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ABSTRACT

We propose an algorithm to perform sparse spike estimation

from Fourier measurements. Based on theoretical results on

non-convex optimization techniques for off-the-grid sparse

spike estimation, we present a simple projected descent al-

gorithm coupled with an initialization procedure. Our algo-

rithm permits to estimate the positions of large numbers of

Diracs in 2d from random Fourier measurements. This opens

the way for practical estimation of such signals for imaging

applications as the algorithm scales well with respect to the

dimensions of the problem. We present, along with the algo-

rithm, theoretical qualitative insights explaining the success

of our algorithm.

Index Terms— spike super-resolution, non-convex opti-

mization, projected gradient descent

1. INTRODUCTION

In the space M(Rd) (respectively M(Td)) of finite signed

measures over Rd (respectively the d-dimensional Torus Td),

we aim at recovering x0 =
∑

i=1,k aiδti from the measure-

ments

y = Ax0 + e, (1)

where δti is the Dirac measure at position ti, the operatorA is

a linear observation operator, y ∈ Cm are the m noisy mea-

surements and e is a finite energy observation noise. This

inverse problem (called spike super-resolution [1, 2, 3, 4, 5])

models many problems found in geophysics, microscopy, as-

tronomy or even (compressive) machine learning [6]. For sets

Σk,ǫ of sums of k ǫ-separated Diracs with bounded support,

it has been shown that x0 can be well estimated by solving

a non-convex problem as long as x0 ∈ Σk,ǫ and A has a

restricted isometry property on Σk,ǫ − Σk,ǫ [7]. The ideal

non-convex minimization we need to solve is:

x∗ ∈ argmin
x∈Σk,ǫ

‖Ax− y‖2. (2)

Recovery guarantees of this problem are of the form

‖x∗ − x0‖K ≤ C‖e‖2, (3)

where ‖ · ‖K is a kernel norm on M (in most of the literature

K is either a Féjer or Gaussian kernel and ‖
∑

i aiδti‖
2
K =

∑

i,j aiajK(ti− tj)) that measures distances in M at a given

resolution described by the kernel. Such guarantees are ob-

tained when m ≥ O( 1
ǫd
) for regular low frequency Fourier

measurements [1] and when m ≥ O(k2d(log(k))2log(kd/ǫ)
for random Fourier measurements [7].

First advances in this field proposed a convex relaxation

of the problem in the space of measures. While giving the-

oretical recovery guarantees, these methods are not convex

with respect to the parameters due to a polynomial root find-

ing step. Moreover, they rely on a SDP relaxation of a dual

formulation squaring the size of the problem (which becomes

problematic as the dimension d increases). Other methods

based on greedy heuristics (CL-OMP for compressive k-

means [6]) have been proposed. Nevertheless, they still lack

theoretical justifications in this context while having good

scaling properties with respect to the number of parameters

to estimate (amplitudes and position) even if some first theo-

retical results are emerging for some particular measurement

methods [8].

In this paper, we propose a practical method to solve the

non-convex minimization problem (2) for a large number of

Diracs. Of course, at first sight, it is not possible to solve this

problem efficiently. However, we describe qualitatively why

our method succeeds. This justification relies on the separa-

tion assumption on x0 and the assumption that there is enough

measurements of x0. We also give numerical experiments val-

idating the method. One of the main practical advantages of

our method is its ability to perform off-the-grid spike estima-

tion from random Fourier measurements with a good scaling

with respect to the number of parameters to estimate. With

this proof of concept, we are able to resolve many spikes in

2 dimensions, yielding to potential applications in fields such

as astronomy or microscopy where the sum of spikes model

is relevant.

Our method, following insights from the literature on non-

convex optimization for low-dimensional models [9, 10, 11,

12], relies on two steps :

• Overparametrized spectral initialization: we propose a



spectral initialization step for spike estimation that permits

a good first estimation of the positions of the Diracs.

• Projected descent algorithm in the parameter space: from

[13], the global minimizer of (2) can be recovered by un-

constrained gradient descent as long as the initialization

lies in an explicit basin of attraction of the global mini-

mizer. It was also shown that projecting on the separation

constraint improves the control on the Hessian of the func-

tion we minimize.

