.24), we get

1 2 ||T ε u ε t || 2 2 + νe εκ + t 0 |||∇T ε u ε s || 2 2 ds ≤ 1 2 e εκ + ||u 0 || 2 2 + νκ + e εκ + t 0 ||T ε u ε s || 2 2 ds.
Gronwall lemma yields, for ε ≤ 1, that

1 2 ||T ε u ε t || 2 2 + νe εκ + t 0 |||∇T ε u ε s || 2 2 ds ≤ e κ + 2 ||u 0 || 2 2 exp(tνκ + e κ + ). (2.25)
Let T > 0. By (2.25), the family

T ε u ε • ; ε ∈ (0, 1] is bounded in L 2 ([0, T ], H 1 ) as well in L ∞ ([0, T ], L 2 ). Then there is a sequence ε n and a u ∈ L 2 ([0, T ], H 1 ) ∩ L ∞ ([0, T ], L 2
) such that T εn u εn converges weakly to u in L 2 ([0, T ], H 1 ) and * -weakly in L ∞ ([0, T ], L 2 ). Now standard arguments allow to prove that u is a weak solution (2.1). The boundedness of Ric is needed while passing to the limit of the term

M Ric(T ε u ε t ), v t dx.
Proposition 2.11. Let dim(M ) = 3. The vorticity ω t satisfies a priori identity: The term H t := M (ω t , u t ) dx is called helicity in theory of the fluid mechanics.

1 2 d dt M |ω t | 2 dx + ν M |∇ω t | 2 dx = -ν M Ric ω t , ω t dx + M ω t ∇ s u t ,
Proposition 2.12. Let dim(M ) = 3. Then

d dt M (ω t , u t ) dx = -ν M dω t , * ω t Λ 2 dx -ν M (∇ω t , ∇u t ) dx -ν M (ω t , Ric u t ) dx + M (ω t , ∇ s ut u t ) dx. (2.27) 
Proof. Using Equation (2.1) and Equation (2.13), we have

d dt (ω t , u t ) = -(∇ ut ω t , u t ) -ν( ω t , u t ) + (ω t ∇ s u t , u t ) -(ω t , ∇ ut u t ) -ν(ω t , u t ) -(ω t , ∇p).
It is obvious that

M (∇ ut ω t , u t ) + (ω t , ∇ ut u t ) dx = M L ut (ω t , u t ) dx = 0.
In addition, by ( [START_REF] Warner | Foundations of differentiable manifolds and Lie groups[END_REF], page 220), d * = (-1) n(p+1)+1 * d * and * * = (-1) p(n-p) on p-forms.

Then d * * = ± * d, so that M ω t , dp dx = M * ω t , dp dx = M d * ( * ω t )p dx = ± M * (dω t ) p dx = 0.
On one hand, using Hodge star operator,

M (ω t , u t ) dx = M ω t , d * dũ t dx = M dω t , ωt dx = M dω t , * ω t dx.
On the other hand, using Bochner-Weitzenböck formula,

M (ω t , u t ) dx = M (∇ω t , ∇u t ) dx + M (ω t , Ric u t )dx.
By putting these terms together we conclude that

d dt M (ω t , u t ) dx = -ν M dω t , * ω t dx -ν M (∇ω t , ∇u t ) dx -ν M (ω t , Ric u t )dx + M (ω t , ∇ s ut u t ) dx,
since (ω t ∇ s u t , u t ) = (ω t , ∇ s ut u t ). We get (2.27).

Heat equations on differential forms

We will express solutions to equation (2.13) by means of principal bundle of orthonormal frames O(M ). An element r ∈ O(M ) is an isometry from R n onto T π(r) M where π : O(M ) → M is the canonical projection. More precisely, an element of O(M ) is composed of (x, r), where x = π(x, r) and r is an orthonormal frame at x, that is, an isometry from R n onto T x M . For the sake of simplicity, we read r as (π(r), r), but we sometimes have to distinguish them. The Levi-Civita connection on M gives rise to n canonical horizontal vector fields {A 1 , . . . , A n } on O(M ), which are such that dπ(r) • A r = rε i , where {ε 1 , . . . , ε n } is the canonical basis of R n . A vector field v on M can be lift to a horizontal vector field V on O(M ) such that dπ(r)V r = v π(r) . Let ω be a differential 1-form. Following Malliavin [START_REF] Malliavin | Formule de la moyenne, calcul des perturbations et théorie d'annulation pour les formes harmoniques[END_REF], we define

F i ω (r) = (ω π(r) , rε i ) = (π * ω, A i ) r , i = 1, . . . , n, (3.1) 
where π * ω is the pull-back of ω by π : O(M ) → M . We have

(L A j F i ω )(r) = (∇ rε j ω, rε i ) = (∇ω, rε j ⊗ rε i ), (3.2) 
where the second duality makes sense in T π(r) M ⊗ T π(r) M . In fact, let t → r(t) ∈ O(M ) be the smooth curve such that r(0) = r, r (0) = A j (r). Let ξ t = π(r(t)). Then // -1 t := r • r(t) -1 is the parallel translation from T ξt M onto T x M along ξ • and

F i ω (r(t)) = (ω ξt , r(t)ε i ) = (// -1 t ω ξt , rε i ).
Taking the derivative with respect to t at t = 0 yields (3.2). In the same way, we get (L 2

A j F i ω )(r) = (∇ rε j ∇ω, rε j ⊗ rε i ). Therefore ∆ O(M ) F i ω := n j=1 L 2 A j F i ω = (∆ω, rε i ) = F i ∆ω (r).
Let U t be the horizontal lift of u t to O(M ). Then U t (r) = n j=1 u t (x), rε j A j (r), where

x = π(r) and according to (3.2),

(L Ut F i ω )(r) = n j=1 u t , rε j (L A j F i ω )(r) = ∇ ut ω, rε i = F i ∇u t ω (r).
Let φ t = ω t ∇ s u; then

