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Projected gradient descent for non-convex sparse

spike estimation

Yann Traonmilin1,2, Jean-François Aujol2 and Arthur Leclaire2

Abstract—We propose a new algorithm for sparse spike estima-
tion from Fourier measurements. Based on theoretical results on
non-convex optimization techniques for off-the-grid sparse spike
estimation, we present a projected gradient descent algorithm
coupled with a spectral initialization procedure. Our algorithm
permits to estimate the positions of large numbers of Diracs in 2d
from random Fourier measurements. We present, along with the
algorithm, theoretical qualitative insights explaining the success
of our algorithm. This opens a new direction for practical off-
the-grid spike estimation with theoretical guarantees in imaging
applications.

Index Terms—spike super-resolution, non-convex optimization,
projected gradient descent

I. INTRODUCTION

In the space M = M(Rd) (respectively M = M(Td)) of

finite signed measures over Rd (respectively the d-dimensional

torus Td), we aim at recovering a superposition of impulsive

sources x0 =
∑k

i=1 aiδti ∈ M from the measurements

y = Ax0 + e, (1)

where δti is the Dirac measure at position ti, the operator A
is a linear observation operator from M to Cm , y ∈ Cm are

the m noisy measurements and e is a finite energy observation

noise. This inverse problem (called spike super-resolution [5],

[2], [15], [7], [8]) models many imaging problems found

in geophysics, microscopy, astronomy or even (compressive)

machine learning [13]. Under a separation assumption on the

positions of the Diracs, i.e when x0 is in a set Σk,ǫ of sums of

k ǫ-separated Diracs with bounded support, it has been shown

that x0 can be estimated by solving a non-convex problem as

long as A is an appropriately designed measurement process.

This ideal non-convex minimization is:

x∗ ∈ argmin
x∈Σk,ǫ

‖Ax− y‖22. (2)

Recovery guarantees for this problem are of the form

‖x∗ − x0‖K ≤ C‖e‖2, (3)

where ‖ · ‖K is a kernel norm on M that measures distances

in M at a given high resolution described by the kernel (in

most of the literature K is either a Fejér [5] or Gaussian

kernel and ‖
∑

i aiδti‖
2
K =

∑

i,j aiajK(ti − tj) [12], [11]) .

Mathematically, (3) is guaranteed if the measurement operator

A has a restricted isometry property on Σk,ǫ − Σk,ǫ (the

set of differences of elements of Σk,ǫ) [11]. This property
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is typically obtained when the number of measurements is

sufficient. For example, recovery guarantees are obtained when

m ≥ O( 1
ǫd ) for regular low frequency Fourier measurements

on the torus [5] and when m ≥ O(k2d(log(k))2 log(kd/ǫ))
for random Fourier measurements on Rd [11].

Recent advances in this field proposed a convex relaxation

of the problem in the space of measures [5], [7]. While

giving theoretical recovery guarantees, these methods are not

convex with respect to the parameters due to a polynomial

root finding step. Moreover, they rely on a SDP relaxation

of a dual formulation, thus squaring the size of the problem

(which becomes problematic as the number of parameters

increases). Other methods based on greedy heuristics (CL-

OMP for compressive k-means [13]) have been proposed.

Nevertheless, they still lack theoretical justifications in this

context while having a good scaling properties with respect to

the number of parameters (amplitudes and positions) even if

some first theoretical results are emerging for some particular

measurement methods [9].

In this paper, we propose a practical method to solve the

non-convex minimization problem (2) for a large number of

Diracs in imaging problems. Of course, at first sight, it is not

possible to solve this problem efficiently. However, we justify

qualitatively why our method succeeds. This justification relies

on the separation assumption on x0 and the assumption that

there are enough measurements of x0. We also give numerical

experiments validating the method. One of the main practical

advantages of our method is its ability to perform off-the-grid

spike estimation from random Fourier measurements with a

good scaling with respect to the number of spikes. With this

proof of concept, we can estimate many spikes in two di-

mensions from compressive measurements, yielding potential

applications in fields such as astronomy or microscopy where

the sum of spikes model is relevant.

