

Shadowgraphy investigation of the combustion of raw and pre-treated single biomass particles: Influence of particle size and volatile content

Hassan Mohanna, Jean-Michel Commandre, Bruno Piriou, Gilles Vaitilingom, Benoît Taupin, David Honoré

▶ To cite this version:

Hassan Mohanna, Jean-Michel Commandre, Bruno Piriou, Gilles Vaitilingom, Benoît Taupin, et al.. Shadowgraphy investigation of the combustion of raw and pre-treated single biomass particles: Influence of particle size and volatile content. Fuel, 2019, 258, pp.116113. 10.1016/j.fuel.2019.116113 . hal-02311538

HAL Id: hal-02311538 https://hal.science/hal-02311538

Submitted on 23 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Shadowgraphy Investigation of the Combustion of Raw and Pre-treated Single Biomass Particles: Influence of Particle Size and Volatile Content

Hassan MOHANNA¹⁻³, Jean-Michel COMMANDRE¹, Bruno PIRIOU¹, Gilles VAITILINGOM¹, Benoit TAUPIN², David HONORE³ ¹ CIRAD UPR BioWooEB, 34398 Montpellier, France ² Veolia Recherche et Innovation (VeRI), 78520 Limay, France ³ Normandie Univ, INSA Rouen, UNIROUEN, CNRS, CORIA, 76000 Rouen, France

8 Abstract

3

9 An experimental study of single particle combustion is performed in a high temperature particle reactor. 10 The particle degradation is simultaneously monitored by high magnification direct imaging and by 11 shadowgraph imaging techniques giving access to the full behaviour of the particle even when enveloped 12 by a flame. This allows tracing the time-resolved evolution of the particle shadow during its degradation as 13 a function of its burnout. The method provides access to the whole process timeline, especially the onset of 14 the heterogeneous oxidation even during the flame phase. It is observed to occur earlier for larger particles 15 containing lower volatile matter. The latter occupies around 40% of the initial particle shadow, which 16 decreases with devolatilisation progress following a power trend. The char burns at the surface until the 17 reaction front penetrates the particle leaving an ash matrix behind. Effects of particle size and volatile matter 18 on the different steps of particle combustion are discussed. Moreover, biomass behaviour is compared to 19 that of coal. The whole results give new insights in the combustion of single biomass particle and are 20 available for the development and validation of dedicated solid fuel combustion models.

21

22 Introduction

In the view of the polluting role of coal, incorporating a fraction of biomass into coal in pulverized burners can be an effective environmental strategy. However, this significantly modifies the functionality of the installations considering the different combustion behaviour of biomass at flame and particle level [1]. However, unlike coal which has been extensively studied by the scientific community given its influential role in the industrial revolution, the integration of biomass in industry is more recent, and more research is required to improve the available technology.

Single particle reactors are successfully employed for coal in literature using heated grid reactor, batch type reactors, free fall and entrained flow reactors, etc. [1]–[4]. In general, the experimental rigs consist basically of a heated chamber in which a particle is introduced at high temperature to record its degradation. The particle can be suspended on a fixed support or in a free stream according to the size.

This kind of experiments is necessary to validate the theoretical concepts describing the phenomena and to examine the related parameters of the process conditions. However, fewer studies adapted these reactor to biomass [5]–[9]. Lu et al. [8] demonstrated in such experiment on biomass that shape and aspect ratio differences show measurable differences in pyrolysis rates. Schiemann et al. [5], [10] also concluded to the same result using a new stereoscopic pyrometer to measure the particle temperature and shape at the same time in a laminar flow reactor. Momeni et al. [6] reported that the ignition delay of a stationary particle is clearly influenced by the oxygen concentration in the surrounding atmosphere. Similar aspects were assessed by Houshfar et al. [9] using gas emissions of single particles. These results serve to translate the combustion stage into empirical expressions that can be integrated in physical models [8], [11], [12]. Beside the combustion behaviour, some studies examined the impact of fuel pre-treatment. Lu et al. [7] pointed out that torrefaction shortens the devolatilization time while increasing the char yield and density. Riaza et al. [3] also reported that increasing oxygen mole fraction in ambient atmosphere reduces the surrounding flame luminosity.

The objective of this study is to provide additional insight to the combustion timeline of a single particle of biomass using imaging techniques. Direct visible imaging is performed to visualize particle combustion. Moreover, shadowgraphy is employed to trace simultaneously the particle projection area and shape evolution. Incorporating both techniques with the temperature measurement provides fundamental data on the events corresponding to each involved phenomenon. The investigation examines the impact of torrefaction and particle size on the combustion behaviour.