F i φt (r) = (φ t , rε i ) = ω t (∇ s rε i u t ) = n j=1 ∇ s rε i u t , rε j (ω t , rε j ) = n j=1 ∇ s rε i u t , rε j F j ωt .
Define K ij (t, r) = ∇ s rε i u t (π(r)), rε j and K(t, r) = (K ij (t, r)). Then F φt (r) = K(t, r)F ωt (r). By applying Bochner-Weitzenböck formula (see (1.6)) to 1-form ω, ω = -∆ω + Ric # ω. Let ric r = r -1 Ric π(r) r denote the equivariant representation of Ric on O(M ). Then F Ric # ω = ric F ω , since ric is symmetric. Now applying F on two sides of Equation (2.13), we get the following heat equation defined on O(M ), but taking values in flat space R n :

d dt F ωt = ν∆ O(M ) F ωt -L Ut F ωt + (K(t, •) -ν ric)F ωt . (3.3) 
This equation was extensively studied in the field of Stochastic analysis, see [START_REF] Bakry | Etude des transformations de Riesz dans les variétés à courbure de Ricci minorée[END_REF][START_REF] Bismut | Mécanique aléatoire[END_REF][START_REF] Bismut | Large deviations and Malliavin calculus[END_REF][START_REF] Elworthy | Stochastic differential equations on manifolds[END_REF][START_REF] Elworthy | On the geometry of diffusion operators and stochastic flows[END_REF][START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF][START_REF] Kunita | Stochastic flows and Stochastic differential equations[END_REF][START_REF] Malliavin | Formule de la moyenne, calcul des perturbations et théorie d'annulation pour les formes harmoniques[END_REF][START_REF] Stroock | An introduction to the analysis of paths on a Riemannian manifold[END_REF] for example. However the situation becomes more complicated when the vector field is time-dependent (see [START_REF] Stroock | Multidimensional diffusion processes[END_REF]).

In what follows, we will derive a stochastic representation formula for the solution to (3.3). First of all, we have to prove that the concerned diffusion processes do not explode at a finite time. For this purpose, consider a family of vector fields {v t (x); t ≥ 0} on M . We assume here that (t, x) → v t (x) is continuous and for each t ≥ 0, v t ∈ C 1+α with α > 0, and div(v t ) = 0. Let V t be the horizontal lift of v t to O(M ). Then div(V t ) = div(v t ) • π (see [START_REF] Fang | Heat semi-group and generalized flows on complete Riemannian manifolds[END_REF], 595) and therefore div(V t ) = 0.

Consider the following Stratonovich stochastic differential equation (SDE)

dr t = n k=1 A k (r t ) • dW k t + V t (r t )dt, r | t=0 = r 0 (3.4)
where

W t = (W 1 t , • • • , W n t
) is a standard Brownian motion on R n . Denote by r t (w, r 0 ) the solution to (3.4). Let ζ(w, r 0 ) be the explosion time of SDE (3.4). Let

Σ(t, w) = {r 0 ∈ O(M ); ζ(w, r 0 ) > t}.
Then for each t > 0 given, almost surely Σ(t, w) is an open subset of O(M ) and r 0 → r t (w, r 0 ) is a local diffeomorphism on Σ(t, w) (see [START_REF] Kunita | Stochastic flows and Stochastic differential equations[END_REF]). To be short, set r t (r 0 ) = r t (w, r 0 ). The Jacobian J rt of r 0 → r t (r 0 ) is equal to 1, since by [START_REF] Kunita | Stochastic flows and Stochastic differential equations[END_REF], the Jacobian J r -1 t of inverse map r -1 t admits expression

J r -1 t = exp - t 0 n k=1 div(H k )(r s (r 0 )) • dW k s - t 0 div(V s (r s (r 0 )) ds = 1.
Then for any ϕ ∈ C c (O(M )), almost surely,

O(M ) ϕ(r t (r 0 )) 1 Σ(t,w) (r 0 ) dr 0 = O(M ) ϕ(r 0 )1 rt(Σ(t,w)) (r 0 ) dr 0 , (3.5) 
where dr 0 is the Liouville measure on O(M ) (see [START_REF] Stroock | An introduction to the analysis of paths on a Riemannian manifold[END_REF], page 185) such that π # (dr 0 ) = dx 0 .

Let d M (x, y) be the Riemannian distance on M between x and y. Fix a reference point

x M ∈ M , consider ρ(r) = d M (π(r), x M ).
It is known that for each x 0 given,

x → d M (x, x 0 ) is smooth out of C x 0 ∪ {x 0 }, were C x 0 is the cut-locusof x 0 . It is known that C x 0 is negligible with respect to dx. Then ρ is smooth out of π -1 (C x M ∪ {x M }). By [34], p. 197, out of π -1 (C x 0 ∪ {x 0 }), 1 2 ∆ O(M ) d M (π(•), x 0 ) ≤ n -1 2d M (π(•), x 0 ) + 1 2 √ nκ. (3.6) It is known that out of C x 0 ∪ {x 0 }, |∇ x d M (x, x 0 )| = 1. Therefore out of π -1 (C x 0 ∪ {x 0 }), |L Vt d M (π(•), x 0 )| ≤ |V t |. (3.7)
The lower bound of 1 2 ∆ O(M ) ρ is more delicate. According to [START_REF] Hsu | Stochastic Analysis on Manifolds[END_REF], page 90,

1 2 ∆ O(M ) d M (π(•), x 0 ) ≥ n -1 2ρ - 1 2 n(n -1)K R , quadπ(r) ∈ B(x M , R)\(C x 0 ∪ {x 0 }). (3.8)
where K R is the upper bound of sectional curvature on the big ball B(x M , R).

Proposition 3.1. Assume furthermore that

T 0 M |v s (x)| 2 dxds < +∞. (3.9)
Then there is a non-decreasing process Lt ≥ 0 and a Brownian motion {β t ; t ≥ 0} on R such that for almost surely initial r 0 ,

ρ(r t ) -ρ(r 0 ) = β t + t 0 ( 1 2 ∆ O(M ) + L Vs )ρ (r s ) ds -Lt , t < ζ(w, r 0 ). (3.10)
Proof. The proof will be given in Section 6. 