Our method, following insights from the literature on non-

convex optimization for low-dimensional models [17], [14],

[4], [6], relies on two steps:

• Overparametrized spectral initialization: we propose a spec-

tral initialization step for spike estimation that permits a

good first estimation of the positions of the Diracs.

• Projected gradient descent algorithm in the parameter space:

the idea of projected gradient descent for low-dimensional

model recovery has shown its benefits in the finite dimen-

sional case [3], [10]. We adapt this idea to sparse spike

recovery. From [16], the global minimizer of (2) can be

recovered by unconstrained gradient descent as long as the

initialization lies in an explicit basin of attraction of the

global minimizer. It was also shown that projecting on the
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separation constraint improves the control on the Hessian of

the function we minimize.

Contributions. After recalling that the non-convex sparse

spike estimation problem in the space of parameters is a

smooth non convex constrained optimization problem, we

propose a new projected gradient descent algorithm for sparse

spike estimation. The simple gradient descent is already used

as a refinement step in greedy algorithms. We show exper-

imentally and justify qualitatively that adding a projection

step and using an appropriate initialization leads to a global

convergence.

• In Section II, we describe our projected gradient descent

algorithm and its implementation details;

• In Section III, we propose a grid based spectral initialization

scheme. A qualitative analysis shows that when the number

of measurements is large enough, our initialization approx-

imates well the Diracs positions;

• In Section IV, we show the practical benefit of the projection

in the descent algorithm and its application to the estimation

of large number of Diracs in 2 dimensions.

II. THEORETICAL BACKGROUND AND ALGORITHM

DESCRIPTION

A. Measurements and parameter space

The operator A is a linear operator modeling m measure-

ments in Cm ( ImA ⊂ Cm ) on the space of measures on a

domain E (either E = Rd or E = Td) defined by:

∀l = 1, . . . ,m, (Ax)l =

∫

E

αl(t) dx(t), (4)

where (αl)l is a collection of (weighted) Fourier measure-

ments: αl(t) = cle
−j〈ωl,t〉 for some chosen frequencies

ωl ∈ Rd and frequency dependent weights cl ∈ R. The model

set of ǫ-separated Diracs with ǫ > 0 is:

Σk,ǫ :=

{

k
∑

r=1

arδtr : a ∈ R
k, tr ∈ B2(R),

∀r 6= l, ‖tr − tl‖2 ≥ ǫ} ,

(5)

where B2(R) = {t ∈ Rd : ‖t‖2 ≤ R} is the ℓ2 ball of radius R
centered in 0 in Rd. We consider the following parametrization

of Σk,ǫ: for any θ = (a1, .., ak, t1, .., tk) ∈ Rk(d+1), we define

φ(θ) =
∑k

i=1 aiδti , and we set

Θk,ǫ := φ−1(Σk,ǫ), (6)

the reciprocal image of Σk,ǫ by φ. Note that any parametriza-

tion of elements of Σk,ǫ is invariant by permutation of the

positions. This is not a problem in practice for the convergence

of descent algorithms. We define the parametrized functional

g(θ) := ‖Aφ(θ)− y‖22 (7)

and consider the problem

θ∗ ∈ argmin
θ∈Θk,ǫ

g(θ). (8)

Since the αl are smooth, g is a smooth function. Note that

performing the minimization (8) allows to recover the minima

of the ideal minimization (2), yielding stable recovery guar-

antees under a restricted isometry assumption on A which is

verified when m ≥ O(k2d(log(k))2 log(kd/ǫ)) for adequately

chosen Gaussian random Fourier measurements (on Rd) and

m ≥ O( 1
ǫd
) for regular Fourier measurements on Td. In [16],

it has been shown that the simple gradient descent converges

(without projection) to the global minimum of g as long as

the initialization falls into an explicit basin of attraction of this

global minimum. It was also shown that the projection on the

separation constraint improves the control on the Hessian on

g and subsequently the convergence of the descent algorithm.