52 **1. Fuel composition and properties**

The fuels are selected in the purpose of investigating the volatile matter (VM) content influence on the combustion process. Pine is chosen as a reference biomass and is torrefied at 280 °C for 25 min to produce pint and also partially pyrolyzed at 450 °C for 15 min to produce pinp. A longer residence time of 20 min at 450 °C released more volatiles and produced carbonized pine (denoted pinc). The thermal preparation of the received wood chips was done in a heated screw reactor under nitrogen inert atmosphere. Demolition wood (DW) is also used as representative of waste fuels.

	pine	pint	pinp	pinc	DW	Coal
Ash	0.87	1.33	2.54	3.24	2.13	2.03
VM	81.22	73.62	44.83	19.59	78.29	37.08
FC	18.58	25.05	52.62	77.17	19.57	60.89
С	51.68	55.10	67.77	79.87	48.51	82.14
Н	5.93	5.68	4.50	3.44	5.63	5.57
Ν	0.22	0.29	0.32	0.39	4.39	1.54
0	41.27	37.52	25.15	16.28	40.58	8.71
LHV (MJ/kg)	18.45	19.744	25.30	28.33	17.70	32.34

59

 Table 1: Fuel composition analysis (%db)

	pine	pint	pinp	pinc	DW	Coal
Particle shape	Needle-	cylindrical	cylindrical	Near-	Flake-like	Near-
Purticle shupe	like	cymuricui		spherical		spherical
Aspect ratio	2.50±0.70	1.67±0.40	1.65±0.41	1.41±0.29	2.08±0.48	1.28±0.26
Particle size (mm)	0 69 1 57	0 42 1 15	0 40 1 25	0 40 1 02	0 50 1 74	0 49 0 02
(min-max)	0.68-1.57	0.42-1.15	0.49-1.25	0.49-1.02	0.50-1.74	0.48-0.93
Mass (mg) (min-max)	0.1-1.8	0.1-1.3	0.1-1.1	0.1-1.1	0.5-2.1	0.6-1.6
Number of tested	22	20	20	16	21	25
particles	32	29	30	10	51	25

60

Table 2: Physical appearance of the tested particles

- 61 In addition, Venezuelan coal was tested aiming to show the different behaviour of combustion of biomass
- 62 and a coal even when containing a high volatile content. The proximate and ultimate analyses of the fuel
- are listed in **Table 1** obtained following the ASTM norms. **Table 2** shows the physical properties (shape
- 64 and size) of the tested particles of each tested fuel. Fuels are grounded thanks to a knives mill with a 1.5
- 65 mm sieve. The size of the particles obtained after grinding is in the range 0.4 and 2 mm possessing different
- aspect ratios and their mass is up to maximum 2 mg. Pine particles are mostly needle-like while torrefied
- 67 pine and coal are between cylindrical and spherical particles. Demolition wood particles are mostly thick
- 68 flakes made of small compressed fragments of wood.
- 69 **2. Experimental methods**
- 70 **2.1. Single particle combustion apparatus**

Figure 1: Particle combustion shadowgraphy experimental apparatus

72 An experimental apparatus is designed to monitor the shadow of a solid particle during its thermal 73 conversion [13]. The setup in Figure 1 consists of a 12 x 13 x 14 cm heated combustion chamber fixed on 74 a horizontal bench alongside with two cameras and a LED lamp. The chamber is electrically heated to a set 75 point of 800 °C maximum and maintained at the set temperature with the help of an isolation layer. Two 76 optical windows are situated on opposite sides of the chamber. These 3cm-dia. windows beside the small 77 sizes of the cameras were sufficient to place both of them on the same side at long distance from the chamber 78 to limit non-paraxial effect. The monochrome camera (Sony XCD-SX90) for shadowgraphy imaging is 79 equipped with Navitar precise eye lens, 0.25x lens attachment to increase the working distance, and 2.0x 80 adapter producing suitable magnification (0.4 μ m/pixel). The camera is adjusted to capture images 81 (850x850 pixel²) at 37 fps with 0.2 ms exposure time. Another camera (MicroCapture) records at 30 fps 82 visible color images (352x288 pixel²) with an optical zoom giving a magnification ratio of 4.16µm/pixel. 83 Both cameras are held at a fixed distance from the particle position to achieve a consistent optical 84 magnification and similar line-of-sight. The background is lighted with a collimated illumination generated 85 by a LED lamp on the same axis of the particle for shadowgraphy measurements. The advantage of this 86 technique is that it can surpass the flame barrier during the combustion of volatiles and access the full

particle shape and volume evolution with time that is not available with usual direct visible imagingtechniques.

89 2.2. Methodology

The samples are dried for 24 hours before every experiment considering the high variation in moisture content Moisture: 13% pinp, 1.9% pint, which can hugely influence the particles behaviour and ignition delay. A significant number of particles are tested for each fuel to reduce the deviations and better determine the trends and average values (table 2).