E(ρ(r t∧ζ ) 2 ) ≤ ρ(r 0 ) 2 + C t 0 E 2ρ(r s )(L s ρ)(r s ) + 1 1 (s<ζ) ds ≤ ρ(r 0 ) 2 + 2C t 0 E (1 + ρ(r s ))(1 + |V s (r s )|)1 (s<ζ) ds.
Let µ be the probability measure on O(M ) defined in (6.6).

Then

O(M ) E(ρ(r t∧ζ ) 2 ) dµ ≤ O(M ) ρ(r 0 ) 2 dµ + 2C t 0 O(M ) E (1 + ρ(r s ))(1 + |V s (r s )|)1 (s<ζ) dµds ≤ O(M ) ρ(r 0 ) 2 dµ + 4C t 0 O(M ) E (1 + ρ(r s∧ζ ) 2 ) dµds 1/2 × × t 0 O(M ) E (1 + |V s (r s )|) 2 1 (s<ζ) dµds 1/2 . Note that t 0 O(M ) E (1 + |V s (r s )|) 2 1 (s<ζ) dµds ≤ 2 T + T 0 M |v s (x)| 2 dxds . Set ψ(t) = O(M ) E(ρ(r t∧ζ ) 2 ) dµ and C(T, v) = 4C √ 2 T + ||v|| 2 L 2 ([0,T ]×M ) . (3.11)
Remarking that √ ξ ≤ 1 + ξ for ξ ≥ 0, above two inequalities imply that

ψ(t) ≤ O(M ) ρ(r 0 ) 2 dµ + C(T, v) + C(T, v) t 0 ψ(s) ds.
The Gronwall lemma then yields

O(M ) E(ρ(r t∧ζ ) 2 ) dµ ≤ O(M ) ρ(r 0 ) 2 dµ + C(T, v) exp(C(T, v)).
The result follows.

Now we are going to obtain a probabilistic representation for solution to the heat equation (3.3). To this end, set F (t, r) = F ωt (r). Let T > 0 be fixed. Assume that u t is a solution to (2.1) such that (t, x) → u t (x) is continuous and for each t ≥ 0, u t ∈ C 1+α with α > 0.

Consider the following SDE on O(M ),

     dr s,t (r, w) = √ 2ν n i=1 A i (r s,t (r, w)) • dW i t -U T -t (r s,t (r, w)) dt, s < t < T, r s,s (r, w) = r.
(3.12)

Let v t (x) = u T -t (x).
Then by Theorem 3.2, SDE (3.12) is stochastic complete. Let Q s,t (w) be solution to the resolvent equation

d dt Q s,t (w) = Q s,t (w)J T -t (r s,t (r, w)), s < t < T, Q s,s (w) = Id (3.13)
where

J t (r) = K(t, r) -ν ric r . (3.14)
For the sake of simplicity, we denote r s,t = r s,t (r, w). Applying Itô formula to Q s,t F (T -t, r s,t ) for d t with t ∈ (s, T ), we have

d t Q s,t F (T -t, r s,t ) = d t Q s,t F (T -t, r s,t ) + Q s,t d t F (T -t, r s,t ) = Q s,t J T -t (r s,t )F (T -t, r s,t ) + √ 2ν Q s,t n i=1 (L A i F )(T -t, r s,t ) dW i t + Q s,t -(∂ t F )(T -t, r s,t ) + ν (∆ O(M ) F )(T -t, r s,t ) -(L U T -t F )(T -t, r s,t ) dt = √ 2ν Q s,t n i=1 (L A i F )(T -t, r s,t ) dW i t ,
where the last equality is due to Equation (3.3). It follows that

Q s,t F (T -t, r s,t ) -F (T -s, r) = √ 2ν n i=1 t s Q s,τ (L A i F )(T -τ, r s,τ ) dW i τ .
Taking expectation on the two sides gives

E Q s,t F (T -t, r s,t ) = F (T -s, r). Let t = T . Then E Q s,T F (0, r s,T ) = F (T -s, r).
Replacing s by T -t, we get the following representation formula to (3.3):

F ωt = E Q T -t,T F ω 0 (r T -t,T ) . (3.15)
In what follows, we will explain how a vector field v on M gives rise to a metric compatible connection Γ v . For a time-independent vector field v on M , the diffusion processes {x t , t ≥ 0} associated to the generator 1 2 ∆ M + v can be constructed in the following way:

dr t = n i=1 A i (r t ) • dW i i + V (r t ) dt (3.16)
where V is the horizontal lift of v to O(M ), and let x t = π(r t ). We assume that the lift-time ζ = +∞ almost surely.

In Chapter V of [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF], Ikeda and Watanabe introduced a metric compatible connection Γ v so that the diffusion process of generator 1 2 ∆ M +v can be constructed by rolling without friction Brownian motion on R n with respect to the connection Γ v . More precisely let {B 1 , . . . , B n } be the canonical horizontal vector fields on O(M ) with respect to Γ v , consider SDE on O(M ):

dr w (t) = n i=1 B i (r w (t)) • dW i t , r w (0) = r.
Then the generator of diffusion process t

→ x t (w) = π(r w (t)) is 1 2 ∆ M + v. In fact, it holds 1 2 n j=1 L 2 B j (f • π) = ( 1 2 ∆ M + v)f • π. (3.17)
This connection Γ v was defined locally in [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF]. On a local chart U , { ∂ ∂x 1 , . . . , ∂ ∂xn } is a local basis of tangent spaces T x M with x ∈ U , and v = n i=1 v i ∂ ∂x i . Let Γ 0,k ij be the Christoffel coefficients of Levi-Civita connection. According to ( [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF], p.271), the Christoffel coefficients Γ k ij of Γ v is defined by (see also [START_REF] Airault | Integration by parts formulas and dilatation vector fields on elliptic probability space[END_REF]),

