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ON THE CHOW RING OF CERTAIN LEHN–LEHN–SORGER–VAN STRATEN

EIGHTFOLDS

CHIARA CAMERE, ALBERTO CATTANEO, AND ROBERT LATERVEER

ABSTRACT. We consider a 10-dimensional family of Lehn–Lehn–Sorger–vanStraten hyperkähler

eightfolds which have a non-symplectic automorphism of order 3. Using the theory of finite-

dimensional motives, we show that the action of this automorphism on the Chow group of 0-

cycles is as predicted by the Bloch–Beilinson conjectures. We prove a similar statement for the

anti-symplectic involution on varieties in this family. This has interesting consequences for the

intersection product of the Chow ring of these varieties.

1. INTRODUCTION

Let X be a smooth complex projective variety. We denote by Ai(X) := CH i(X)Q the Chow

groups of X , i.e. the groups of codimension-i algebraic cycles on X with coefficients in Q,

modulo rational equivalence. Chow groups encode a lot of the geometry of a variety, but their

structure is far from being well understood: Bloch’s conjecture predicts that on any smooth

projective variety X of dimension n, for any correspondence Γ ∈ An(X ×X) such that Γ∗ = 0
on H0,i(X) for all i > 0, then Γ∗ : A

n
hom(X) → An(X) is trivial (see [6]).

Hyperkähler varieties, defined as smooth compact complex projective manifolds X which are

simply connected and carry a holomorphic symplectic two-form ωX such that H2,0(X) = CωX ,

are conjectured to have Chow groups with an even richer structure, by the “(weak) splitting

property conjecture” of Beauville [4].

The aim of this paper is to investigate Chow groups of some special Lehn–Lehn–Sorger–van

Straten (or LLSvS) hyperkähler eightfolds Z(Y ) (see [38]), and more precisely those associated

to a cyclic cubic fourfold not containing a plane Y ⊂ P5. The eightfold Z(Y ) and the 4-

dimensional Fano variety of lines F (Y ) are explicit projective models of hyperkähler varieties.

As Voisin observed in [58], they are related by a rational map of degree six

ψ : F (Y )× F (Y ) 99K Z(Y )

whose construction will be recalled in Subsection 2.6.
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As known from unpublished work of Lehn, Lehn, Sorger and van Straten, the LLSvS eightfold

Z(Y ) is equipped with an anti-symplectic involution ι ∈ Aut(Z(Y )) (see [37]). This automor-

phism is induced, via the rational map ψ : F (Y ) × F (Y ) 99K Z(Y ), by the involution of

F (Y )× F (Y ) exchanging the two factors (Equation (2)).

The family of cyclic cubic fourfolds Y : f(x0, . . . , x4) + x35 = 0, with f a homogeneous

polynomial of degree three, is ten-dimensional and the very general element in it does not contain

a plane, as observed in [13, Remark 6.4] (and also in [45, Proposition 6.5]). Let σ ∈ PGL(6) be

the automorphism:

(1) σ(x0 : . . . : x5) = (x0 : . . . : x4 : ξx5) ,

where we set ξ := exp(2πi
3
). For Y cyclic we have σ(Y ) = Y , therefore σ|Y is an automorphism

of Y . By [13, Section 6.1], σ induces a non-symplectic automorphism g ∈ Aut(Z(Y )) which is

of order 3. Moreover, if Y is the family of cyclic cubic fourfolds not containing a plane, then the

deformation family of hyperkähler eightfolds {Z(Y ) | Y ∈ Y} is still 10-dimensional (see [13,

Theorem 6.8]).

We investigate the action of the two non-symplectic automorphisms ι and g on the Chow group

of 0-cycles of hyperkähler eightfolds in this 10-dimensional family and we partially show that

it is as predicted by the Bloch–Beilinson conjectures. In Sections 2 and 3, after recalling all the

definitions and the constructions which we will use throughout the paper, we start our analysis,

based on previous work by the third author on Chow groups of Fano varieties associated to

cyclic cubic fourfolds [33], together with fundamental work on the Chow ring of Fano varieties

of cubic fourfolds by Shen and Vial [48]. Using Voisin’s rational map ψ and finite-dimensionality

of F (Y ) (in the sense of Kimura [28]), we construct in Proposition 3.3 a decomposition

A8(Z(Y )) =
⊕

j

A8
(j)(Z(Y ))

induced by certain projectors. This decomposition is in fact also compatible with Voisin’s de-

scending filtration S∗ (see [58]), as shown in Corollary 3.4.

In Section 4 we prove the main results of the paper. The first one is as follows:

Theorem 1.1. Let Y ⊂ P5 be a cyclic cubic fourfold not containing a plane and let Z = Z(Y )
be the associated LLSvS eightfold. Let g ∈ Aut(Z) be the automorphism of order 3 induced by

the automorphism (1) of Y . Then

g∗ + g2∗ + g3∗ = 3 id: A8
(0)(Z) → A8(Z) ,

whereas

g∗ + g2∗ + g3∗ = 0: A8
(j)(Z) → A8(Z) for j ∈ {2, 4} .

The cases j = 6, 8 are still open because of the difficulty of constructing projectors which

isolate the g∗-invariant part of Sym
j

2 H2
tr(Z).

The next result concerns the anti-symplectic involution present on any LLSvS eightfold:
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Theorem 1.2. Let Y ⊂ P5 be a Pfaffian cyclic cubic fourfold not containing a plane and let

Z = Z(Y ) be the associated LLSvS eightfold. Then the involution ι ∈ Aut(Z) satisfies:

ι∗ = id: A8
(j)(Z) → A8(Z) for j ∈ {0, 4, 8} ,

whereas

ι∗ = − id : A8
(j)(Z) → A8(Z) for j ∈ {2, 6} .

Theorem 1.2 is expected to hold true for every LLSvS eightfold; one problem in proving such

a statement is that one would first need to make sense of the pieces A8
(j)(Z) (cf. Remark 4.5).

As a consequence of our main results, in Section 5 we describe some constant cycles subvari-

eties on a LLSvS eightfold Z.

Given a projective quotient variety, defined as the quotient Q = X/G of a smooth projec-

tive variety X by a finite subgroup G ⊂ Aut(X), a result by Fulton [23, Example 17.4.10]

implies that Q inherits unaltered the formalism of correspondences (as remarked in [23, Exam-

ple 16.1.13]). This allows us to consider motives (Q, p, 0) ∈ Mrat, where p ∈ An(Q × Q)
is a projector. Moreover, as a consequence of Manin’s identity principle, in Mrat we have an

isomorphism h(Q) ∼= h(X)G := (X,∆G, 0), where ∆G := 1
|G|

∑
g∈GΓg.

Another consequence of our main results are some corollaries concerning the intersection

product in the Chow ring of the quotient varieties of Z.

Corollary 1.3. Let Y ⊂ P5 be a Pfaffian cyclic cubic fourfold not containing a plane and let

Z = Z(Y ) be the associated LLSvS eightfold. Let Q := Z/〈g〉 be the quotient. Then

Im
(
A4(Q)⊗ A2(Q)⊗A2(Q) → A8(Q)

)

=Im
(
A3(Q)⊗ A3(Q)⊗A2(Q) → A8(Q)

)

=Im
(
A5(Q)⊗ A2(Q)⊗A1(Q) → A8(Q)

)

∼=Q .

Corollary 1.4. Let Y ⊂ P5 be a Pfaffian cyclic cubic fourfold not containing a plane and let

Z = Z(Y ) be the associated LLSvS eightfold. For the anti-symplectic involution ι ∈ Aut(Z)
define T := Z/〈ι〉. Then

Im
(
A2(T ) ⊗ A2(T ) ⊗ A2(T ) ⊗ A2(T ) → A8(T )

)

=Im
(
A3(T ) ⊗ A2(T ) ⊗ A2(T ) ⊗ A1(T ) → A8(T )

)

∼=Q .

This is similar to the behaviour of the Chow ring of K3 surfaces [5] and of Calabi–Yau com-

plete intersections [56], [19]. Presumably, Corollary 1.3 holds for all cyclic cubics, and Corol-

lary 1.4 holds for all LLSvS eightfolds (this would follow from Beauville’s “splitting property

conjecture” [4]). It would be interesting to prove this. In our argument, we need the Pfaffian

hypothesis in order to have a bigrading on the full Chow ring of Z (cf. Remark 5.2), while we

need the cyclic hypothesis in order to have a finite-dimensional motive.