94 Prior to an experiment, a particle is glued to the tip of a 250 µm thermocouple measuring the surface 95 temperature at a temporal frequency of 12 Hz. The glue is a high-temperature nonorganic paste used in a 96 very small quantity at the position of the particle and left to dry to ensure little interference with the 97 occurring thermochemical phenomena. As the biomass is tested with glue, dedicated experiments have been 98 performed to determine if an influence of glue can be noticed on reaction kinetics. This potential influence 99 is evaluated by comparing the thermogravimetric analysis of a sample of particles covered from one side 100 with the glue and held in a wide crucible, and a reference sample of pine without glue in Figure 2. Under 101 inert atmosphere, it seems to have little effect on the pyrolysis behaviour. However, the combustion tests 102 revealed that the glue shifts slightly the degradation peaks to a higher temperature and separate the char 103 and volatile oxidation process. Little to negligible difference on the conversion peaks values, processes 104 durations, and ignition temperature is observed in comparing both curves. So, the effect of the glue is 105 limited and it allows the comparison of results obtained with different fuels using same methodology.

Figure 2: TGA profiles showing the influence of glue on the combustion of pine

107 Once the chamber attains and stabilizes at the experiment temperature, the particle is inserted quickly to 108 the hot medium by the help of a guiding rod fixed to the external wall of the chamber. The particle position 109 is adjusted to be always in the field of view of both cameras during the whole process.

110 **2.3.** Processing of simultaneous time-series of images

111 Shadowgraph monochrome images are binarised in order to facilitate the detection of the particle 112 contours (Figure 3 - A1 and B1). The background is subtracted using the rolling ball algorithm creating 113 black objects on a smooth continuous background in Figure 3 -A2 [14]. In the progress of its combustion, 114 the particle luminosity changes after the flame extinguishes due to char radiation. Therefore, it is necessary 115 to apply a threshold method for the flame stage followed by another for the char combustion part. During the flame stage we used an iterative procedure based on the IsoData algorithm (Figure 3 -A3) [16]. For the 116 117 char combustion part, the external contour was more difficult to detect as the threshold depends strongly 118 on the particle luminosity, which varies with time and particle nature. The particle luminosity was similar 119 to that of the background, so the algorithm was highlighting it in white surrounded by the particle edges as 120 shown in Figure 3 (B2). Indeed, the white inner zone here is the bright region of the particle where the 121 heterogeneous reaction takes place, while the surrounding black region is the burnt part (ash). It is 122 noticeable how the reaction zone during the char combustion separates from the external area of the particle 123 and undergoes internal combustion. Hence, the IsoData method was repeated in this stage with additional 124 treatment and the purpose this time was to follow the evolution of the reaction bright zone, which is directly 125 related to the progress of the heterogeneous combustion. Colors were inverted to keep the detection zone 126 in black for the contour detection later. Further treatment including automatic dilating and filling holes was 127 performed to distinguish as much as possible the zone of interest (B3).

Moreover, the external area at this stage are extracted using the Mean method that fits best the data among seventeen tested methods [15]. The images are then processed by a contour detection program capable of generating the evolution curve of the projection area of the particle as a function of time [16]. The code can detect the thermocouple and subtract it from the calculation. In order to subtract the glue area and eliminate the sensitivity of the thresholding process, the curves were then rectified by manually integrating several points on each curve and account for the error.

134 The two image series and the thermocouple data are zeroed at the insertion moment in order to have a 135 synchronicity between the temporal data. Superposition of the data helps to identify the events associated 136 to each phenomenon. Moreover, superposing both imaging techniques provides the moment of the onset of 137 heterogeneous combustion even during the flame phase. In fact, the combustion sub-processes occur 138 simultaneously at high heating rates, but the overlap of homogenous and heterogeneous combustion is 139 difficult to evaluate experimentally. However, using shadowgraphy, the particle can be monitored 140 throughout the whole combustion experiment. The moment oxygen attacks the char surface is associated 141 with a slight brightness at that position. The luminosity is really clear after the flame is completely 142 extinguished but it can be also traced back on shadow images to its onset during the flame period, while 143 the flame still appears to radiate on the direct visible images at the same time.

Figure 3: Image treatment for the contour detection of the external area of a particle during
devolatilisation (left) and the heterogeneous reaction zone (right)

Figure 4: Brightness increase on shadow images at the heterogeneous ignition position

The curve in **Figure 4** follows the intensity at the surface of a pine particle. The particle brightness is quite constant before frame 6 (yellow marker) where the intensity commences to increase afterwards till it becomes very bright after the flame extinguishes in frame 11. This increase in intensity at the char surface is then considered as the heterogeneous ignition moment. Once identified, the time difference until the flame extinguishes is defined as the homo-hetero overlap.