Γ k ij = Γ 0,k ij - 2 n -1 δ ki n =1 g j v -g ij v k . (3.18)
Proposition 3.3. Let ∇ v be the covariant derivative with respect to the connection Γ v , and ∇ 0 with respect to the Levi-Civita connection. Then for two vector fields X, Y on M ,

∇ v X Y = ∇ 0 X Y - 2 n -1 K v (X, Y ), (3.19) where K v (X, Y ) = Y, v X -X, Y v. (3.20)
Proof. We have, using (3.18),

∇ v X Y = n k=1 n i,j=1 X i Y j Γ k ij + n i=1 X i ∂ ∂x i Y k ∂ ∂x k = n k=1 n i,j=1 X i Y j Γ 0,k ij + n i=1 X i ∂ ∂x i Y k ∂ ∂x k - 2 n -1 I 2 ,
where

I 2 = n i,j,k=1 X i Y j δ ki ∂ ∂x j , v ∂ ∂x k - n i,j,k=1 X i Y j ∂ ∂x i , ∂ ∂x j v k ∂ ∂x k , since n =1 g j v = ∂ ∂x j , v . It is obvious to see that the first sum in I 2 is equal to Y, v X,
while the second sum yields X, Y v. The relation (3.19) and (3.20) follow.

Having this explicit expression, we will compute the associated torsion tensor T v .

Proposition 3.4. T v (X, Y ) admits the expression:

T v (X, Y ) = -2 n -1 Y, v X -X, v Y . (3.21) Moreover, T v is skew-symmetric (TSS), that is T v (X, Y ), Z = -T v (Z, Y ), X holds for all X, Y, Z ∈ X (M ) if and only if v = 0. Proof. Using (3.19) and the fact ∇ 0 X Y -∇ 0 Y X -[X, Y ] = 0, we have T v (X, Y ) = - 2 n -1 K v (X, Y ) -K v (Y, X) = -2 n -1 Y, v X -X, v Y , that is nothing but (3.21). Now if for any X, Y, Z ∈ X (M ), T v (X, Y ), Z + T v (Z, Y ), X = 0, then this equality yields 2 Y, v X, Z = X, v Y, Z + Z, v Y, X .
Taking Y = v and X = Z in above equality, we get

|v| 2 |X| 2 = X, v 2 .
If v = 0, taking X orthogonal to v yields a contradiction.

Intrinsic Ricci tensors for Navier-Stokes equations

In what follows, we will denote Levi-Civita covariant derivative by ∇ 0 . We first compute the Ricci tensor associated to the connection ∇ v .

Proposition 4.1. Let Ric 0 be the Ricci curvature associated to ∇ 0 , and Ric v to ∇ v . Then

Ric v (X) = Ric 0 (X) - 4(n -2) (n -1) 2 K v (X, v) + 2(n -2) n -1 ∇ 0 X v + 2 n -1 div(v) X. (4.1) 
Proof. For the sake of simplicity, put

∇ v Y Z = ∇ 0 Y Z + S(Y, Z), where S is a (1, 2) type tensor on M . Then ∇ v X ∇ v Y Z = ∇ 0 X ∇ v Y Z + S(X, ∇ v Y Z) = ∇ 0 X ∇ 0 Y Z + S(Y, Z) + S(X, ∇ v Y Z) = ∇ 0 X ∇ 0 Y Z + (∇ 0 X S)(Y, Z) + S(∇ 0 X Y, Z) + S(Y, ∇ 0 X Z) + S(X, ∇ v Y Z).
Changing role between X and Y yields

∇ v Y ∇ v X Z = ∇ 0 Y ∇ 0 X Z + (∇ 0 Y S)(X, Z) + S(∇ 0 Y X, Z) + S(X, ∇ 0 Y Z) + S(Y, ∇ v X Z). Also ∇ v [X,Y ] Z = ∇ 0 [X,Y ] Z + S([X, Y ], Z). Combining above equations, the curvature tensor R v (X, Y )Z = ∇ v X ∇ v Y Z -∇ v Y ∇ v X Z -∇ v [X,Y ] Z
which admits the following expression

R 0 (X, Y )Z + (∇ 0 X S)(Y, Z) -(∇ 0 Y S)(X, Z) + S(∇ 0 X Y -∇ 0 Y X, Z) -S(Y, S(X, Z)) + S(X, S(Y, Z)) -S([X, Y ], Z).
Let x ∈ M and {e 1 , . . . , e n } an orthonormal basis of

T x M . Then Ric v (X) = n i=1 R v (X, e i )e i . Note that S(X, Y ) = - 2 n -1 K v (X, Y ). Put I 1 = n i=1
S(X, S(e i , e i )),

I 2 = n i=1
S(e i , S(X, e i )).

I 3 = n i=1 (∇ 0 X S)(e i , e i ), I 4 = n i=1 (∇ 0 e i S)(X, e i ). Then Ric v (X) = Ric 0 (X) + I 1 -I 2 + I 3 -I 4 .
By a completely elementary computation, we find

I 1 = 4 (n -1) 2 n i=1 K v (X, K v (e i , e i )) = - 4(n -1) (n -1) 2 K v (X, v)
and

I 2 = 4 (n -1) 2 n i=1 K v (e i , K v (X, e i )) = - 4 (n -1) 2 K v (X, v).
For two other terms,

(∇ 0 X S)(Y, Z) = - 2 n -1 K ∇ 0 X v (Y, Z) and (∇ 0 Y S)(X, Z) = - 2 n -1 K ∇ 0 Y v (X, Z).
Therefore

I 3 = - 2 n -1 n i=1 K ∇ 0 X v (e i , e i ) = 2∇ 0 X v. I 4 = - 2 n -1 n i=1 K ∇ 0 e i v (X, e i ) = - 2 n -1 div(v) X + 2 n -1 ∇ 0 X v. Finally Ric v (X) = Ric 0 (X) - 4(n -2) (n -1) 2 K v (X, v) + 2(n -2) n -1 ∇ 0 X v + 2 n -1 div(v) X
and the computations are complete.