Also, it would be interesting to prove our results for the eightfold of K3[4]-type constructed by

Ouchi [44], which extends the LLSvS construction to cubic fourfolds containing a plane.
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Conventions. Throughout the paper, the word variety will be used to refer to a reduced, irre-

ducible separated scheme of finite type over C. A reduced subscheme of a variety is a subvariety

if all of its irreducible components have the same dimension. If X is a variety, we define Hj(X)
to be its singular j-th cohomology group with rational coefficients.

We will always consider Chow groups with coefficients in Q. The Chow group of cycles of

dimension j onX , with Q-coefficients, will be denoted byAj(X). IfX is a smooth n-dimensional

variety, the notations Aj(X) and An−j(X) are equivalent.

We define Ajhom(X), AjAJ(X) to be the subgroups of homologically trivial, respectively Abel–

Jacobi trivial, cycles of codimension j. For σ ∈ Aut(X), we will use the notation Aj(X)σ

(respectively Hj(X)σ) for the subgroup of Aj(X) (respectively Hj(X)) which is invariant with

respect to the action of σ∗.

If f : X → Y is a morphism of varieties, we will denote by Γf ∈ A∗(X × Y ) the graph of f .

The notation Mrat will refer to the (contravariant) category of Chow motives, i.e. pure motives

with respect to rational equivalence (see [42], [47]).

2. PRELIMINARIES

2.1. Finite-dimensional motives. We recall that the objects in Mrat are motives, i.e. pairsM =
(X, p) consisting of a smooth projective varietyX and of a projector p ∈ A∗(X×X) with p2 = p.

Given M = (X, p) and N = (Y, q) in Mrat, by definition Hom(M,N) = q ◦ A∗(X × Y ) ◦ p,

where composition is intended as the composition of correspondences: if f ∈ A∗(X × Y ), g ∈
A∗(Y ×Z), then g ◦f := (p13)∗(p

∗
12f ·p

∗
23g) ∈ A∗(X×Z). In particular, for a smooth projective

variety X we will consider the motive h(X) := (X,∆) in Mrat.

The definition of finite-dimensional motive, in the sense of Kimura, can be found in [2], [27],

[28], [42]. For varieties with finite-dimensional motive, the following nilpotence theorem holds:

Theorem 2.1 (Kimura [28]). Let X be a smooth projective variety of dimension n with finite-

dimensional motive. Let Γ ∈ An(X × X) be a correspondence which is numerically trivial.

Then there is N ∈ N such that

Γ◦N = 0 ∈ An(X ×X) .

We point out that the nilpotence property (for all powers of X) can be used to provide an

alternative definition of finite-dimensional motive (see [27, Corollary 3.9]). It is conjectured (cf.

[28]) that all varieties have finite-dimensional motive: even though this is still far from being

proven, several non-trivial examples are known.

We will be using the following result from [32, Theorem 3.1] and [31, Theorem 4]:

Theorem 2.2. Let Y ⊂ P5 be a smooth cubic fourfold given by an equation

f(x0, . . . , x4) + x35 = 0

(henceforth, we will call cubic fourfolds of this type cyclic cubics). Let F = F (Y ) be the Fano

variety of lines on Y . Then Y and F have finite-dimensional motive.
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2.2. CK decomposition.

Definition 2.3 (Murre, Vial [41], [52]).

(i) A smooth projective variety X of dimension n is said to have a Chow–Künneth (CK) decom-

position if the diagonal in An(X ×X) admits a decomposition

∆X = π0
X + π1

X + · · ·+ π2n
X in An(X ×X) ,

where the πiX ’s are mutually orthogonal idempotents such that (πiX)∗H
∗(X) = H i(X).

(ii) A motive M = (X, p, 0) ∈ Mrat has a CK decomposition if there is a decomposition

p = π0 + π1 + · · ·+ π2n in An(X ×X) ,

where the πi’s are mutually orthogonal idempotents such that (πi)∗H
∗(M) = H i(M).

Remark 2.4. The existence of a CK decomposition for any smooth projective variety is part of

Murre’s conjectures [41], [27]. The extension of this notion from varieties to motives is made in

[52, Conjecture 2.1].

The following provides a practical way of constructing CK decompositions.

Proposition 2.5. Let M = (X, p, 0) ∈ Mrat. Assume that M is finite-dimensional and that X
verifies the Lefschetz standard conjecture. Then M admits a CK decomposition.

Proof. This follows from [26, Lemma 5.4]. �

2.3. MCK decomposition.

Definition 2.6 (Shen–Vial [48]). LetX be a smooth projective variety of dimension n and ∆sm
X ∈

A2n(X ×X ×X) be the class of the small diagonal

∆sm
X :=

{
(x, x, x) | x ∈ X

}
⊂ X ×X ×X .

A multiplicative Chow–Künneth (MCK) decomposition is a CK decomposition {πiX} of X
which is multiplicative, i.e. it satisfies

πkX ◦∆sm
X ◦ (πiX × πjX) = 0 in A2n(X ×X ×X) for all i+ j 6= k .

A weak MCK decomposition is a CK decomposition {πiX} of X such that:
(
πkX ◦∆sm

X ◦ (πiX × πjX)
)
∗(a× b) = 0 for all a, b ∈ A∗(X) .

Remark 2.7. As a correspondence from X ×X to X , the small diagonal induces the following

multiplication morphism:

∆sm
X : h(X)⊗ h(X) → h(X) in Mrat .

Suppose now that X has a CK decomposition

h(X) =

2n⊕

i=0

hi(X) in Mrat .

This decomposition is multiplicative if the composition

hi(X)⊗ hj(X) → h(X)⊗ h(X)
∆sm

X−−→ h(X) in Mrat



6 CHIARA CAMERE, ALBERTO CATTANEO, AND ROBERT LATERVEER

factors through hi+j(X), for any i, j.
Assuming that X has a weak MCK decomposition, if we set

Ai(j)(X) := (π2i−j
X )∗A

i(X)

we obtain a bigraded ring structure on the Chow ring, because the intersection product maps

Ai(j)(X)⊗ Ai
′

(j′)(X) to Ai+i
′

(j+j′)(X).
If X has an MCK decomposition, it is expected (yet not proven) that the following equalities

hold:

Ai(j)(X)
??
= 0 for j < 0 , Ai(0)(X) ∩ Aihom(X)

??
= 0.

This is related to Murre’s conjectures B and D, which were formulated for any CK decomposition

[41].

The property of having an MCK decomposition is severely restrictive, and it is closely related

to Beauville’s “(weak) splitting property” [4]. For a wider discussion, and examples of varieties

with an MCK decomposition, we refer to [48, Section 8], as well as to [22], [35], [49], [54].

In what follows, we will make use of the following result.

Theorem 2.8 (Shen–Vial [48]). Let Y ⊂ P5(C) be a smooth cubic fourfold and let F := F (Y )
be the Fano variety of lines on Y . There exists a CK decomposition {Πi

F} for F and

(Π2i−j
F )∗A

i(F ) = Ai(j)(F ) ,

where the right-hand side denotes the decomposition of the Chow groups defined in terms of the

Fourier transform as in [48, Theorem 2]. Moreover, we have

Ai(j)(F ) = 0 if j < 0 or j > i or j is odd .

For Y very general, the Fourier decomposition A∗
(∗)(F ) forms a bigraded ring, hence {Πi

F} is

a weak MCK decomposition.

Proof. (A remark on notation: what we denote by Ai(j)(F ) is denoted by CH i(F )(j) in [48]).

The existence of a CK decomposition {Πi
F} is [48, Theorem 3.3], combined with the results of

[48, Section 3] to ensure that [48, Theorem 2.2 and 2.4] are satisfied. According to [48, Theorem

3.3], the given CK decomposition agrees with the Fourier decomposition of the Chow groups.

The “moreover” part is because the Πi
F ’s are shown to satisfy Murre’s conjecture B [48, Theorem

3.3]. The statement for very general cubic fourfolds is [48, Introduction, Theorem 3]. �

Remark 2.9. Unfortunately, it is not yet known that the Fourier decomposition of [48] induces

a bigraded ring structure on the Chow ring for all Fano varieties of smooth cubic fourfolds. For

one thing, it has not yet been proven that A2
(0)(F ) ·A

2
(0)(F ) ⊂ A4

(0)(F ) (cf. [48, Section 22.3] for

discussion, and [21, Proposition A.7] for some recent progress).