154 **2.4.** Visual observation of the combustion

155 A general trend of particle behaviour is observed for biomass. A typical size evolution of a biomass particle

156 with time is presented as a series of images in Figure 5 and the corresponding time evolution of particle

- area in Figure 6. After its insertion to the hot zone, a series of events is triggered. The particle swells for a
- 158 certain moment due to the increasing pressure of volatiles inside it. The swelling coefficient depends on the
- 159 biomass type: it is longer for pine than for pint whereas it is negligible for pinp.
- 160
- 161 a) Pine (mass = 1.3 mg, at 800°C)

Figure 6: Typical size evolution of biomass with time

182 The swelling is followed by a flame accompanied by rapid decrease in particle size due to the liberation of 183 volatiles that rapidly react to produce the surrounding flame with characteristics dependent on the VM 184 content within the particle. The flame intensity and size increase with time and then shrinks back until its 185 extinction. Around 40% of the initial projection area is lost during this step, which corresponds to the 186 volume loss due to the volatile content release. Particle consumption then slows down after the flame 187 extinguishes. The char becomes bright glowing red by the effect of carbon oxidation. At first, the particle 188 shrinks with the luminous region signifying the oxidation at the surface of the particle. A point of separation 189 between the reaction zone (bright zone) and the external area is detected (denoted as reaction zone shrinks 190 in **Figure 5**). The reaction front continues to travel inside the particle (internal combustion) leaving a dark 191 zone behind until the complete burnout. The heterogeneous reaction zone curve in Figure 6 follows the 192 bright zone that separates at a certain moment from the external area curve. The result is a hollow particle 193 of ash that swells sometimes at the end. Fragmentation of the particle is also sometimes observed especially 194 for DW.

195 **2.5. Temperature-time history of biomass particles**

Similar to area evolution, a trend of temperature profile is observed for biomass during their burnout history. **Figure 7** presents the temperature and its derivative (dT/dt) with time which is the result of the energy balance of the particle. The insertion is at t = 0 sec in synchronicity with images recordings. We assume that the limitation of heat transfer through the glue is negligible, as well as the influence of radiation on the thermocouple, so the measured temperature of the thermocouple is representative of that of the particle.

201 The temperature derivative peaks at three events: upon insertion and rapid heating, maximum flame size,

and when the flame is blown out. The flame was detected visually in the two image series, when the volatile cloud around the particle is lit, and by the sudden increase in the surface temperature profile giving the

204 ignition temperature shown as event #1 on **Figure 7**. The second peak – event #2 - corresponds to the

- 205 devolatilization peak where dT/dt decreases afterwards due to lower volatile emission rate. This is also
- obtained in TGA experiments by the DTG peak and oxygen consumption peak [17].

207

Figure 7: Temperature variation of biomass particle during combustion. The corresponding events (1-5)
 are detailed in the text.

210 The peak value declines with increasing particle mass, which suggests that lighter particles undergo intense 211 pyrolysis. dT/dt reduction arrives to a local minimum (event #3), which coincides with the heterogeneous 212 ignition detected by the previously mentioned technique. The char combustion heats the particle without 213 losing significant heat to the high temperature surrounding flame. Once the volatile flame quenches, the 214 particle starts losing heat, whence the second chute. The peak of event #4 is then attributed to the flame 215 extinguishment. Sometimes a shorter overlap between the volatile and char combustion makes this peak 216 less pronounced. A significant difference between the wall (800°C) and particle temperatures reverses the 217 heat flow direction after the particle reaches its maximum temperature. Subsequently, a balance is 218 established between the energy production and loss until the complete burnout, which is characterized by 219 a third decrease – event #5 - with no more energy production. The temperature then stabilizes at the chamber 220 temperature (800°C).

3. Combustion durations

222 **3.1. Ignition delay**

The ignition of biomass particles is in general initiated in the gas phase. The combustion reaction is activated when the volatile cloud around the particle acquires sufficient energy and flammable concentration. The two entities are properties of the volatile gas composition and the heat capacity of the surrounding gas [3]. The TGA curves showed that the devolatilisation commences early (at 221 °C for pine) and it can be detected in the shadowgraph image time-series by the sudden decrease in the particle volume after building internal pressure. The delay between the release of volatiles and their ignition is so short that they appear simultaneously at 37 frame/sec recording. The ignition delay is defined by the time needed to 230 have a rapid temperature rise after the insertion of the particle. TGA curves are usually used to identify the 231 ignition temperature of biomass. Previous investigations pointed out that the ignition delay times increased 232 with the increase of the initial particle density and diameter. Nevertheless, TGA conclusions cannot be 233 extrapolated for high heating rates conditions. Li et al. [18] found that torrefied softwood was faster to 234 ignite than raw softwood at high heating rates. The authors addressed that by the change in ignition 235 mechanism from homogenous to heterogeneous ignition promoted by higher char reactivity of torrefied 236 biomass. Moreover, at high heating rates, the volatiles are easily driven out of high porous particles with 237 barely any swelling detected as in the case for pinp, while the swelling of raw particles implies that the 238 volatile release is delayed until acquiring sufficient pressure to break the particle wall structure.