Since the connection ∇ v has torsion, we have to take account of torsion tensor into Ricci tensor in a suitable way. A Weitzenböck formula for a connection which is not of torsion skew-symmetric was established in [START_REF] Elworthy | On the geometry of diffusion operators and stochastic flows[END_REF]. Since the dual connection of Γ v is not metric, we prefer here avoid to use it. We will define the so-called Intrinsic Ricci tensor, which was firstly introduced by B. Driver in [START_REF] Driver | A Cameron-Martin type quasi-invariance theorem for Brownian motion on a compact manifold[END_REF], in the framework of stochastic analysis on the path space of Riemannian manifolds (see also [START_REF] Bismut | Large deviations and Malliavin calculus[END_REF][START_REF] Fang | Stochastic analysis on the path space of a Riemannian manifold[END_REF][START_REF] Hsu | Stochastic Analysis on Manifolds[END_REF][START_REF] Lyons | A class of vector fields on path spaces[END_REF]). Such a connection was also used in [START_REF] Airault | Integration by parts formulas and dilatation vector fields on elliptic probability space[END_REF] to obtain an integration by parts formula for second order differential operators on Riemannian path spaces.

Definition 4.2. The intrinsic Ricci tensor is given by

Ric v (X) = Ric v (X) + n i=1 (∇ v e i T v )(X, e i ). (4.2) 
where (e i ) is a local orthonormal frame field of the tangent bundle.

Theorem 4.3. Assume that dim(M ) = 3. Then Ric v admits the following simple expression:

Ric v = Ric 0 + 2v ⊗ v + 2∇ 0,s v, (4.3) 
where ∇ 0,s v denotes the symmetric part of ∇ 0 v.

Proof. By (3.21),

(∇ v e i T ) v (X, e i ) = -2 n -1 e i , ∇ v e i v X -X, ∇ v e i v e i = -2 n -1 e i , ∇ 0 e i v X -X, ∇ 0 e i v e i + J i ,
where

J i = 4 (n -1) 2 e i , K v (e i , v) X -X, K v (e i , v) e i .
Then

n i=1 J i = 4 (n -1) 2 (n -1)|v| 2 X -K v (X, v) . Therefore the sum n i=1 (∇ v e i T v )(X, e i ) is equal to -2 n -1 div(v) X - n i=1 X, ∇ 0 e i v e i + 4 (n -1) 2 (n -1)|v| 2 X -K v (X, ) .
When n = 3, the above formula yields that

3 i=1 (∇ v e i T v )(X, e i ) = -div(v) X + 3 i=1 X, ∇ 0 e i v e i + 2|v| 2 X -K v (X, v). (4.4) 
On the other hand, by (4.1), for n = 3,

Ric v (X) = Ric 0 (X) -K v (X, v) + ∇ 0 X v + div(v) X. (4.5) Note that 3 i=1 X, ∇ 0 e i v e i + ∇ 0 X v = 3 i=1 X, ∇ 0 e i v + ∇ 0 X v, e i e i = 2∇ 0,s X v.
According to this and summing up (4.4) and (4.5), we then obtain

Ric v (X) = Ric 0 (X) + 2|v| 2 X -2K v (X, v) + 2∇ 0,s X v. Now remarking that |v| 2 X -K v (X, v) = X, v v, we deduce that Ric v (X) = Ric 0 (X) + 2 X, v v + 2∇ 0,s
X v for any vector field X and therefore (4.3) holds. 

dr w (t) = √ 2ν n i=1 B i (r w (t)) • dW i t , r w (0) = r,
which has its infinitesimal generator

ν n i=1 L 2 B i (f • π) = (ν∆ M + 2νv)f • π.
According to Equation (3.12), we have to choose v = -1 2ν u t . The term Ric 0 -1 ν ∇ 0,s u t has already appeared in resolvent equation (3.13). In this case, we denote Ric t instead of Ric -ut/2ν and we have

Ric t = Ric 0 + 1 2ν 2 u t ⊗ u t - 1 ν ∇ 0,s u t . (4.6) 
Proposition 4.5. Assume that dim(M ) = 3. Then (i) The following holds: 

div( Ric t ) = div(Ric 0 ) + 1 2ν 2 ∇ ut u t - 1 ν Ric 0 u t . ( 4 
1 ν ∇ 0,s ut u t . Hence -νRic 0 u t + ∇ 0,s ut u t = -ν Ric t u t + 1 2ν |u t | 2 u t .
Substituting this term in the right hand of (2.27), we get (4.11).

5 Case of R 3

We will specify results obtained in Section 4 on R n . There are an ocean of publications on Navier-Stokes equations on R n . We only refer to [START_REF] Gallagher | Le problème de Cauchy pour les équations de Navier-Stokes, Facettes mathématiques de la mécanique des fluides[END_REF][START_REF] Ladyzhenskaya | The Mathematical Theory of Viscous Incompressible Flow, Revised English Edition[END_REF] for nice expositions and to [START_REF] Chemin | On the global wellposedeness of the 3-D Navier-Stokes equations with large initial data[END_REF] for wellposedness of global solutions. We keep notations used in Section 2 for correspondences between vector fields and differential forms. In this case, ∂ ∂x , ∂ ∂y , ∂ ∂z form an orthonormal basis at each tangent space of R 3 , and dx, dy, dz an orthonormal basis at each co-tangent space. Let u be a vector field on In this case ω = curl u, where curl(u) is the curl of u, denoted sometimes by ∇ × u. We have the following relations

R 3 : u = u 1 ∂ ∂x + u 2 ∂ ∂y + u 3 ∂ ∂z , then ũ = u 1 dx + u 2 dy + u
ω = ∇ × u, ∇ × (∇ × u) = d * dũ # = d * ω # .
(5.1)

By (5.1), R 3 dω t , * ω t Λ 2 dx = R 3 ω t , d * (ω) dx = R 3 ∇ × (∇ × u) • (∇ × u) dx.
In what follows, we denote ξ t = ∇×u t . In this flat case, the intrinsic Ricci tensor Ric t defined in Formula (4.6) has expression

Ric t = 1 2ν 2 u t ⊗ u t - 1 ν ∇ s u t , (5.2) 
where ∇ s u t is the rate of strains. Formula (4.9) becomes into the following form:

1 2

d dt R 3 |ξ t | 2 dx + ν R 3 |∇ξ t | 2 dx = 1 2ν R 3 (ξ t • u t ) 2 dx -ν R 3
( Ric t ξ t , ξ t ) dx. (5.3) This formula says that the variation of vorticity in time and in space can be explicitly measured by using helicity and the associated intrinsic Ricci tensor. Formula (4.11) has the form

d dt R 3 ξ t • u t dx = -ν R 3 (∇ × ξ t ) • ξ t dx -ν R 3 ∇ξ t • ∇u t dx -ν R 3 ξ t • Ric t u t dx + 1 2ν R 3 (ξ t • u t ) |u t | 2 dx, (5.4) 
which shows how the helicity R 3 ξ t • u t dx varies.