B. Projected gradient descent in the parameter space

For a user-defined initial number of Diracs kin, we consider

the following iterations:

θn+1 = PΘkin,ǫ
(θn − τn∇g(θn)) (9)

where PΘkin,ǫ
is a projection on the separation constraint,

(notice that there may be several solutions in Θkin,ǫ) and τn
is the step size at iteration n.

The projection PΘkin,ǫ
(θ) could be defined naturally as

a solution of the minimization problem inf θ̃∈Θkin,ǫ
‖φ(θ̃) −

φ(θ)‖K . Unfortunately this optimization is not convex. To

avoid this, we propose a heuristic (see Algorithm 1) for

PΘkin,ǫ
that consists in merging Diracs that are not ǫ-

separated.

Input: List Θ = (ai, ti)i of amplitudes and positions

ordered by decreasing absolute amplitudes

for i ≥ 1 do

for j > i do

if ‖ti − tj‖ < ǫ then
ai = ai + aj;

ti =
|ai|ti+|aj |tj
|ai|+|aj |

Remove (aj , tj) from Θ
end

end

end

Output: List Θ = (ai, ti)i of amplitudes and positions

of projected spikes

Algorithm 1: Heuristic for the projection PΘkin,ǫ

Since we take the barycenter of the positions, if a set of

Diracs that are at a distance at most ǫ′ of a true position in x0

is merged, the merged result will be within this distance. After

this projection step, we pursue the descent with the remaining

number of Diracs. Note that we overparametrize with kin the

number of Diracs in the descent to ensure the recovery of all

positions in x0 (see also the next section).

In practice, we implement the projected gradient descent as

follows.

• As suggested in [16], to avoid balancing problems between

amplitudes and positions, we alternate descent steps between

amplitudes and positions.

• To find the step size τn, we perform a line search to

minimize the value of the function g.
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• We start to project after a few iterations of the descent to

increase the reduction of dimension of the projection.

From [16], this algorithm will converge as soon as the

initialization falls into a basin of attraction of global minimum

of g. The basins of attraction get larger as the number of

measurements increases (up to a fundamental limit depending

on the separation ǫ and the amplitudes in x0).

III. OVERPARAMETRIZED SPECTRAL INITIALIZATION

The idea of spectral initialization was used for non-convex

optimization in the context of phase recovery [17] and blind

deconvolution [4]. As we measure the signal x0 at some

frequencies ωl, a natural way to recover an estimation of the

signal is to back-project the irregular spectrum on a grid Γ
that samples B2(R) at a given precision ǫg (to be chosen

later). Given a vector of Fourier measurements y at frequencies

(ωl)l=1,m, we calculate zΓ = BΓy where BΓ is the linear

operator back-projecting the Fourier measurements on a grid

in the spatial domain R
d, it is defined as

zΓ = BΓy :=
∑

si∈Γ

zΓ,iδsi (10)

where the si ∈ Γ are the grid positions and

zΓ,i =
∑

l

yldle
j〈ωl,si〉 (11)

for some weights dl to be chosen in the next section. We can

show in the noiseless case with Lemmas III.1 and III.2 that

when the number of measurements increases and the grid for

initialization gets finer, the original positions of Diracs get bet-

ter approximated. Since the energy of Diracs is well localized

by the initialization we then perform overparametrized hard

thresholding of the initialization. We propose the initialization

θinit defined by

φ(θinit) := xinit = Hkin
(BΓy) (12)

where for |zΓ,j1 | ≥ |zΓ,j2 | ≥ ....|zΓ,jn |, we have Hkin
(zΓ) =

∑kin

i=1 zΓ,jiδsji .