Theorem 2.10 (Vial [54, Theorem 1]). Let X be a hyperkähler variety which is birational to a

Hilbert scheme S [m], where S is a K3 surface. Then X has an MCK decomposition {πiX}.
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2.4. Refined CK decomposition. In the following, we will use the term manifolds of K3[m]–

type to refer to hyperkähler manifolds of dimension 2m which are deformation equivalent to

Hilbert schemes of m points on a K3 surface.

Theorem 2.11. LetX be a smooth projective hyperkähler fourfold ofK3[2]–type. Assume thatX
has finite-dimensional motive and let {πiX} be a CK decomposition (which always exists under

these hypotheses). Then there exists a further splitting

π2
X = π2,0

X + π2,1
X in A4(X ×X) ,

where π2,0
X and π2,1

X are orthogonal idempotents, and π2,1
X is supported on C × D ⊂ X × X ,

where C and D are a curve, resp. a divisor on X . The action on cohomology verifies

(π2,0
X )∗H

∗(X) = H2
tr(X) ,

where H2
tr(X) ⊂ H2(X) is defined as the orthogonal complement of NS(X) with respect to the

Beauville–Bogomolov–Fujiki form. The action on Chow groups verifies

(π2,0
X )∗A

2(X) = (π2
X)∗A

2(X) .

Proof. It is known that X verifies the Lefschetz standard conjecture B(X) (see [15]). Combined

with finite-dimensionality, this implies the existence of a CK decomposition by Proposition 2.5.

For the “moreover” statement, one observes that X verifies conditions (*) and (**) of Vial’s

[53], and so [53, Theorems 1 and 2] apply. This gives the existence of refined CK projectors πi,jX ,

which act on cohomology as projectors on gradeds for the “niveau filtration” Ñ∗ of loc. cit. In

particular, π2,1
X acts as projector on NS(X), and π2,0

X acts as projector on H2
tr(X). The projector

π2,1
X , being supported on C ×D, acts trivially on A2(X) for dimension reasons: this proves the

last equality. �

2.5. LLSvS eightfolds. In this section we briefly recall the construction of the Lehn–Lehn–

Sorger–van Straten eightfold (see [38] for additional details). Let Y ⊂ P5 be a smooth cubic

fourfold not containing a plane. Twisted cubic curves on Y belong to an irreducible component

M3(Y ) of the Hilbert scheme Hilb3m+1(Y ); in particular, M3(Y ) is a ten-dimensional smooth

projective variety and it is referred to as the Hilbert scheme of generalized twisted cubics on

Y . There exists a hyperkähler eightfold Z = Z(Y ) and a morphism u : M3(Y ) → Z which

factorizes as u = Φ◦a, where a :M3(Y ) → Z ′ is a P2-bundle and Φ : Z ′ → Z is the blow-up of

the image of a Lagrangian embedding j : Y →֒ Z. By [1] (or alternatively [36], or [29, Section

5.4]), the manifold Z is of K3[4]-type.

For a point j(y) ∈ j(Y ) ⊂ Z, a curve C ∈ u−1(j(y)) is a singular cubic (with an embedded

point in y), cut out on Y by a plane tangent to Y in y. In particular, u−1(j(Y )) ⊂ M3(Y ) is

the locus of non-Cohen–Macaulay curves on Y . If instead we consider an element C ∈ M3(Y )
such that u(C) /∈ j(Y ), let ΓC := 〈C〉 ∼= P3 be the convex hull of the curve C in P5. Then,

the fiber u−1(u(C)) is one of the 72 distinct linear systems of aCM twisted cubics on the smooth

integral cubic surface SC := ΓC ∩ Y (cf. [11]). This two-dimensional family of curves, whose

general element is smooth, is determined by the choice of a linear determinantal representation

[A] of the surface SC (see [18, Chapter 9]). This means that A is a 3 × 3-matrix with entries in

H0(OΓC
(1)) and such that det(A) = 0 is an equation for SC in ΓC . The orbit [A] is taken with
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respect to the action of (GL3(C)× GL3(C)) /∆, where ∆ = {(tI3, tI3) | t ∈ C∗}. Moreover,

any curve C ′ ∈ u−1(u(C)) is such that IC′/SC
is generated by the three minors of a 3× 2-matrix

A0 of rank two, whose columns are in the C-linear span of the columns of A.

For a cyclic cubic fourfold Y not containing a plane, we now explain the action of the automor-

phism g ∈ Aut(Z(Y )) of order 3 introduced in Section 1. Let σ ∈ Aut(Y ) be the automorphism

(1). The image of the embedding j : Y →֒ Z is globally invariant under the automorphism: in

particular, g(j(y)) = j(σ(y)). On the other hand, a point p ∈ Z \ j(Y ) corresponds to a three-

dimensional linear subspace Γ ⊂ P5 and a linear determinantal representation [A] of the surface

S = Γ ∩ Y . If A = (wi,j), with wi,j ∈ H0(OΓ(1)) for i, j = 1, 2, 3, then the image g(p) is the

point of Z \ j(Y ) defined by the datum (Γ′, [A′]), where Γ′ := σ(Γ) and A′ is the 3 × 3-matrix

whose entries are wi,j ◦ σ
−1 ∈ H0(OΓ′(1)). The fixed locus of g is the Lagrangian subman-

ifold ZH ⊂ Z which parametrizes generalized twisted cubics contained in the cubic threefold

YH = Y ∩ {x5 = 0} (see [13, Proposition 6.7] and [50, Proposition 2.9]).

2.6. Voisin’s rational map.

Proposition 2.12 (Voisin [58, Proposition 4.8]). Let Y ⊂ P5 be a smooth cubic fourfold not

containing a plane. Let F = F (Y ) be the Fano variety of lines and Z = Z(Y ) be the LLSvS

eightfold of Y . There exists a degree 6 dominant rational map

ψ : F × F 99K Z .

Moreover for suitable symplectic forms ωF , ωZ on F , resp. Z, we have

ψ∗(ωZ) = (pr1)
∗(ωF )− (pr2)

∗(ωF ) in H2,0(F × F )

(where prj denotes the projection on the j-th factor).

We briefly recall the geometric construction of the rational map ψ. Let (l, l′) ∈ F × F be a

generic point, so that the two lines l, l′ on Y span a three-dimensional linear space in P5. For any

point x ∈ l, the plane 〈x, l′〉 intersects the smooth cubic surface S = 〈l, l′〉∩Y along the union of

l′ and a residual conic Q′
x, which passes through x. Then, ψ(l, l′) ∈ Z is the point corresponding

to the two-dimensional linear system of twisted cubics on S linearly equivalent to the rational

curve l ∪x Q
′
x (this linear system actually contains the P1 of curves {l ∪x Q

′
x | x ∈ l}).

By [30, Remark 3.8], the involution ι ∈ Aut(Z) introduced in Section 1 acts on the subset

Z \ j(Y ) as follows. A point p ∈ Z \ j(Y ) corresponds to a linear determinantal representation

[A] of a smooth cubic surface S = Y ∩ P3, or equivalently to a six of lines (e1, . . . , e6) on S (see

[18, Section 9.1.2] and [11]). Then, ι(p) is the point of Z \ j(Y ) associated with the (unique) six

(e′1, . . . , e
′
6) on the same surface S which forms a double-six together with (e1, . . . , e6). In terms

of linear determinantal representations, ι(p) corresponds to the transposed representation [At] of

the surface S by [11, Proposition 3.2]. It can be checked that, if C is a twisted cubic curve on

S in the linear system parametrized by the point p, then, for any quadric Q ⊂ 〈C〉 containing

C, the residual intersection C ′ of S with Q belongs to the fiber u−1(ι(p)) (see for instance [17,

Footnote 47]). By the geometric description of the rational map ψ, we conclude

(2) ι(ψ(l, l′)) = ψ(l′, l)
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In fact, for x ∈ l and x′ ∈ l′, the reducible quadric Q = 〈x, l′〉 ∪ 〈x′, l〉 intersects the surface

S along the union of l ∪x Q
′
x and l′ ∪x′ Qx′ .