6 Appendix

Proof of Proposition 3.3

We first give a complete proof of Proposition3.3 by following the proof of Theorem 3.5.1 in [START_REF] Hsu | Stochastic Analysis on Manifolds[END_REF], and emphasize the steps we have to modify.

Proof. Let i x be the injectivity radius at x and suppose that

i M = inf{i x ; x ∈ M } > 0. ( 6.1) 
This means that the ball B(x, i M ) does not meet the cut-locus C x of x. We prepare what we will need for proving (3.10).

Let x ∈ B(x 0 , i M /2) c which maybe is closed to or in C x 0 . Let γ x : [0, η(x)] → M be a distanceminimizing geodesic connecting x 0 and x, parameterized by length. Then γ

x (i M /4) ∈ C x or x ∈ C γx(i M /4) . Put y = γ x (i M /4). Then d M (x 0 , x) = d M (x 0 , y)+d M (y, x). Since C y is closed, there is ε 0 > 0 such that B(x, ε 0 ) ∩ C y = ∅.
We suppose that such ε 0 is valid for all x (in fact, we will restrict ourselves in a compact set). Let ε < ε 0 ∧ i M 8 , and define

D ε = x ∈ M ; d M (x, C x M ) < ε .
We claim that

D ε ⊂ B(x M , i M /2) c . (6.2) In fact, if there exists x ∈ D ε such that d M (x, x M ) < i M /2; there is z ∈ C x M such that d M (x, z) < ε; then d M (x M , z) ≤ d M (x M , x) + d M (x, z) < i M
which contradicts the definition of i M . Let γ x be the geodesic considered above. Then x ∈ C y with y = γ x (i M /4).

Now introduce the stopping times σ q by σ 0 = 0 and σ q = inf t > σ q-1 ; d M (π(r t ), π(r σ q-1 )) = ε .

Let t > 0 and set t q = t ∧ σ q . Then ρ(r t ) -ρ(r 0 ) = +∞ q=1 ρ(r tq ) -ρ(r t q-1 ) . (6.3) (i) If π(r t q-1 ) ∈ D ε , then for s ∈ [t q-1 , t q ], π(r s ) ∈ C x M . Applying Itô formula, we have

ρ(r tq ) -ρ(r t q-1 ) = n k=1 tq t q-1 (L A k ρ)(r s ) dW k s + tq t q-1 (L s ρ)(r s ) ds, (6.4) 
where

L s = 1 2 ∆ O(M ) + L Vs (ii) Set x q = π(r tq ). If x q-1 ∈ D ε ,
then by discussion at beginning, there is y q-1 on a distance-minimizing geodesic γ connecting x M and x q-1 such that d M (x M , y q-1 ) = i M 4 and

x q-1 ∈ C y q-1 and for s ∈ [t q-1 , t q ], d M (π(r s ), x q-1 ) ≤ ε < ε 0 .

Therefore π(r s ) ∈ C y q-1 . Let ρ * q (r) = d M (π(r), y q-1 ). Applying Itô formula to ρ * q , we have

ρ * q (r tq ) -ρ * q (r t q-1 ) = n k=1 tq t q-1 (L A k ρ * q )(r s ) dW k s + tq t q-1 (L s ρ * q )(r s ) ds.
On one hand

d M (x M , x q-1 ) = d M (x M , y q-1 ) + d M (x q-1 , y q-1 ) or ρ(r t q-1 ) = i M 4 + ρ * q (r t q-1 ),
and on the other hand d M (x M , x q ) ≤ d M (x M , y q-1 ) + d M (x q , y q-1 ) or ρ(r tq ) ≤ i M 4 + ρ * q (r tq ).

It follows that ρ(r tq ) -ρ(r t q-1 ) ≤ ρ * q (r tq ) -ρ * q (r t q-1 ).

Therefore there exists Lq ≥ 0 such that ρ(r tq ) -ρ(r t q-1 ) = ρ * q (r tq ) -ρ * q (r t q-1 ) -Lq .

Define τ R = inf{t > 0, d M (x M , π(r t )) > R}.
As did in [START_REF] Hsu | Stochastic Analysis on Manifolds[END_REF], page 95, we get

ρ(r t∧τ R ) -ρ(r 0 ) = β t∧τ R + t∧τ R 0 (L s ρ)(r s ) ds -Lε (t ∧ τ R ) + R ε (t ∧ τ R ),
where

Lε (t) = +∞ q=1
Lq 1 Dε π((r t q-1 ))

which converges to L(t) as ε → 0. The term R ε (t) = m ε (t) + b ε (t) with m ε (t) the same as in [START_REF] Hsu | Stochastic Analysis on Manifolds[END_REF], page 95, so that

E(|m ε (t)| 2 ) ≤ 4 t 0 E(1 D 2ε (π(r s ))) ds.
Therefore for any compact subset K ⊂ B(x M , R),