Contributions. After recalling that the non-convex sparse

spike estimation problem in the space of parameters is a

smooth non convex constrained optimization problem,

• in Section 2, we describe precisely our projected descent

algorithm and its implementation details;

• in Section 3, we propose an initialization scheme that is

guaranteed to localize the Diracs at a given resolution;

• in Section 4, we showcase the advantages of the projection

in the descent algorithm and its application to the estima-

tion of many Diracs in 2 dimensions.

2. THEORETICAL BACKGROUND AND

ALGORITHM DESCRIPTION

2.1. Measurements and parameter space

The operatorA is a linear operator modelingm measurements

in Cm ( ImA ⊂ Cm ) on the space of measures on a domain

E (either Rd or Td) defined by: for l = 1,m,

(Ax)l =

∫

E

αl(t) dx(t) (4)

where (αl)l is a collection (weighted) Fourier measurements:

αl(t) = cle
−j〈ωl,t〉 for some chosen frequencies ωl ∈ Rd

and frequency dependent weights cl ∈ R. The model set of

ǫ-separated Diracs with ǫ > 0 is :

Σk,ǫ :=







∑

r=1,k

arδtr : a ∈ R
k, tr ∈ R

d,

∀r 6= l, ‖tr − tl‖2 ≥ ǫ, tr ∈ B2(R)} ,

(5)

where B2(R) is the L2 ball of radius R centered in 0 in

Rd. We consider the following parametrization of Σk,ǫ:
∑

i=1,k aiδti = φ(θ) with θ = (a1, .., ak, t1, .., tk). We

define

Θk,ǫ := φ−1(Σk,ǫ), (6)

and we consider the problem

θ∗ ∈ arg min
θ∈Θk,ǫ

g(θ) = argmin
θ∈E

‖Aφ(θ)− y‖2. (7)

Because the αl are smooth, g is a smooth function. Note

that performing the minimization (7) allows to recover the

minima of the ideal minimization (2), yielding stable recov-

ery guarantees under a restricted isometry assumption on A
which is verified when m ≥ O(k2d(log(k))2log(kd/ǫ)) for

adequately chosen Gaussian random Fourier measurements

(on M(Rd)) and m ≥ O( 1
ǫd ) for regular Fourier measure-

ments on M(Td). In [13], it has been shown that the simple

gradient descent converges (without projection) to the global

minimum of g as long as the initialization falls in an explicit

basin of attraction of this global minimum. It was also shown

that the projection on the separation constraint improves the

control on the Hessian on g and subsequently the convergence

of the descent algorithm.

2.2. Projected gradient descent in the parameter space

For a user defined initial number of Diracs kin, we consider

the following iterations:

θn+1 = PΘkin,ǫ
(θn − τ∇g(θn)) (8)

where PΘkin,ǫ
is a projection on the separation constraint, e.g.

PΘkin,ǫ
(θ) could be defined naturally as a solution of the min-

imization problem inf θ̃∈Θkin,ǫ
‖φ(θ̃) − φ(θ)‖K (notice that

there may be several solutions in Θkin,ǫ).

To avoid this non-convex minimization problem, we pro-

pose a heuristic (see Algorithm 1) for PΘkin,ǫ
that consists in

merging Diracs that are not ǫ-separated.

Input: List Θ = (ai, ti)i of amplitudes and positions

ordered by decreasing absolute amplitudes

for i ≥ 1 do

for j > i do

if ‖ti − tj‖ < ǫ then
ti = (|ai|ti + |aj |tj)/(|ai|+ |aj |);
ai = ai + aj ;

Remove (aj , tj) from Θ
end

end

end

Algorithm 1: Heuristic for the projection PΘkin,ǫ

Because we take a barycenter of the positions, if a set of

Diracs that are at a distance at most ǫ′ of a true position in

x0 is merged, the merged result will be within this distance.

After this projection step, we pursue the descent with the re-

maining number of Diracs. Note that we overparametrize

with kin the number of Diracs in the descent to ensure the

recovery of all positions in x0 (see also next Section).

In practice, we implement the projected descent as fol-

lows.



• As suggested in [13], to avoid balancing problems between

amplitudes and positions, we alternate descent steps be-

tween amplitudes and positions.