Remark 2.13. The indeterminacy locus of the rational map ψ is the codimension 2 locus I ⊂
F × F of intersecting lines (see [40, Theorem 1.2]). Let Y be a cubic fourfold not containing

a plane and suppose that Y has finite-dimensional motive. Unfortunately, we are not able to

prove that the LLSvS eightfold Z = Z(Y ) also has finite-dimensional motive. It has now been

computed by Chen [16, Theorem 1.1] that blowing up the incidence locus I ⊂ F × F gives a

resolution of indeterminacy of Voisin’s map ψ (cf. subsection 2.6 below), but we still do not know

whether I ⊂ F × F has finite-dimensional motive.

As we will see in the proof of Proposition 3.3, we have at least a weaker result: there exists a

submotive M ⊂ h(Z) such that M is finite-dimensional and M is responsible for the 0-cycles,

i.e. A8(M) = A8(Z). Also, in the special case where Y is a Pfaffian cyclic cubic not containing

a plane, the eightfold Z(Y ) has finite-dimensional motive (see the proof of Proposition 3.10).

A possible approach to the question of expressing the motive of Z(Y ) in terms of the one of Y
is to exploit the fact that Z(Y ) can be interpreted by [30] as a moduli space of semistable objects,

with respect to a suitable Bridgeland stability condition, in the Kuznetsov component of Db(Y )
(cf. also [39] and [16, Section 2.2]). Provided one can adapt the argument of [12, Theorem 0.1

and Remark 2.1] (replacing the K3 category of loc. cit. by the Kuznetsov category of a cubic

fourfold), this interpretation would give a nice motivic relation between Z(Y ) and powers of Y
(in particular, Z(Y ) would have finite-dimensional motive if Y has). This approach has been

worked out in [20].

3. DECOMPOSITION OF A8(Z)

In this section we construct a decomposition of A8(Z) for LLSvS eightfolds associated with

cyclic cubic fourfolds not containing a plane; the key ingredient will be the finite-dimensionality

proven in [32]. Later, in Section 3.1, we give a similar construction in the special case of Pfaffian

cubic fourfolds not containing a plane based on [54].

Definition 3.1 (Voisin [58]). Let X be a hyperkähler variety of dimension n = 2m. One defines

Sj(X) ⊂ X as the set of points whose orbit under rational equivalence has dimension ≥ j. The

descending filtration S∗ on An(X) is defined by letting SjA
n(X) be the subgroup generated by

points x ∈ Sj(X).

Remark 3.2. As explained in [58], the expectation is that the filtration S∗ is opposite to the

Bloch–Beilinson filtration (which conjecturally exists for all smooth projective varieties) and

thus provides a splitting of it. This is motivated by Beauville’s speculations in [4] (cf. [55]).

Proposition 3.3. Let Y ⊂ P5 be a cubic fourfold not containing a plane, let F = F (Y ) be the

Fano variety of lines and let Z = Z(Y ) be the associated LLSvS eightfold, such that F has

finite-dimensional motive.

(i)(Shen–Vial [48]) There exist mutually orthogonal idempotents Π8
F×F ,Π

10
F×F , . . . ,Π

16
F×F ∈

A8(F 4) with the property that

A8
(j)(F × F ) :=

⊕

k+ℓ=j

A4
(k)(F )⊗ A4

(ℓ)(F ) = (Π16−j
F×F )∗A

8(F × F ) .
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(Here A4
(∗)(F ) refers to the Fourier decomposition of Theorem 2.8.)

Moreover, the idempotent Πk
F×F acts on cohomology as projector on Hk(F × F ).

(ii) There exist idempotents Π8
Z ,Π

10
Z , . . . ,Π

16
Z ∈ A8(Z × Z), such that

(Π8
Z +Π10

Z + · · ·+ Π16
Z )∗ = id: A8(Z) → A8(Z)

and

(Πk
Z ◦Πℓ

Z)∗A
8(Z) = 0 ∀k 6= ℓ .

Moreover, the idempotent tΠk
Z acts as the identity on H16−k

tr (Z) (where H16−k
tr (Z) denotes

the orthogonal complement of the algebraic part of the cohomology N1 under the cup product

pairing).

Proof. (i) Let {Πi
F} be the CK decomposition given by Theorem 2.8, such that A4

(k)(F ) =

(Π8−k
F )∗A

4(F ). We consider the product CK decomposition

(3) Π16−j
F×F :=

∑

k+l=j
k,l≤4

Π8−k
F × Π8−l

F .

It is easy to check that these are mutually orthogonal idempotents in A8(F 4), lifting the Künneth

components in cohomology.

(ii) There is a map of motives

Γ̄ψ : h(F × F ) → h(Z) in Mrat ,

where Γ̄ψ ∈ A8(F ×F ×Z) denotes the closure of the graph of the rational map ψ of Subsection

2.6. The projectors of (i) define motives

hk(F × F ) := (F × F,Πk
F×F , 0) ∈ Mrat (k = 8, . . . , 16) .

Let us now consider the map of motives

Γ̄ψ : hk(F × F ) → h(Z) in Mrat (k = 8, . . . , 16) .

Using finite-dimensionality of hk(F × F ) and applying [52, Lemma 3.6] to this map, one

obtains a decomposition

(4) h(Z) =Mk ⊕M ′
k in Mrat ,

such that the map from hk(F × F ) to Mk (induced by Γ̄ψ) admits a right-inverse. This gives a

decomposition

hk(F × F ) = Nk ⊕N ′
k in Mrat

such that Γ̄ψ induces an isomorphism Nk
∼= Mk, and so in particular Mk is finite-dimensional.

On the level of zero-cycles, the effect of this is that there is a decomposition

A8
(16−k)(F × F ) = A8(Nk)⊕ A8(N ′

k) ,

where A8(Nk) = ψ∗ψ∗A
8
(16−k)(F × F ) and A8(N ′

k) = (kerψ∗) ∩ A
8
(16−k)(F × F ). The isomor-

phism of motives Nk
∼=Mk induces an isomorphism of Chow groups

ψ∗ : A8(Nk)
∼=
−→ A8(Mk) .
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Since we know that

ψ∗ : A
8(F × F ) =

16∑

k=8

(Πk
F×F )∗A

8(F × F ) → A8(Z)

is surjective, it follows that
∑16

k=8A
8(Mk) = A8(Z) and soA8(M ′

k) = 0. The projectors defining

the motives Mk, k = 8, . . . , 16, give the required Πk
Z .

For any k 6= ℓ, consider the commutative diagram

A8(F × F )
ψ∗

−→ A8(Z)

(Πℓ
F×F

)∗ ↓ ↓ (Πℓ
Z
)∗

A8(F × F )
ψ∗

−→ A8(Z)

(Πk
F×F

)∗ ↓ ↓ (Πk
Z
)∗

A8(F × F )
ψ∗

−→ A8(Z)

Since the Πk
F×F of (i) are mutually orthogonal, it follows that Πk

Z ◦Π
ℓ
Z acts as 0 on Chow groups.

For the action in cohomology, we notice that tΠk
F×F acts as projector on H16−k(F × F ). The

claimed behaviour of tΠk
Z follows from the commutative diagram

H16−k(F × F ) ⇆ H16−k(Z)

(tΠk
F×F )∗ ↓ ↓ (tΠk

Z )∗

H16−k(F × F ) ⇆ H16−k(Z)

(where horizontal arrows are given by ψ∗ and ψ∗), plus the fact that ψ∗ψ
∗ = 6 id on H∗

tr(Z). �

Corollary 3.4. Let Y, F, Z be as in Proposition 3.3, and set A8
(j)(Z) := (Π16−j

Z )∗A
8(Z). This

induces a decomposition

A8(Z) = A8
(0)(Z)⊕A8

(2)(Z)⊕ · · ·A8
(8)(Z) ,

such that

ψ∗A
8
(2i)(F × F ) = A8

(2i)(Z) .

The piece A8
(2i)(Z) is isomorphic to S4−iA

8(Z)/S5−iA
8(Z).

Proof. The first part of the statement follows immediately from the definition of A8
(2j)(F × F )

and of the idempotents Π8
Z , . . . ,Π

16
Z of Proposition 3.3.

In [58, Corollary 4.9] Voisin shows that SkA
8(Z) ∼= ψ∗

(∑
i+j=k SiA

4(F )⊗ SjA
4(F )

)
.