Fuel	Pine	Pint	Pinp	Pinc	DW
Ignition temperature (°C)	240 ± 11	290 ± 22	220 ± 26	346 ± 14	258 ± 41
Table 3:	Ignition ter	nperature o	f the tested	fuels	

240 The ignition temperatures measured in the present experiments are shown in **Table 3**. Raw pine ignites at 241 240 °C, which is close to the temperature reported in [19] for beech wood (235°C). Demolition wood ignites 242 at around 258 °C with high variations (± 41°C) due to the presence of impurities and high particle-to-243 particle variations. The improved hydrophobicity of torrefied fuel generally reduces its ignition delay 244 compared to high moisture raw counterpart [11], [20]. In this study, the fuels were dried before the 245 experiments, so the influence of moisture is eliminated and the conclusions are purely based on the particle 246 properties. Pint flame appeared at 290 °C due to lower volatile concentration. Despite its poor VM content, 247 pinp ignites even before raw pine at 220 °C where the ignition is dominated by the higher porosity and 248 improved reactivity of pinp. The release of pyrolytic water during torrefaction and the significantly lower 249 density may also have a role in improving the ignitability of the pinp volatiles. In all cases, the presence of 250 volatiles facilitates the ignition at relatively low temperatures while for no flame is visible for the low VM 251 carbonized pine and the heterogeneous ignition is delayed until the particle reaches 346 °C.

252 **3.2. Volatile flame duration**

239

253 Figure 8, a plots the flame duration as a function of the particle mass. The quasi linear increase is logical 254 since more volatiles require more time to burn [21]. Besides, bigger particle's temperature rises slower than 255 finer particle one at the same heating conditions. This slows down the devolatilisation rate. However, little 256 to no difference is detected between the flame durations of different fuel types. Only, pinp flame duration 257 appears shorter than the other flames due to relatively low volatile content. Akinrinola et al. [20] reported 258 a similar result of close flame duration for raw and torrefied Nigerian biomass. It was however reported 259 longer by 10-15% in the torrefied state for Miscanthus and Beech wood in [22]. The authors attributed this 260 effect to the increasing influence of the catalytic metals in the fuels. It is also possible that the new pores 261 created during torrefaction facilitate the emission of volatiles. In this case, the flux of volatile emission is lower for the treated biomass, which elongates their emission time in comparison to time needed for sameamount of volatiles in their raw counterparts.

264 **3.3. Homo-hetero combustion overlap**

The overlap of flame combustion and char combustion is introduced in **Figure 8**,b. Note that the points only represent the particles that their heterogeneous ignition observed on shadow images coincides with the local minimum in the temperature derivative curve. In the other case, the difference between the luminosity detection and the (dT/dt) local minimum for some particles may be addressed by the fact that the ignition may be triggered from the backward side of the particle so that the temperature derivative minimum appears earlier than predicted by the rear view.

271 The heterogeneous ignition occurs earlier for larger particles containing lower volatile content, and thus 272 increases the overlap duration. Torrefaction of pine induces an increase of overlap duration. The maximum 273 overlap among the pine-derived fuels was obtained for pinp with 0.4 sec for a 1.4 mg particle. On the other 274 hand, a 0.1 mg pine particle had the minimum overlap of 0.076 sec. When the particle is surrounded by 275 flame, the temperature is high enough for the heterogeneous ignition to happen. The heterogeneous ignition 276 of carbonized pine starts at significantly lower temperatures. Nonetheless, the lack of oxygen at the surface 277 induces a delay in the ignition. This may occur early for a particle in a free stream where the motion of the 278 irregularly shaped particle exposes an edge to the hot stream out of the spherical flame envelope. Mock et 279 al. [23] in these conditions observed overlap taking place in the last 40% of the flame duration for coffee waste and sewage sludge particles (150-215 µm). On the other hand, the more spherical treated wood 280 281 experienced a relatively short overlap (9% of flame duration). However, for a stationary particle in the 282 current study, the char undergoes ignition while enveloped by a flame. Therefore, the ignition here is 283 controlled by the diffusion of oxygen to the surface through the volatile cloud without being consumed or 284 diverted away. Larger particles have larger surface area and therefore it is more probable for them to receive 285 locally more oxygen than smaller ones. This explains why larger particles of the same fuel present char 286 ignition earlier. The same analysis may apply in explaining why the overlap increases with the torrefaction 287 degree. Torrefaction reduces the particle density so that a raw particle of the same mass as a torrefied one 288 has larger size, and thus higher overlap. Moreover, the outward flow of volatile matter seems to obstruct 289 the molecular diffusion of oxygen towards the particle surface. Results show that the volatile flow tends to 290 be more intense with smaller particles and with more VM. Therefore, the probability of oxygen passing the 291 volatile cloud to react with the char is lower for smaller particles and for higher VM content so that the 292 probability of ignition is lower.