• To find the step size τ , we perform a line search to mini-

mize the value of the function g.

• We start to project after a few iterations of the descent to

increase the reduction of dimension of the projection.

From [13], this algorithm will converge as soon as the

initialization falls into a basin of attraction of global minimum

of g. The basins of attraction get larger as the number of

measurements increases.

3. OVERPARAMETRIZED SPECTRAL

INITIALIZATION

Intuitively, as we measure the signal x at some frequenciesωl,

a natural way to recover an estimation of the signal is to back-

project the irregular spectrum on a grid Γ that samples B2(R)
at a given precision ǫg (to be chosen later). Given a vector

of Fourier measurements y at frequencies (ωl)l=1,m, this can

be done by calculating zΓ = BΓy where zΓ =
∑

si∈Γ zΓ,iδsi
and zΓ,i =

∑

l yldle
j〈ωl,si〉 for some weights dl to be cho-

sen in the next section (the si ∈ Γ are the grid positions). We

show in the noiseless case (in the supplementary material) that

as the number of measurements increases and the grid for ini-

tialization gets finer, the original positions of Diracs get better

approximated. Because the energy of Diracs is well localized

by the initialization we then perform overparametrized hard

thresholding of the initialization. We propose the following

initialization

xinit = Hkin
(BΓy) (9)

where for |zΓ,j1 | ≥ |zΓ,j2 | ≥ ....|zΓ,jn |, we have Hkin
(zΓ) =

∑

i=1,kin
zΓ,jiδsji .

3.1. Ideal spectral initialization and sampling

Let B the operator from Cm to M defined for z = By by

z(t) =
∑

l=1,m

dlyle
j〈ωl,t〉 (10)

We call z an ideal spectral initialization because zΓ = SΓz
where SΓ is the sampling on the grid Γ: let a measure x de-

fined by its density χ, i.e. dx(t) = χ(t) dt. We define the

sampling operation SΓ(x) =
∑

ti∈Γ χ(ti)δti . Also, the mea-

sure z = By has an infinitely differentiable density as it is a

finite sum of complex exponentials.

We first show that for the right choice of weights dl, the

energy of z = BAx (where x =
∑

i=1,k aiδti) is localized

around the positions ti in both the regular Fourier sampling on

the Torus case, and the random Fourier sampling on Rd case.
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Fig. 1. Kernels used for a separation ǫ = 0.1. Left: On the

torus the Féjer kernel of maximum frequency 2
ǫ . Right: on R,

the Gaussian kernel of parameter σ = 1
500ǫ

We show the following results for the Féjer and Gaussian ker-

nel as they are typically used in the literature for deterministic

[1] and random [7] Fourier sampling.

Lemma 3.1. On M(Td), we choose A such that (ωl)l=1,m is

a regular sampling of [−ωmax, ωmax]
d with ωl ∈ 2π.Zd. In

(10), take dl = K̂f(ωl)/((2π)
dcl) where K̂f is the Fourier

transform of the Féjer kernel Kf on the Torus whose Fourier

spectrum support is (ωl)l=1,m, then

z(t) =
∑

i=1,k

aiKf(t− ti). (11)

A sampling of frequencies with maximum frequency

ωmax ≥ O(1ǫ ) guarantees recovery with methods based on

convex relaxations, the associated Féjer kernel is concen-

trated around 0 as seen in Figure 1. Also, this result is valid

for any kernel having its spectrum supported on the ωl.

For random Fourier sampling, we look at the expected

value of z and control its variance with respect to the dis-

tribution of the ωl.

Lemma 3.2. On M(Rd), we choose A such that the ωl are

m i.i.d random variables with a Gaussian distribution with

density G(ωr) =
σd

(
√
2π)d

e−
σ2

2
‖ωr‖2

2 . Let Kg(t) = e−
‖t‖2

2

2σ2 . In

(10), take dl = 1/(mcl) then

E(z(t)) =
∑

i=1,k

aiKg(t− ti) (12)

E(|z(t)− E(z(t))|2) = −
1

m
|E(z(t))|2 +

1

m
‖x0‖

2
Kg

(13)

where ‖x0‖
2
Kg

is the norm associated with the kernel Kg.