Moreover, [58, Proposition 4.5] says that S1A
4(F ) = A4

(0)(F ) ⊕ A4
(2)(F ) and that S2A

4(F ) =
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A4
(0)(F ). The combination of these two facts gives the desired isomorphism, as we show in the

case i = 1. Indeed,

S4A
8(Z) ∼= ψ∗

(
∑

i+j=4

SiA
4(F )⊗ SjA

4(F )

)
= ψ∗

(
S2A

4(F )⊗ S2A
4(F )

)
= ψ∗(A

4
(0)(F )⊗A

4
(0)(F ))

= ψ∗(A
8
(0)(F × F )),

S3A
8(Z) ∼= ψ∗

(
∑

i+j=3

SiA
4(F )⊗ SjA

4(F )

)
= ψ∗

(
S2A

4(F )⊗ S1A
4(F ) + S1A

4(F )⊗ S2A
4(F )

)

= ψ∗(A
4
(0)(F )⊗A

4
(0)(F )⊕A

4
(0)(F )⊗A

4
(2)(F )⊕A

4
(2)(F )⊗A

4
(0)(F )) = ψ∗(A

8
(0)(F×F )⊕A

8
(2)(F×F )),

so that S3A
8(Z)/S4A

8(Z) ∼= ψ∗(A
8
(2)(F × F )) ∼= A8

(2)(Z). �

By Theorem 2.2, Proposition 3.3 and Corollary 3.4 hold in particular when Y is a cyclic

cubic fourfold not containing a plane. We now give an interpretation of the piece A8
(0)(Z) of our

decomposition:

Proposition 3.5. Let Y ⊂ P5 be a cyclic cubic not containing a plane and let Z = Z(Y ) be the

LLSvS eightfold. One has

A8
(0)(Z) = Q[c8(TZ)] = Q[h8] = Q[Y 2] = Q[(ZH)

2] ,

where h ∈ A1(Z) is a hyperplane section, Y ∈ A4(Z) is (the class of) the cubic j(Y ) ⊂ Z and

ZH ∈ A4(Z) is (the class of) the variety of twisted cubics contained in a hyperplane section.

Proof. This uses some results concerning the Franchetta property [21]. By construction, we have

A8
(0)(Z) = ψ∗A

8
(0)(F × F ) .

Also, we know that ψ∗ψ
∗ = 6 id: A8(Z) → A8(Z). Thus, to show that some 0-cycle a ∈ A8(Z)

lies in the piece A8
(0)(Z), it suffices to prove that

ψ∗(a) ∈ A8
(0)(F × F ) .

To conclude, we now use the i = 8 case of the following

Claim 3.6. Let F → B denote the universal family of Fano varieties of lines on cubic fourfolds,

and let Γ ∈ Ai(F ×B F). Then, for any b ∈ B the restriction Γ|b ∈ Ai(Fb × Fb) lies in

Ai(0)(Fb × Fb).

Since the classes c8(TZ), h, Y, ZH ∈ A∗(Z) are universally defined (i.e. they exist as relative

cycles in A∗(Z), where Z → B◦ is the universal family of LLSvS eightfolds, and B◦ ⊂ B is

the open parametrizing cubics not containing a plane), and Voisin’s rational map can be defined

family-wise (cf. [21, Proof of Theorem 1.11]), the claim settles Proposition 3.5.

It remains to prove the claim. Let

Πk
F×BF ∈ A16(F ×B F ×B F ×B F)
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be relative correspondences that restrict to the product CK decomposition Πk
F×F of (3) (to see

that such relative correspondences exist, cf. [21, Section A.2]). Given Γ ∈ Ai(F ×B F), let us

look at

(Πk
F×BF)∗(Γ) ∈ Ai(F ×B F) (k 6= 2i) .

(For the formalism of relative correspondences, cf. [42, Chapter 8]). This is fibrewise homologi-

cally trivial, and so [21, Theorem 1.10] implies that this is fibrewise rationally trivial:

(Πk
F×F )∗(Γ|b) =

(
(Πk

F×BF)∗(Γ)
)∣∣∣
b
= 0 in Ai(Fb × Fb) ∀k 6= 2i .

This means that

Γ|b ∈ Ai(0)(Fb × Fb) ,

proving the claim. �

The piece A8
(2)(Z) of the decomposition also admits an easy interpretation:

Proposition 3.7. Let Y ⊂ P5 be a cyclic cubic not containing a plane and let Z = Z(Y ) be the

LLSvS eightfold. There is a (correspondence-induced) isomorphism

A8
(2)(Z)

∼= A3
hom(Y ) .

Proof. Let F = F (Y ) be the Fano variety of lines. As is well–known (cf. [3]), the universal line

L ∈ A3(Y × F ) induces the isomorphism

L∗ : H4
tr(Y )

∼=
−→ H2

tr(F )(1) .

Proposition 2.12 gives a (correspondence-induced) isomorphism

ψ∗(pr
∗
1 − pr∗2) : H2

tr(F )
∼=
−→ H2

tr(Z) .

Using hard Lefschetz, we know that there is a (correspondence-induced) isomorphism

H2
tr(Z)

∼=
−→ H14

tr (Z)(−6) .

Composing these isomorphisms (and invoking Manin’s identity principle [47, Section 2.3]),

we obtain an isomorphism of homological motives

h4(Y )⊕
⊕

L(∗)
∼=
−→ h14(Z)(−5)⊕

⊕
L(∗) in Mhom

(where L denotes the Lefschetz motive).

Now let us consider the Chow motive (Z,Π14
Z , 0) constructed above. Since from the decom-

position (4) we get H14
tr (M

′) = 0, we have an isomorphism of homological motives

(Z,Π14
Z , 0)⊕

⊕
L(∗) ∼= h14(Z).

Using finite-dimensionality of h4(Y ) and of (Z,Π14
Z , 0), we thus obtain an isomorphism of Chow

motives

h4(Y )⊕
⊕

L(∗)
∼=
−→ (Z,Π14

Z ,−5)⊕
⊕

L(∗) in Mrat .

Taking A3
hom() on both sides, this proves the proposition. �
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For technical reasons, later on we will need to work with some subprojectors of the {Πi
Z},

which we construct by using the refined CK decomposition introduced in Section 2.11.

Proposition 3.8. Let Y ⊂ P5 be a cyclic cubic fourfold not containing a plane, let F = F (Y )
be the Fano variety of lines and let Z = Z(Y ) be the associated LLSvS eightfold.

(i) There exist mutually orthogonal idempotents {P i
F×F} ∈ A8(F 4) which are subprojectors of

the {Πi
F×F} of Proposition 3.3, such that

A8
(j)(F × F ) = (P 16−j

F×F )∗A
8(F × F ) .

Moreover, the idempotent tP 16−k
F×F acts on cohomology as projector on Symk/2H2

tr(F × F ).
(ii) There exist mutually orthogonal idempotents {P i

Z} ∈ A8(Z × Z) which are subprojectors

of the {Πi
Z} of Proposition 3.3, such that

A8
(j)(Z) = (P 16−j

Z )∗A
8(Z) .

Moreover, the idempotent tP 14
Z acts as projector on H2

tr(Z).

Proof. (i) We now construct subprojectors of the {Πi
F×F} . We start from the refined CK de-

composition of Theorem 2.11 Π2
F = Π2,0

F + Π2,1
F in A4(F 2) and we consider Π4,0,0

F := ∆sm
F ◦

(Π2,0
F × Π2,0

F ) ◦ Ψ, where Ψ is the inverse of ∆sm
F : h2(F ) ⊗ h2(F ) → h4(F ) in Mhom (by

finite dimensionality we get that it is also an inverse in Mrat). Recall that (Π4,0,0
F )∗(A

4(F )) =
(Π4

F )∗(A
4(F )) = A4

(4)(F ).
Define now:

P 8
F×F =Π4,0,0

F ×Π4,0,0
F ,

P 10
F×F =t(Π4,0,0

F × Π2,0
F +Π2,0

F × Π4,0,0
F ),

P 12
F×F =t(Π4,0,0

F × Π0
F +Π0

F ×Π4,0,0
F +Π2,0

F × Π2,0
F ),

P 14
F×F =t(Π0

F ×Π2,0
F +Π2,0

F × Π0
F ),

P 16
F×F =Π8

F × Π8
F = t(Π0

F × Π0
F ).