A. Ideal spectral initialization and sampling

In the context of Diracs recovery our proposed spectral

initialization scheme is a sampling of an ideal back-projection.

Let B the operator from Cm to M defined for z = By by

z(t) =

m
∑

l=1

dlyle
j〈ωl,t〉 (13)

We call z an ideal spectral initialization because zΓ = SΓz
where SΓ is the sampling on the grid Γ: for a measure x
with a continuous density χ (i.e. dx(t) = χ(t) dt), we define

the sampling operation SΓ(x) =
∑

ti∈Γ χ(ti)δti . Also, the

measure z = By has a smooth density as it is a finite sum of

complex exponentials.

We first show (all proofs are in the supplementary material)

that for the right choice of weights dl, the energy of z = BAx
(where x =

∑k
i=1 aiδti) is localized around the positions ti in

both the regular Fourier sampling on the torus case, and the

random Fourier sampling on Rd case. We show the following
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Fig. 1. Kernels used for a separation ǫ = 0.1. Left: On the torus the
Fejér kernel of maximum frequency 2

ǫ
. Right: on R, the Gaussian kernel

of parameter σ =
1

500ǫ

results for the Fejér and Gaussian kernels as they are typically

used in the literature for deterministic [5] and random [11]

Fourier sampling.

Lemma III.1. On M(Td), we choose A such that (ωl)l=1,m

is a regular sampling of [−ωmax, ωmax]
d with ωl ∈ 2π.Zd.

In (13), take dl = K̂f (ωl)/((2π)
dcl) where K̂f is the Fourier

transform of the Fejér kernel Kf on the torus whose Fourier

spectrum support is (ωl)l=1,m, then

z(t) =

k
∑

i=1

aiKf (t− ti). (14)

This immediate lemma just states that on the torus, mea-

suring low frequencies is equivalent to measuring a low-pass

filtered signal in the time domain. For example, the low-

pass Fejér filter is shown Figure 1. Also, this result holds for

any kernel with spectrum supported on the ωl. Sampling fre-

quencies regularly with maximum frequency ωmax ≥ O( 1
ǫd
)

guarantees recovery with convex relaxation methods.

For random Fourier sampling, we look at the expected value

of z and control its variance with respect to the distribution

of the ωl.

Lemma III.2. On M(Rd), we choose A such that the ωl

are m i.i.d random variables with a Gaussian distribution

with density G(ωr) =
σd

(
√
2π)d

e−
σ2

2
‖ωr‖2

2 . Let Kg(t) = e−
‖t‖2

2

2σ2 .

In (13), take dl = 1/(mcl) then

E(z(t)) =

k
∑

i=1

aiKg(t− ti) (15)

E(|z(t)− E(z(t))|2) = −
1

m
|E(z(t))|2 +

1

m
‖x0‖

2
Kg

(16)

where ‖x0‖
2
Kg

is the norm associated with the kernel Kg.

Similarly to the regular sampling, the energy of the expected

value of z is concentrated around the positions ti (see Fig-

ure 1). In [11] the frequency distribution scales as the inverse

of the kernel precision, i.e. the kernel parameter σ of the kernel

h(t) = e−‖t‖2

2
/(2σ2) is chosen as O(1/ǫ).

The control of the variance shows that when the number

of measurements increases, the back-projection of these mea-

surements to the space of measures are closer to the ideal

initialization which is the expected value of z. In practice we

set the number of measurements using a rule m = αkd with

a multiplicative parameter α. The quality of the initialization

is thus directly linked to α.
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Fig. 2. Result for a few spikes in 2d. Left: back-projection of measurements
on a grid. Right: Initialization, gradient descent and projected gradient descent
trajectories.

Finally the following lemma makes sure that as the grid

gets finer we recover all the energy of the ideal spectral

initialization that lies within the domain sampled by the grid.

Lemma III.3. Let zd = (zΓ,i)ti∈Γ. Then ‖
√

ǫdgzd‖
2
2 →ǫg→0

‖z‖2L2(B2(R)).