295

294

Figure 8: Combustion durations: a) flame; b) overlap; c) burnout

3.4. Burnout time

299 The higher overlap between the flame phase and char combustion phase shortens the total burnout duration. 300 Figure 8,c shows the total burnout duration of each biomass from the moment of ignition to the total 301 consumption of the particle. An increasing tendency of combustion duration versus mass is measured for 302 all fuels. Lower volatile content favours longer combustion duration since more fixed carbon is retained in 303 the char for the torrefied biomass caused by the increase in C-C bonds during the decomposition of the 304 lignocellulose component. Yet, the 45% reduction of VM for pinp does not lead to a significant difference 305 with pine and pint as expected. This could be attributed to the higher interference between the two 306 combustion phases and to the improved catalytic effect of ash in both torrefied fuels due to higher ash 307 content. The role of volatile matter in accelerating the combustion is evident as the low volatile pinc takes 308 up to three times more time to complete its oxidation. On top of rapid combustion of VM in the surrounding 309 flame, volatile ejection deforms the particle and creates new pores in the char structure enhancing its 310 reactivity.

311 **4. Evolution of the projection area**

312 The evolution of the projection area gives an indication of the particle size evolution assuming 313 homogeneous and isotropic behaviour. In order to compare the area evolution of different particles, the 314 projection area is normalized by the initial projection area (at t=0) versus the normalized combustion time 315 t/t burnout where t burnout is the total combustion duration of each fuel type. On the other hand, the 316 unburnt fraction (U = 1 - consumed mass/initial mass) is also traced versus the normalized 317 combustion time. The unburnt fraction is obtained from combustion experiments of the samples performed 318 in a horizontal batch reactor at the same temperature (800°C), where similar combustion events and 319 durations are observed [24]. Figure 9 shows the normalized area (A/A_0) of pine particles and their average 320 associated with the unburnt fraction (U) of pine vs the corresponding combustion time. The procedure is 321 repeated for every single particle and the result is the average of all curves. The coefficient of determination 322 (R^2) is higher than 0.9 for all fuel types. The variations between the particles are more pronounced during 323 the char combustion. Nevertheless, high similarity is found during the flame phase. The average curves of 324 each fuel are gathered in Figure 10. The rupture of each curve is the separation point of the flame and char 325 phase (represented as dashed lines in the graph). 44%, 37%, 40% and 46% of the initial projected area are 326 lost during the flame phase for pine, pint, pinp and DW respectively. The curves follow a power trend (A =327 $A_0 U^{\alpha}$) for the flame part where α is the power coefficient listed in **Table 4** for each fuel. It is noticeable 328 that it gets higher with lower VM content except for torrefied pine Pint.

329 The table also includes the shrinking core model for char combustion that assumes a constant particle 330 density during char combustion. According to the model, char oxidation occurs in a diffusion controlled 331 process. The model depicts well the evolution of the reaction zone rather than the particle volume. DW char 332 is the closest to the model as it undergoes fragmentation during its oxidation and leaves little to no ash 333 matrix after the complete burnout. However, the other fuel chars follow the carbonized pine profile given 334 in Figure 11. The curve represents char oxidation in comparison with the shrinking particle model as a 335 function of the unburnt char fraction Uc, defined as the ratio of the remaining carbon to the fixed carbon 336 content. The model is fairly correct at the beginning of the char combustion but the data diverge later at the 337 point of separation of the two curves in **Figure 6** to an approximately constant volume as the combustion 338 progresses. Carbon is reacting with small variation of the external volume that ends with 33% to 39% of 339 the initial projection area after the complete burnout of all the fuel types except for DW with low ash 340 residue. Higher ash content accounted for larger ash matrix at the end. The char was sometimes swelling in 341 the course of its oxidation. This is obvious in the curve of carbonized pine that increases from Uc ≈ 0.3 and 342 then shrinks again to reach 56% of its original shadow at the end. The swelling is probably caused by 343 trapped volatiles in the ash matrix (most likely lignin volatiles) that are liberated at the end because of the

- 344 internal pressure increase. Ejections of particle fragments are also observed at the end when the particle
- 345 swells. The phenomenon is notable for pint and it can be spotted by a slight increase in the slope of torrefied
- 346 pine size as U approaches zero.

Figure 9: Normalized area (A/A₀) and unburnt fraction (U) vs the normalized combustion time of pine

349

350 **Figure 10:** Comparison of the projection area evolution as a function of the unburnt fraction of all fuels

Figure 11: Comparison between experimental char evolution and shrinking core model (U-axis in reverse order)

u 0.52 0.27 0.05 0.40 0.00	α	0.32	0.29	0.63	0.40	0.66
-----------------------------------	---	------	------	------	------	------

Table 4: Exponent of power trend of area evolution

Assuming spherical particles and isotropic consumption, the particle volume can be directly evaluated from its projection area. Even with initial irregular particle shape which rapidly tends to disappear and becomes more rounded than the mother particle [22], [25].