Similarly to the regular sampling, the energy of the ex-

pected value of z is concentrated around the positions ti (see

Figure 1). In [7] the frequency distribution scales as the in-

verse of the kernel precision, i.e. the kernel parameter σ of the

kernel h(t) = e−‖t‖2

2
/(2σ2) is chosen as O(1/ǫ). This lemma

is valid for any distribution of frequencies having a Fourier

transform (which defines the kernel).

The control of the variance shows that when the number

of measurements increases, the back-projection of these mea-

surements to the space of measures are closer to the ideal ini-

tialization which is the expected value of z. In practice we set
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Fig. 2. Result for a few spikes in 2d. Left: back-projection

of measurements on a grid. Right: Initialization, gradient de-

scent and projected gradient descent trajectories.

the number of measurements using a rule m = αkd with a

multiplicative parameter α. The quality of the initialization is

thus directly linked to α.

Finally the following Lemma makes sure that as the grid

gets finer we recover all the energy of the ideal spectral ini-

tialization that lies within the domain sampled by the grid .

Lemma 3.3. Let zd = (zΓ,i)ti∈Γ. Then ‖
√

ǫdgzd‖
2
2 →ǫg→0

‖z‖2L2(B2(R)).

Note that the noisy case just adds a noise term with energy

controlled by the noise energy level ‖e‖2 because BΓ is a

Fourier back projection.

4. NUMERICAL EXPERIMENTS

We first illustrate the algorithm on few Diracs in 2d then we

show some results with many Diracs in 2d to show that the

projected descent scales well. We perform the experiments

in the noiseless case and leave the study of the impact of the

noise for future work. The Matlab code used to generate these

experiments is available atyanntraonmilin.wordpress.com/code.

4.1. Illustration with few Diracs

As a first proof of concept we run the algorithm with the re-

covery of 5 Diracs in 2 dimensions from m = 120 Gaussian

random measurements. The trajectories of 500 iterations of

the gradient descent and projected gradient descent are rep-

resented in Figure 2. We observe that while the gradient

descent with overparametrized initialization might converge

with a large number of iterations, the projection step greatly

accelerates the convergence.

4.2. Estimation of many Diracs

We recover 100 Diracs, with a separation 0.01 on the square

[0, 1]× [0, 1] from m = 2000 measurements. In practice, the

grid Γ must be fine enough to overparametrize the number of

Diracs with a good sampling of the ideal spectral initializa-

tion. If ǫg is too small, the number of initial Diracs needed
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Fig. 3. Result for 100 spikes in 2d. Left: back-projection of

measurements on a grid. Right: Initialization, and projected

gradient descent trajectories.

to sample the energy gets bigger, leading to an increased cost

in the first iterations of the gradient descent. In this example

we use ǫg = ǫ and use kin = 4k. We observe in Figure 3

that with these parameters all the Diracs positions are well

estimated after 500 iterations of our algorithm.

4.3. Complexity

The cost of our algorithm is the sum of the cost of the ini-

tialization and the cost of the projected descent algorithm. Of

course, the back-projection on the grid scales as O((1/ǫg)
d)

(irregular Fourier transform on a grid), but it is done only

once. With our strategy, this cost seems unavoidable as we

want to localize Diracs off-the-grid at a precision of the order

of ǫ (doing the same on the grid would have this exponential

scaling with respect to the dimension and the separation). The

cost of the projected gradient descent is essentially O(nitC∇)
where C∇ is the cost the calculation of the gradient. This cost

is of the order of the calculation of the m Fourier measure-

ments for the current number of Diracs in the descent (which

is close to k after a few iterations).

5. CONCLUSION

We gave a practical algorithm to perform off-the-grid sparse

spike estimation. This proof-of-concept show that it is pos-

sible to build a method able to estimate efficiently a large

number of parameters with some strong theoretical insights

of success guarantees. Future research directions are:

• Full theoretical convergence proof of the algorithm with

sufficient conditions on the number of measurements.

• Investigate other methods for reducing the number of pa-

rameters after the back-projection on a grid.

• Investigate quasi-Newton schemes to accelerate the descent

(some Hessian information is available).

• Study the algorithm stability to noise and modeling error

with respect to the number of measurements.

yanntraonmilin.wordpress.com/code
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