π -1 (K) E(|m ε (t ∧ τ R )| 2 ) dr 0 ≤ 4 t 0 π -1 (K) E(1 D 2ε (π(r s∧τ R ))) dr 0 ds → 4 t 0 π -1 (K) E(1 Cx M (π(r s∧τ R ))) dr 0 ds ≤ 4 t 0 M 1 Cx M (x)dxds = 0.
The term b ε (t) has to be modified such that

b ε (t) = +∞ q=1 tq t q-1 L s ρ * q (r s ) -L s ρ(r s ) ds 1 Dε (π(r t q-1 )).
By (3.6) and (3.8), we have to control the term 1/ρ. For x q-1 ∈ D ε and for s ∈

[t q-1 , t q ], d M (x M , x s ) ≥ d M (x M , x q-1 ) -d M (x q-1 , x s ) ≥ i M 2 -ε ≥ 3i M 8 , and d M (y q-1 , x s ) ≥ d M (x M , x s ) -d M (x M , y q-1 ) ≥ 3i M 8 - i M 4 = i M 8 .
Therefore, according to (3.7), since x s = π(r s ) ∈ D 2ε , there exists a constant α > 0 such that tq t q-1 L s ρ * q (r s ) -L s ρ(r s ) ds1 Dε (π(r t q-1 )) ≤ α tq t q-1

(1 + |V s (r s )|)1 D 2ε (π(r s )) ds. Proof. Using (6.10) and (6.12), we have

It follows that

d dt Qp t (r 0 V 0 ) 2 = -Rp (r t )Q p t (r 0 V 0 ), Q p t (r 0 V 0 ) ≤ -κ p Qp t (r 0 V 0 ) 2 .
The Gronwall lemma yields that Qp t (r 0 V 0 ) ≤ e κpt/2 |V 0 |. Since |F φ | = |φ|, (6.11) yields inequality (6.13).

For simplicity, for p = 1, we still denote κ instead of κ 1 . In the case for 1-forms, |T t φ| ≤ e κt/2 T M t |φ|. (6.14)

To our purpose, we only state the formula for 1-form established by Elworthy and Li; although it was stated for the case of compact Riemannian manifolds in [START_REF] Elworthy | Bismut formulae for differential forms[END_REF], but it remains valid in non-compact cases as did by Driver and Thalmaier in [START_REF] Driver | Heat equation derivative formulas for vector bundles[END_REF], section 6.

Theorem 6.2. For 1-form φ and a vector field v,

( T t φ, v) = - 4 t 2 E φ xt , Q 1 t t t/2 (Q 1 s ) -1 dM s (v) (6.15) 
where dM s (v) = dM 

Theorem 3 . 2 . 2 t∧ζ 0 ρ(r s )dβ s + 2 t∧ζ 0 ρ

 322020 Assume Ric ≥ -κ and (3.9) holds. Then for almost all r 0 , ζ(w, r 0 ) = +∞ almost surely. Proof. We have, by (3.10), ρ(r t∧ζ ) 2 ≤ ρ(r 0 ) 2 + t ∧ ζ + (r s ) (L s ρ)(r s ) ds, where L s = 1 2 ∆ O(M ) + L Vs . Using (3.6) and (3.7), there is constants C > 0 such that

Remark 4 . 4 .

 44 Consider the following SDE on O(M ):

E 0 ( 1 +E ( 1 +E ( 1 +

 0111 (|b ε (t)|) ≤ α E t |V s (r s )|)1 D 2ε (π(r s )) ds . (6.5)Again by hypothesis (2.16), there is a constant c 0 > 0 such that vol(B(x 0 , δ)) ≤ e c 0 δ , and therefore for a constant λ 0 > 0,C M = O(M ) exp(-λ 0 d 2 M (π(r 0 ), x 0 )) dr 0 < +∞.Define the probability measure dµ on O(M ) bydµ(r 0 ) = 1 C M exp(-λ 0 d 2 M (π(r 0 ), x 0 )) dr 0 .(6.6)Now integrating with respect to dµ(r 0 ), we gett 0 π -1 (K) |V s (r s )|)1 D 2ε (π(r s ))1 (s<τ R ) dµ(r 0 )ds → t 0 π -1 (K) |V s (r s )|)1 Cx M (π(r s ))1 (s<τ R ) dµ(r 0 )ds the hypothesis (3.11). The proof of Proposition 3.3 is complete. Proposition 6.1. Assume that R p ≥ -κ p , κ ∈ R. (6.12) Then |T t φ| ≤ e κpt/2 |φ|. (6.13)

  in Section 6 it holds true that |T t v| ≤ e tκ+/2 T M t |v|. (2.18) It follows that for 1 ≤ p ≤ +∞, ||T t v|| p ≤ e tκ+/2 ||v|| p , and for 1 ≤ p < +∞,

  ω t dx. (2.26) Proof. Using Equation (2.13) and the same as proving (2.15) yields (2.26).

  .7) (ii) Let Scal t be the associated scalar curvature, that is Scal t = Remark 4.7. The term (ω t , u t ) in the right hand side of (4.9) is called helical density, which involves explicitly in the evolution of vorticity in time and in space.

	Theorem 4.8. Let dim(M ) = 3. Then		
	d dt M	(ω t , u t ) dx = -ν -ν	M M	dω t , * ω t Λ 2 dx -ν (ω t , Ric t u t ) dx + 2ν M (∇ω t , ∇u t ) dx M (ω t , u t ) |u t | 2 dx. 1	(4.11)
	Proof. By (4.6),				
		Ric t u t = Ric 0 u t +	1 2ν 2 |u t | 2 u t -
						n
						Ric t e i , e i for any or-
						i=1
	thonormal basis (e i ) of T x M . Then			
		Scal t = Scal 0 +	1 2ν 2 |u t | 2 .	(4.8)