We considered the noiseless case. The noisy case just adds

a noise term with energy controlled by the noise energy level

‖e‖2 because BΓ is a Fourier back-projection.

IV. NUMERICAL EXPERIMENTS

We first run the algorithm on few Diracs in 2d to illustrate

the added benefit of the projection. We then show results

with many Diracs in 2d to show the computational feasibility

of projected gradient descent for imaging applications. We

perform the experiments in the noiseless case and leave the

study of the impact of the noise for future work. The Matlab

code used to generate these experiments is available at [1].

A. Illustration with few Diracs

As a first proof of concept we run the algorithm with the

recovery of 5 Diracs in 2 dimensions from m = 120 Gaussian

random measurements. The trajectories of 500 iterations of the

gradient descent and projected gradient descent are represented

in Figure 2. We observe that while the gradient descent with

overparametrized initialization might converge with a large

number of iterations, the projection step greatly accelerates

the convergence.

B. Estimation of 100 Diracs in 2d

We recover 100 Diracs, with a separation 0.01 on the

square [0, 1] × [0, 1] from m = 2000 compressive Gaussian

measurements (we would need ≈ 10000 regular measurements

to obtain a separation 0.01). In practice, the grid Γ must be fine

enough to overparametrize the number of Diracs with a good

sampling of the ideal spectral initialization. If ǫg is too small,

the number of initial Diracs needed to sample the energy gets

larger, leading to an increased cost in the first iterations of

the gradient descent. In this example we use ǫg = ǫ and use

kin = 4k. We observe in Figure 3 that with these parameters

all the Diracs positions are well estimated after 500 iterations

of our algorithm. Similarly to our first example, we observe

that spikes that are not separated in the back-projection on the

grid are well estimated by our algorithm.
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Fig. 3. Result for 100 spikes in 2d. Left: back-projection of measurements
on a grid. Right: Initialization, and projected gradient descent trajectories.

C. Complexity

The cost of our algorithm is the sum of the cost of the

initialization and the cost of the projected gradient descent

algorithm. Of course, the back-projection on the grid scales

as O((1/ǫg)
d) (irregular Fourier transform on a grid), but

it is done only once and projections using fast transform

techniques could be estimated. With our strategy, this cost

seems unavoidable as we want to localize Diracs off-the-

grid at a precision of the order of ǫ (doing the same on the

grid would have this exponential scaling with respect to the

dimension and the separation). With this cost the algorithm

stays tractable when the dimension d of the domain of the

positions of the Diracs is not too large, which is the case in

2d or 3d imaging applications. This cost O((1/ǫg)
d) would

also be impossible to avoid in an eventual vizualisation of the

full recovered image over a precise grid on Rd. Note also that

in practice our proposed initialization could be replaced by

any statisfying overparametrized initialization, i.e. any state-

of-the-art on-the-grid estimation technique could benefit from

an added projected gradient descent.

The cost of the projected gradient descent is essentially

O(nitC∇) where C∇ is the cost the calculation of the gradient.

This cost is of the order of the calculation of the m Fourier

measurements for the current number of Diracs in the descent

(which is close to k after a few iterations).

V. CONCLUSION

We gave a practical algorithm to perform off-the-grid sparse

spike estimation. This proof-of-concept shows that it is possi-

ble to estimate efficiently a large number of Diracs in imaging

applications with some strong theoretical insights of success

guarantees. Future research directions are:

• Full theoretical convergence proof of the algorithm with

sufficient conditions on the number of measurements. One

of the main question is to determine if it is possible to

have a convergence guarantee without the computational

cost O((1/ǫg)
d)

• Investigate other methods for reducing the number of pa-

rameters after the back-projection on a grid.

• Investigate quasi-Newton schemes to accelerate the descent

(some Hessian information is available).

• Study the algorithm stability to noise and modeling error

with respect to the number of measurements.
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