To check that the action of P j
F×F on 0-cycles coincides with the action of Πj

F×F , one reduces

to the same statement for {Πj
F}j=2,4 versus {Π2,0

F ,Π4,0,0
F }. This last statement is proven in [33,

Proof of Proposition 3.8].

Idempotency follows from the idempotency and orthogonality of Π0
F , Π2,0

F and Π4,0,0
F . Clearly

P 16−j
F×F is a subprojector of Π16−j

F×F , so they are also mutually orthogonal.

Finally, by definition (Π2,0
F )∗H

∗(F ) = H2
tr(F ), hence also (Π4,0,0

F )∗H
∗(F ) = Sym2H2

tr(F ).

As a consequence, we obtain that (tP 16−k
F×F )∗H

∗(F × F ) = Symk/2H2
tr(F × F ).

(ii) The P i
Z are constructed by applying the “splitting construction” of Proposition 3.3(ii) to the

P i
F×F . Since tP 14

F×F acts as projector on H2
tr(F ×F ), and ψ∗ψ

∗ = 6 id on H2
tr(Z), it follows that

P 14
Z acts as projector on ψ∗H

2
tr(F × F ) = H2

tr(Z). �

3.1. Pfaffian cubics. We consider now the family of Pfaffian cubic fourfolds. For the general

element Y in this family, Beauville and Donagi [3] have shown that there is an isomorphism

between F (Y ) and the Hilbert scheme S [2] of the associated K3 surface S of degree 14.
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Proposition 3.9. Let Y ⊂ P5 be a Pfaffian cubic fourfold not containing a plane. Let S be the

associated K3 surface of degree 14 and let Z = Z(Y ) be the LLSvS eightfold. There is an

isomorphism of motives

h(Z) ∼= h(S [4]) in Mrat .

This induces an isomorphism of Chow rings A∗(Z) ∼= A∗(S [4]).

Proof. For a general Pfaffian cubic Y , it is known (cf. [1]) that there is a birational map Z 99K

S [4] (precisely, the condition on Y is that Y does not contain a plane and S does not contain a

line). Thus, for a general Pfaffian cubic the isomorphism of motives and of Chow rings follows

from Rieß’s result [46]. A standard spreading argument (cf. [57, Lemma 3.2]) then shows that

these isomorphisms extend to all Pfaffian cubics. �

For cyclic cubics that are Pfaffian, which exist as shown in [10, Proposition 5.1], one can

improve on Proposition 3.3(ii):

Proposition 3.10. Let Y ⊂ P5 be a Pfaffian cyclic cubic fourfold not containing a plane and let

Z = Z(Y ) be the LLSvS eightfold. There exist mutually orthogonal idempotent correspondences

R8
Z , R

10
Z , . . . , R

16
Z ∈ A8(Z × Z), such that

(R16−j
Z )∗A

8(Z) = A8
(j)(Z) .

Moreover, the idempotent tR16−k
Z acts on cohomology as projector on Symk/2H2

tr(Z).

Proof. A first observation is that the Fano variety F (Y ) is isomorphic to a Hilbert square S [2],

where S is a K3 surface [3]. Also, we know that F (Y ) ∼= S [2] has finite-dimensional motive

(Theorem 2.2). This implies that S also has finite-dimensional motive and thus the eightfold

Z ∼= S [4] has finite-dimensional motive.

Theorem 2.10 now ensures that Z has a self-dual MCK decomposition {πjZ}. This induces the

same decomposition on 0-cycles:

Lemma 3.11. Let Z be as in Proposition 3.10. The decomposition ofA8(Z) induced by the MCK

decomposition of Theorem 2.10 coincides with the decomposition of Corollary 3.4:

A8
(j)(Z) := (Π16−j

Z )∗A
8(Z) = (π16−j

Z )∗A
8(Z) .

Proof. For any Hilbert scheme S [m] of a K3 surface S, Vial’s decomposition of A0(S
[m]) as

in Theorem 2.10 coincides with Voisin’s filtration S∗ (this is observed in [58, End of Section

4.1]). �

Next, let us consider the decomposition π2
Z = π2,0

Z +π2,1
Z of Theorem 2.11. Using the argument

of [33, Proof of Proposition 3.8], this decomposition induces idempotents T kZ ∈ A8(Z × Z),

k = 0, . . . , 8, acting on cohomology as projectors on Symk/2H2
tr(Z). We define Rk

Z to be the

transpose Rk
Z := tT 16−k

Z . The support condition for π2,1
Z in Theorem 2.11 implies that (R14

Z )∗ =
(π14

Z )∗ : A
8(Z) → A8(Z). For k = 8, . . . , 12, we use the fact thatA8(Z) = A8(S [4]) = A8(S4)S4

(cf. [14]) to lift the computations to S4, since by construction of Vial [54] we have a commutative
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diagram

A8(S4)S4

(πk

S4
)∗
// A8(S4)S4

A8(Z)

≃

OO

(πk
Z)∗

// A8(Z)

≃

OO

and a similar diagram holds for Rk
S4 and Rk

Z by [33]. On S4 it is readily checked that Rk
S4 and

πkS4 differ only by terms involving π2,1
S which is not acting on zero-cycles because of its support

property, thus we conclude again that (Rk
S4)∗ = (πkS4)∗ : A

8(S4) → A8(S4) and so the Rk
Z’s do

the job. �

Remark 3.12. It remains an open question whether the projectors Rk
Z coincide with the projec-

tors P k
Z of Proposition 3.8, since it is not clear whether P k

Z acts on cohomology as projector on

Symk/2H2
tr(Z).

Remark 3.13. All the results that we have obtained for Pfaffian cubic fourfolds go through for

all other special cubic fourfolds Y , in the sense of Hassett [24], for which the Fano variety of

lines F (Y ) is isomorphic to S [2], with S the associated K3 surface.

4. PROOFS OF MAIN RESULTS

We now prove the main results stated in Section 1.

Proof of Theorem 1.1. Let F = F (Y ) denote the Fano variety of lines on Y . We have seen that

there is a commutative diagram
F × F 99K Z

↓ (g,g) ↓ g

F × F 99K Z

(where the horizontal arrows are Voisin’s rational map ψ).

Let us use the shorthand notation

∆G :=
1

3

3∑

i=1

Γgi ∈ A8
(
(F × F )× (F × F )

)
,

where G ∼= Z3 is the group generated by the diagonal action of g on F × F .

Since A8
(j)(Z) = ψ∗A

8
(j)(F × F ), the theorem follows once we prove that

(∆G)∗ = id: A8
(j)(F × F ) → A8(F × F ) for j = 0 ,

and

(∆G)∗ = 0: A8
(j)(F × F ) → A8(F × F ) for j ∈ {2, 4} .

In view of Proposition 3.8, this is equivalent to proving that

(5) (∆G ◦ P 16−j
F×F )∗ =

{
(P 16−j

F×F )∗ : A8(F × F ) → A8(F × F ) for j = 0 ,

0: A8(F × F ) → A8(F × F ) for j ∈ {2, 4} .
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We first establish a lemma:

Lemma 4.1. For any j, the correspondence ∆G ◦ P 16−j acts idempotently:
(
(∆G ◦ P 16−j

F×F )
◦2
)
∗ = (∆G ◦ P 16−j

F×F )∗ : A8(F 2) → A8(F 2) .

Proof. The action of g on A4(F ) respects the Fourier decomposition A4
(j)(F ), i.e.

g∗A
4
(j)(F ) ⊂ A4

(j)(F ) ∀j

by [33, Proposition 3.2]. This implies that

(P 16−j
F×F ◦∆G ◦ P 16−j

F×F )∗ = (∆G ◦ P 16−j
F×F )∗ : A8(F 2) → A8(F 2) .

Since ∆G is obviously idempotent, this proves the lemma. �

Let us start by proving the desired result (5) for j = 0. Since the projector P 16
F×F is just the

CK projector Π8
F ⊗Π8

F of Theorem 2.8, and g acts as the identity on H8(F ), we know that

∆G ◦ P 16
F×F = ∆G ◦ (Π8

F ⊗Π8
F ) = Π8

F ⊗ Π8
F = P 16

F×F in H16(F 4) .

That is, we have

∆G ◦ P 16
F×F − P 16

F×F ∈ A8
hom(F

4) .