5. On the difference between biomass particle and coal particle combustion

360 The difference between the combustion of coal and biomass is obviously demonstrated by the classical 361 characterization methods like TGA. These differences are the result of the physical and chemical variations 362 including density, composition (proximate and ultimate analysis), structure and porosity. The huge 363 difference in the volatile content is a prominent change that defines the flame characteristics and the char 364 properties. The chemical composition of the fuels is also different and the reaction is slower on coal due to 365 the difference of the intrinsic reactivity of the material as much as the surface area of the char [26]. Biomass 366 flames are transparent and possess uniform shape (near spherical) regardless of the particle irregular shape, 367 to the contrary of coal flames that are sooty and disturbed. The volatiles released from biomass consist 368 mostly of light hydrocarbons. Tars and heavy hydrocarbons crack expediently into light gases and pyrolytic 369 water before reacting with oxygen. Moreover, biomass volatiles have high oxygen proportion leading to 370 the formation of CO and CO₂. The latter inert gas dilutes the volatile cloud around the particle and reduces 371 the flame luminosity. In contrast, coal volatiles contain mostly heavy hydrocarbons and tars that appeared 372 to condense in a sooty contrail (Figure 12). Upon heating, the particle swells considerably indicating high 373 internal pressure due to lower porosity compared to biomass, which does not permit the volatiles to flow 374 out easily [27]. The pressure is relieved by brutal release of jets containing dense species that cast a shadow 375 in the monochrome video. The dense trails are precursors of soot formation so they condense and 376 agglomerate to develop a contrail of intense luminosity inside the flame. It can be distinguished from the 377 flame by its high luminosity while entraining the flame in a large fluctuation. The condensed material 378 extends outwards to a long distance forming a bright tail. The contrail sometimes bends back to the particle 379 forming a closed loop (Figure 12) or extends long to the point that it cannot be held by the particle causing 380 its far end to bend and break (Figure 13). Since more time is needed to oxidize tars especially in low oxygen 381 environment like the flame, the attached condensed structure persists after the flame extinction and 382 undergoes oxidation to disappear gradually in less than a second. The same phenomenon is reported for 383 bituminous coal in [28][29][2][30]. The flame is followed by a bright particle that burns gradually.

The high magnification of the shadowgraph videos allows observing in details the combustion taking place on the surface of the particle. Note that the heterogeneous combustion of coal is maintained mostly at constant temperature. At the beginning of the char combustion, the particle appears barely compared to the soot contrail. As the burning time goes by, the oxidation reaction intensifies and the char glowing as well.

Figure 12: Soot contrail forming closed loop during coal particle combustion

393 direct emission camera showing the formation and disappearance of the condensed material (insertion at
 394 t=0 sec) during combustion of a single Venezuelan coal particle (1.6 mg)

Figure 14: Heterogeneous combustion of a coal particle with some filaments appearing on the surface

397 Some chars burn with constant volume where oxygen penetrates the cenosphere interior through the pores 398 and the combustion continues internally similar to the biomass char combustion. In this case, the particle 399 glow fades slowly as the combustion proceeds internally. However, the particle volume shrinks most of the 400 time, with small filaments appearing on the displaced surface (Figure 14). The formation of filaments has 401 been also detected by Olsbye et al. on coke formed during methane-to-synthesis gas reactions [31]. These 402 filaments are distributed radially at the surface, and thereafter, separate from the char as fly ash. Due to 403 lower reactivity and higher fixed carbon in coal, the biomass char burns up to five times faster than coal. 404 This also applies for biomass with comparable volatile matter and fixed carbon content as coal. For 405 example, pinp with about 52% FC burns four times faster than the 61% FC coal. This is addressed by the 406 faster char gasification reactions induced by the higher oxygen to carbon ratio in biomass char [32]. It is 407 also attributed to enhanced catalytic role of alkali metals in biomass chars due to higher concentration [33].

408 Conclusion

409 The combustion of single particles of raw and torrefied pine, demolition wood and coal is studied using 410 simultaneous shadowgraphy and direct emission imaging techniques, allowing detailed investigation of the 411 combustion events at the particle level. It gives insight to the phenomena occurring at the particle surface 412 and around it during the whole process, including the onset of heterogeneous ignition and the volume and 413 shape evolution. The results verify the important role of the VM content and particle size in determining 414 the combustion intensity and durations. Higher VM particles undergo intense devolatilisation for 415 comparable durations as less volatile containing fuel. The flame duration appears to be more influenced by 416 the particle size than the particle volatile content. This leads to more intense combustion for higher VM 417 particles that obstructs the oxygen diffusion to the particle and delays the heterogeneous ignition. On the 418 other hand, the char left is more reactive and burn faster than the char resulting from particles with lower 419 VM content. A char resulting from a particle with no initial VM burns three times slower than its raw 420 counterpart. On the other hand, larger particles mean slower temperature rise before and after ignition and 421 lower devolatilisation intensity. This, beside the larger surface area, increases the probability of earlier 422 heterogeneous ignition and longer overlap.

423 The projection area evolution is traced versus the burnout using gas emission results. VM occupy around 424 40% of the initial particle shadow which decreases with devolatilisation progress following a power trend. 425 The power coefficient doubles with intense pre-treatment of the fuel. The latter leads to increase the char 426 volume, which shrinks after the flame end following the shrinking core model. But it diverges later to a 427 constant residual ash volume, which increases with more intense pre-treatment. An empirical model can be 428 extracted from the curves assuming spherical particles. The volume evolution obtained by shadowgraphy 429 will be integrated in a 1-D solid combustion model developed and validated for different compositions and 430 preparations of biomass. A comparison between biomass and coal shows the visual differences of the gas 431 phase composition and the char structure giving rise to differences in the flame and char combustion of 432 both fuels.