  Let {ε 1 , . . . , ε n } be the canonical basis of R n and set e j = r 0 ε j . Then {e 1 , . . . , e n } is an orthonormal basis of T x 0 M . By definition of θ, the termθ //sdBs Q 2 -1 // r dB r ∧ Q 1 r (v) , // s e j // r dB r ∧ Q 1 r (v) , // s dB s ∧ // s e j . // r dB r // s e k dB k s . -1 // r dB r ∧ Q 1 r (v) , // s e k ∧ // s e j // s e j . // r dB r // s e k . It is obvious that a k (s), b k (s) = 0.Lemma 6.3. The quadratic variation dM s (v) • dM s (v) of M s (v) admits the following expressiondM s (v) • dM s (v) = 2 Q 2 Assumethat (6.12) holds for p = 1 and 2. Then for any differential 1-form φ,||T t φ|| 2 ≤ 2 t e 3κ + t/2 2(n -1)e 3κ + 2 t/2 + 1 ||φ|| 2 , t > 0.-1 enjoys the same kind of equations as (6.10). Thus ||(Q p t ) -1 || ≤ e κpt/2 under (6.12), so that dM s (v) • dM s (v) = e κt I 1 (s) + I 2 (s) ,

	and	n	t/2			
	dM 2 s (v) = n r (v), Therefore dM s (v) = k=1 0 Q 1 (a k (s) + b k (s)) dB k s with
	k=1						
	n	t/2					
	a k (s) = t/2 r ) and b k (s) = j=1 Q 2 s 0 (Q 2 0 Q 1 r (v), s t/2 0 (Q 2 r ) -1 // r dB r ∧ Q 1 r (v)	2 Λ 2 +	0	t/2	Q 1 r (v), // r dB r	2	.
	1 Theorem 6.4. t s (v) + dM 2 s (v) with dM 1 s (v) = θ //sdBs Q 2 s t/2 (Q 2 r ) -1 // r dB r ∧ Q 1 t (Q 1 s ) -1 dM s (v) r (v) , 2 t/2 ≤ 4e κt/2 t/2 t 2 E(|φ(x t ))| 2 • E t (Q 1 s ) -1 dM s (v) 2	1/2 1/2	.	(6.16) (6.19)
					0
	where θ is annihilation operator, and dM 2 s (v) = // s dB s Note that (Q p t ) E t (Q 1 s ) -1 dM s (v) t 2 ≤ E	n	0	t/2 (Q 1 Q 1 r (v), // r dB r .	(6.17)
	t/2		t/2	k=1
							t
				t/2
		t/2					
	s r ) may be identified with the following 0 (Q 2 where I 1 (s) = E t t/2 2 Q 2 s t/2 0	(Q 2 r ) -1 // r dB r ∧ Q 1 r (v)	2 Λ 2 ds
	Q 2 s r ) -1 Hence t/2 0 (Q 2 I 2 (s) = E t/2 n It is obvious that I 2 (s) ≤ t 2 e κ + t/2 4 |v| 2 and t t/2 0	t/2	Q 1 r (v), // r dB r	2	ds .
	dM 1 s (v) = I 1 (s) ≤ 2e κ 2 s k,j=1 Q 2 s 0	t/2 t (Q 2 E	0	t/2	(Q 2

r ) -1 // r dB r ∧ Q 1 r (v) , // s e k ∧ // s e j // s e j dB k s , (

6.18)

Proof. By Theorem 6.2,

|( T t φ, v)| ≤ 4 t 2 E(|φ(x t ))| 2 • E Q 1 s ) -1 (a k (s) + b k (s)) 2 ≤ e κt E r ) -1 // r dB r ∧ Q 1 r (v)

2 Λ 2 ds (6.20)

Proof. (i) Since div(u t ) = 0, we have div(u t ⊗ u t ) = ∇ ut u t , and ∇u t = ∇ s u t + ∇ sk u t .

We claim that div(∇ sk u t ) = -u t .

In fact, let X ∈ X (M ), we have

Therefore div(∇ s u t ) = ∆u t + u t = Ric 0 u t .

The result (4.7) follows.

(ii) Concerning (4.8), by (4.6), it is enough to remark that n i=1 ∇ 0,s e i u t , e i = div(u t ) = 0.

Theorem 4.6. Let dim(M ) = 3, and (u t , ω t ) be a regular solution to Equation (2.13). Then the following identity holds ,

where ( Ric t # ω t , A) = (ω t , Ric t A) for A ∈ X (M ).

Proof. Using (4.6),

Note that according to Definition (2.7), (ω t , ∇ 0,s

We shall express the right hand side of (2.26) in term of Ric t # . By (4.10),

Substituting this term in the right hand side of (2.26), we get (4.9).

Bismut Formulae and Proof of Proposition 2.9

In this part, we will first present a nice derivative formulae for heat semigroup T t on differential p-forms obtained by Elworthy and Li in [START_REF] Elworthy | Bismut formulae for differential forms[END_REF] and by Driver and Thalmaier in [START_REF] Driver | Heat equation derivative formulas for vector bundles[END_REF]. We keep notations introduced in Section 3. Let A 1 , . . . , A n be the canonical horizontal vector fields on O(M ). Consider the SDE on O(M )

Assume that the Ricci tensor is bounded below Ric ≥ -κ. Then SDE (6.7) is stochastic complete (see [START_REF] Stroock | An introduction to the analysis of paths on a Riemannian manifold[END_REF]). Set x t = π(r t ) with x 0 = π(r 0 ). Then (x t ) is a semi-martingale on M , with respect to which stochastic integral can be defined (see [START_REF] Bismut | Mécanique aléatoire[END_REF]). Then we can write

where // s = r s • r -1 0 is Itô stochastic parallel translation along path {x t ; t ≥ 0}. Recall that Weitzenböck formula for p-differential forms reads as follows [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF][START_REF] Elworthy | Bismut formulae for differential forms[END_REF]:

where ∆φ = Trace(∇∇φ) for a p-form φ, and R # p : Λ p (M ) → Λ p (M ) is a tensor, called Weitzenböck curvature. For p = 1, R 1 = Ric # is Ricci tensor. As in [START_REF] Elworthy | Bismut formulae for differential forms[END_REF], R p (x) is an endomorphism of p-vectors, that is, R p (x) :

Consider the heat equation on p-forms:

By definition T t φ 0 = φ t . Consider the following resolvent equation on

It is well-known (see [START_REF] Elworthy | Bismut formulae for differential forms[END_REF]) that

where F φ is defined in (3.1) if φ is a differential 1-form, and