Because F × F has finite-dimensional motive, there exists N ∈ N such that
(
∆G ◦ P 16

F×F − P 16
F×F

)◦N
= 0 ∈ A8(F 4) .

But P 16
F×F is idempotent (Theorem 2.8), and ∆G ◦ P 16

F×F acts idempotently on 0-cycles (Lemma

4.1), hence (taking N odd) we find that

(∆G ◦ P 16
F×F )∗ = (P 16

F×F )∗ : A4(F 2) → A4(F 2) ,

proving (5) for j = 0.

Next, let us prove the desired result (5) for j = 2. We consider the correspondence P 14
F×F ◦∆G,

and we make the following claim:

Claim 4.2. There is equality

∆G ◦ tP 14
F×F = 0 in H16(F 4) .

The claim implies that ∆G ◦ tP 14
F×F ∈ A8

hom(F
4), and so its transpose P 14

F×F ◦ ∆G is also in

A8
hom(F

4). In particular, the composition

P 14
F×F ◦∆G ◦ P 14

F×F

is in A8
hom(F

4). Using finite-dimensionality, this means that there exists N ∈ N such that
(
P 14
F×F ◦∆G ◦ P 14

F×F

)◦N
= 0 in A8(F 4) .

Looking at the action on 0-cycles, and using the fact that

(P 14
F×F ◦∆G ◦ P 14

F×F )∗ = (∆G ◦ P 14
F×F )∗ : A8(F 2) → A8(F 2)

(proof of Lemma 4.1), this implies that

(∆G ◦ P 14
F×F )∗ = 0: A8(F 2) → A8(F 2) ,
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therefore we have established the desired result (5) for j = 2.

It remains to prove Claim 4.2. Since tP 14
F×F acts on cohomology as projector on H2

tr(F × F ),
it will suffice to prove that

(∆G)∗(a) = 0 in H2(F × F ) ∀a ∈ H2
tr(F × F ) .

To this end, we consider the eigenspace decomposition of complex-valued cohomology, and

define a subspace

H :=
{
a ∈ H2(F × F ) | aC ∈ H2(F × F,C)ν ⊕H2(F × F,C)ν

2}
.

The subspace H , together with its complexification, is a Hodge structure containing p∗1(ωF ) and

p∗2(ωF ). But H2
tr(F ×F ) is the smallest Hodge substructure containing these two classes, and so

H2
tr(F × F ) ⊂ H . It follows that

(6) aC ∈ H2(F × F,C)ν ⊕H2(F × F,C)ν
2

∀a ∈ H2
tr(F × F ) ,

and Claim 4.2 is proven.

Let us now do the case j = 4. We make the following claim:

Claim 4.3. There exists Γ ∈ A8(F 4) such that

∆G ◦ (∆F×F − Γ) ◦ tP 12
F×F = 0 in H16(F 4) ,

and Γ factors as Γ = Υ′′ ◦ Υ′, where Υ′ ∈ A7(F 2 × T ), Υ′′ ∈ A3(T × F 2) and T is a (not

necessarily connected) surface.

This is sufficient: using the finite-dimensionality of F 2, there exists N ∈ N such that
(
∆G ◦ (∆F×F − Γ) ◦ tP 12

F×F

)◦N
= 0 in A8(F 4) .

Developing (and using Lemma 4.1), we find that
(
∆G ◦ tP 12

F×F + Γ′
)
∗ = 0: A8(F 2) → A8(F 2) ,

where Γ′ is a correspondence that factors over T . But Γ′ does not act on 0-cycles for dimension

reasons, and so

(∆G ◦ tP 12
F×F )∗ = 0 : A8(F 2) → A8(F 2) .

It remains to prove Claim 4.3. First of all we remark that H4(F ×F )+ = H4(F )+⊗H0(F )⊕
(H2(F )⊗H2(F ))+⊕H0(F )⊗H4(F )+, and by Abel–Jacobi isomorphism we also haveH2(F )⊗
H2(F ) ≃ H4(Y )⊗2. Moreover, since F is a fourfold ofK3[2]-type, we haveH2(F )⊗2 = H4(F ),
thus finally we reduce the study of H4(F × F )+ to the study of H4(F )+ ≃ (H4(Y )⊗2)+.

We now apply Shioda–Katsura’s construction [51, Proposition 2.4 and Remark 1.10]. This

gives a rational map from Y ×Y to a cubic eightfold Y8, defined by the equation f(x0, . . . , x4)+
f(x5, . . . , x9) = 0, and an injection

φ = (φ1, φ2) : H8(Y × Y )+ →֒ H8(Y8)⊕W ,

where W ⊂ H2∗(YH)
⊕2 and YH ⊂ Y is the cubic threefold defined by f(x0, . . . , x4) = 0.

Since the construction of loc. cit. is geometric in nature, φ and its left-inverse are induced

by correspondences (Φ1,Φ2) resp. (Ω1,Ω2). It is known that Aj(Y8) = Q for j ≥ 6 [43],
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which means that there exists a surface Σ such that ∆Y8 = Ψ1 ◦ Θ1, where Ψ1 (resp. Θ1) is a

correspondence from Y8 to Σ (resp. from Σ to Y8). Analogously, since H2∗(YH) is algebraic, we

obtain a correspondence Ψ2 (resp. Θ2) from the copies of YH giving rise to W to a finite number

of points (resp. vice versa). We can now define

Υ̃′ = Ψ1 ◦ Φ1 +Ψ2 ◦ Φ2 ∈ A∗(Y 2 × T̃ ), Υ̃′′ = Ω1 ◦Θ1 + Ω2 ◦Θ2 ∈ A∗(T̃ × Y 2)

where T̃ is the union of several copies of Σ and of copies of P2 representing the points above. Fi-

nally, composing with the Abel–Jacobi correspondence we obtain correspondences Υ′ ∈ A7(F 2×
T ), Υ′′ ∈ A3(T × F 2). Defining Γ := Υ′′ ◦Υ′, we have that

(
∆G ◦ (∆F×F − Γ) ◦ tP 12

F×F

)
∗H

∗(F × F ) =
(
∆G ◦ (∆F×F − Γ)

)
∗H

2(F × F )⊗2

= (∆G)∗(H
⊥) ,

where H⊥ ⊂ H2(F × F )⊗2 is the complement to (H2(F × F )⊗2)+. Since the complexification

of H⊥ is the direct sum of the eigenspaces (H2(F ×F,C)⊗2)ν and (H2(F ×F,C)⊗2)ν
2

, we see

that ∆G acts as zero, as claimed. �

Proof of Theorem 1.2. The first thing to prove is that the involution ι respects the decomposition

A8(Z) = ⊕A8
(j)(Z) (this is the analogue of Lemma 4.1).

Lemma 4.4. Let Y ⊂ P5 be a cyclic cubic not containing a plane and let Z = Z(Y ) be the

associated LLSvS eightfold. Let ι ∈ Aut(Z) be the involution of Remark 2. Then

ι∗A8
(j)(Z) ⊂ A8

(j)(Z) ∀j .

Proof. We have seen (Section 2.6, Equation (2)) that there is a commutative diagram

F × F 99K Z

↓ ιF ↓ ι

F × F 99K Z

where the horizontal arrows are Voisin’s rational map ψ and ιF : F × F → F × F is the map

exchanging the two factors.

We have also seen that

A8
(j)(Z) = ψ∗

(
⊕

k+ℓ=j

A4
(k)(F )⊗A4

(ℓ)(F )

)
.

Since ιF respects the decomposition on the right-hand side, it follows that ι respects the decom-

position on the left-hand side. �

The proof of Theorem 1.2 is now similar to the one of Theorem 1.1. We introduce correspon-

dences

Γj :=
1

2

(
Γι − (−1)j/2∆Z

)
◦R16−j

Z ∈ A8(Z × Z) (j = 0, 2, 4, 6, 8) ,
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where the Rk
Z’s are as in Proposition 3.10. One proceeds to check that each Γj is homologically

trivial (this is easy, as one only needs to understand the action of ι on Sym∗H2
tr(Z)). Then, using

finite-dimensionality of Z, one finds that

(Γj)
◦N = 0 in A8(Z × Z) ,

for some N ∈ N. Using the fact that

(Γj)∗(Γj)∗ = (Γj)∗ : A8(Z) → A8(Z)

(proof of Lemma 4.4), we find that

(Γj)∗ = 0: A8(Z) → A8(Z) ,

which proves Theorem 1.2. �

Remark 4.5. It makes sense to ask whether Theorem 1.2 can be extended to the general LLSvS

eightfold. To obtain such an extension, the first problem is to construct a “good” decomposition

of A8(Z) (in the sense that it is related to the filtration of [58], and comes from a CK decomposi-

tion). The second problem is to show that ι acts in the expected way (this seems difficult without

knowing Z has finite-dimensional motive).

5. SOME CONSEQUENCES

5.1. Constant cycle subvarieties. The results of Sections 3 and 4 give interesting consequences

on the existence of constant cycle subvarieties in some LLSvS variety Z, which are by definition

subvarieties whose points are all rationally equivalent in Z to a given 0-cycle (see [25] and [58]

for further details).

(1) It follows from Corollary 3.4 that A8
(0)(Z)

∼= Q and so there is a “canonical 0-cycle” on

Z. We remark that on the Fano variety of lines of any cubic fourfold X there is a well-

known constant cycle surface, constructed by Voisin in [55, Lemma 2.2]: it is enough to

choose W = X ∩H to be a hyperplane section of X with five nodes and to consider the

Fano surface F (W ) of lines on W . It follows from [58, Corollary 4.9] that the closure in

Z of the image via ψ of (F (W )× F (W )) \ I is again a constant cycle fourfold, which

by construction is contained in the image ZH ⊂ Z via u of the variety of twisted cubics

contained in W .

It is possible to be more precise: indeed, for the eightfold Z the canonical 0-cycle is

the degree 1 generator of Q[c8(TZ)] ⊂ A8(Z), which is 1
25650

c8(TZ) in A8(Z). In view

of Corollary 3.4, any point x ∈ S4(Z) is such a degree 1 generator (the locus S4(Z) is of

dimension 4, as proven by Voisin [58, Corollary 4.9]).

(2) Moreover, let Z = Z(Y ) be the LLSvS eightfold associated to a cyclic cubic fourfold

Y not containing a plane. As before, let ZH ⊂ Z denote the Lagrangian submanifold

parametrizing twisted cubics contained in the hyperplane section YH = Y ∩ {x5 = 0}.

Let us consider points

x ∈ ZH ∩ S2(Z) .

Since x ∈ ZH = Fix(g), Theorem 1.1 implies that (the class of) x is in A8
(0)(Z) ⊕

A8
(6)(Z) ⊕ A8

(8)(Z). Since x ∈ S2(Z), we know from Corollary 3.4 that (the class of)
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x is in ⊕j≤2A
8
(2j)(Z). It follows that x ∈ A8

(0)(Z)
∼= Q, i.e. irreducible components of

ZH ∩ S2(Z) are constant cycle subvarieties.

Similarly, let Z = Z(Y ) be the LLSvS eightfold associated to a cyclic and Pfaffian

cubic fourfold Y not containing a plane. Theorems 1.1 and 1.2, combined with Corollary

3.4, imply that any point

x ∈ Fix(g) ∩ Fix(ι) ∩ S1(Z)

has class in A8
(0)(Z)

∼= Q.

5.2. Intersection product. Recall that the Chow groups of a quotient variety have an intersec-

tion product. In this subsection we study this product for certain quotients of the LLSvS eightfold

Z.

Proof of Corollary 1.3. The Pfaffian hypothesis ensures that the motive of Z is isomorphic to the

motive of the Hilbert scheme S [4], where S is the associated K3 surface of degree 14, as shown

in Proposition 3.9. In particular, it follows that the Chow ring of Z has a bigrading given by an

MCK decomposition (Theorem 2.10).

Since the motive of Z is isomorphic to the motive of the Hilbert scheme S [4], there is a “hard

Lefschetz type” isomorphism

(7) · h3 : A2
(2)(Z)

∼=
−→ A8

(2)(Z) ,

for any ample divisor class h ∈ A1(Z) (see [34, Corollary 3.2]). Taking a g-invariant ample class

h, this gives in particular an isomorphism

·h3 : A2
(2)(Z)

〈g〉 ∼=
−→ A8

(2)(Z)
〈g〉 ,

and so Theorem 1.1 implies that

A2
(2)(Z)

〈g〉 = 0 .

A similar reasoning also shows that

A2(Z)〈g〉 ⊂ A2
(0)(Z) .

Indeed, let b ∈ A2(Z)〈g〉, and let h ∈ A1(Z) be once again a g-invariant ample class. Then

b · h3 ∈ A8(Z)〈g〉 and so (in view of Theorem 1.1) we know that b ∈ A8
(0)(Z). Writing the

decomposition b = b0 + b2, where bj ∈ A2
(j)(Z), and invoking the isomorphism (7), we see that

b2 = 0.

The corollary is now readily proven. For instance, the image of the intersection map

Im
(
A4(Z)〈g〉 ⊗A2(Z)〈g〉 ⊗ A2(Z)〈g〉 → A8(Z)

)

is contained in

Im

((
⊕

j≤4

A4
(j)(Z)

)
⊗A2

(0)(Z)⊗A2
(0)(Z) → A8(Z)

)
⊂
⊕

j≤4

A8
(j)(Z) .

On the other hand, the image is obviously 〈g〉-invariant, and so

Im
(
A4(Z)〈g〉⊗A2(Z)〈g〉⊗A2(Z)〈g〉 → A8(Z)

)
⊂ A8(Z)〈g〉 ⊂ A8

(0)(Z)⊕A
8
(6)(Z)⊕A

8
(8)(Z)
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(where the second inclusion is Theorem 1.1). It follows that

Im
(
A4(Z)〈g〉 ⊗ A2(Z)〈g〉 ⊗ A2(Z)〈g〉 → A8(Z)

)
⊂ A8

(0)(Z)
∼= Q .

The other maps are treated similarly. �

We can also prove the following result concerning 1-cycles.

Corollary 5.1. Let Y ⊂ P5 be a Pfaffian cyclic cubic not containing a plane and let Z = Z(Y )
be the associated LLSvS eightfold. Let Q := Z/〈g〉 be the quotient, where g ∈ Aut(Z) is the

automorphism of order 3 of Section 1. Then the image

Im
(
A2(Q)⊗ A2(Q)⊗A2(Q)⊗ A1(Q) → A7(Q)

)

injects into cohomology via the cycle class map.

Proof. Let G := 〈g〉. As we have just seen (proof of Corollary 1.3), Z has an MCK decompo-

sition and A∗(Z) has a bigrading. Since Ai(Z)G is equal to Ai(0)(Z)
G for i = 1, 2, there is an

inclusion

Im
(
A2(Z)G ⊗A2(Z)G ⊗ A2(Z)G ⊗ A1(Z)G → A7(Z)

)
⊂ A7

(0)(Z) .

However, the subgroupA7
(0)(Z) ⊂ A7(Z) is known to inject into H14(Z) via the cycle class map

(cf. [54, Introduction]). �

Remark 5.2. Let Y ⊂ P5 be any cyclic cubic fourfold (not necessarily Pfaffian) and let Q :=
Z(Y )/〈g〉 be the quotient under the group generated by the order 3 automorphism g. Conjec-

turally, the subring of A∗(Q) generated by A1(Q), A2(Q) (and the pushforwards of the Chern

classes of Z(Y )) should inject into cohomology.

To prove this for cyclic non-Pfaffian cubics, we run into the problem that we don’t know

whether Z(Y ) has an MCK decomposition. To prove the full conjecture for Pfaffian cubics,

we run into the problem that it is not known whether Ai(0)(Z(Y )) injects into cohomology, except

for i = 7, 8.

Proof of Corollary 1.4. Similar to Corollary 1.3. �

Remark 5.3. Let Y ⊂ P5 be any (not necessarily cyclic, nor Pfaffian) cubic not containing

a plane. Let Z = Z(Y ) be the associated LLSvS eightfold and let ι ∈ Aut(Z) be the anti-

symplectic involution. One expects that the subring

〈A1(Z), A2(Z)ι, cj(TZ)〉 ⊂ A∗(Z)

injects into cohomology (this is the Beauville–Voisin conjecture forZ, extended by addingA2(Z)ι

which is supposed to lie in A2
(0)(Z)). It would be interesting to prove this for cases not covered

by Corollary 1.4.
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