434 Acknowledgments

435 The financial support of ANRT for H. Mohanna's PhD scholarship is acknowledged (Convention CIFRE - N° 436 2016/0523).

437 References

- 438 [1] J. Riaza, J. Gibbins, and H. Chalmers, "Ignition and combustion of single particles of coal and biomass," Fuel, vol. 202, 439 pp. 650-655, Aug. 2017.
- 440 J. Riaza et al., "Single particle ignition and combustion of anthracite, semi-anthracite and bituminous coals in air and [2] 441 simulated oxy-fuel conditions," Combust. Flame, vol. 161, no. 4, pp. 1096-1108, Apr. 2014.
- 442 443 J. Riaza et al., "Combustion of single biomass particles in air and in oxy-fuel conditions," Biomass and Bioenergy, vol. [3] 64, pp. 162–174, May 2014.
- 444 [4] E. Marek and K. Stańczyk, "Case Studies Investigating Single Coal Particle Ignition and Combustion," J. Sustain. Min., 445 vol. 12, no. 3, pp. 17-31, 2013.
- 446 447 N. Vorobiev and M. Schiemann, "Determination of Char Combustion Kinetics of Torrefied Biomass by Use of [5] Stereoscopic Pyrometry," in 40th International Technical Conference Clean Coal Fuel System, 2015.
 - Maryam Momeni, "Fundamental Study of Single Biomass Particle Combustion," Aalborg University, 2012. [6]
- 448 449 Z. Lu, J. Jian, P. A. Jensen, H. Wu, and P. Glarborg, "Influence of Torrefaction on Single Particle Combustion of [7] 450 Wood," Energy & Fuels, vol. 30, no. 7, pp. 5772-5778, Jul. 2016.
 - [8] H. Lu, E. Ip, J. Scott, P. Foster, M. Vickers, and L. L. Baxter, "Effects of particle shape and size on devolatilization of biomass particle," Fuel, vol. 89, no. 5, pp. 1156-1168, May 2010.
- [9] E. Houshfar, L. Wang, N. Vähä-Savo, A. Brink, and T. Løvås, "Experimental Study of a Single Particle Reactor at Combustion and Pyrolysis Conditions," CHEMIICAL ENGIINEERIING Trans., vol. 35, pp. 613-618, 2013.
- [10] M. Schiemann, S. Haarmann, and N. Vorobiev, "Char burning kinetics from imaging pyrometry: Particle shape effects," Fuel, vol. 134, pp. 53-62, Oct. 2014.
- 451 452 453 454 455 456 457 458 459 [11] P. E. Mason, L. I. Darvell, J. M. Jones, M. Pourkashanian, and A. Williams, "Single particle flame-combustion studies on solid biomass fuels," Fuel, vol. 151, pp. 21-30, Jul. 2015.
- [12] J. Brix, P. A. Jensen, and A. D. Jensen, "Modeling char conversion under suspension fired conditions in O2/N2 and 460 O2/CO2 atmospheres," Fuel, vol. 90, no. 6, pp. 2224-2239, Jun. 2011.
- 461 J. Andrzejewski, A. Charlet, P. Higelin, A. Sapinski, and G. Vaitilingom, "Procédé et dispositif de mesure de la vitesse [13] 462 d'évaporation et du délai d'inflammation d'un carburant liquide .," FR2694092 A1.
- 463 [14] Sternberg, "Biomedical Image Processing," Computer (Long. Beach. Calif., vol. 16, no. 1, pp. 22-34, Jan. 1983. 464 [15] "https://imagej.net/Auto Threshold#Try all." .
- 465 T. Daho et al., "Study of droplet vaporization of various vegetable oils and blends of domestic fuel oilecottonseed oil [16] 466 under different ambient temperature conditions," Biomass and Bioenergy, vol. 46, pp. 653-663, 2012.
- 467 468 J. F. Saldarriaga, R. Aguado, A. Pablos, M. Amutio, M. Olazar, and J. Bilbao, "Fast characterization of biomass fuels by [17] thermogravimetric analysis (TGA)," Fuel, vol. 140, pp. 744-751, Jan. 2015.
- 469 [18] J. Li, M. C. Paul, and K. M. Czajka, "Studies of Ignition Behavior of Biomass Particles in a Down-Fire Reactor for 470 Improving Co-firing Performance," Energy & Fuels, vol. 30, no. 7, pp. 5870-5877, Jul. 2016.
 - [19] E. Gucho, K. Shahzad, E. Bramer, N. Akhtar, and G. Brem, "Experimental Study on Dry Torrefaction of Beech Wood and Miscanthus," *Energies*, vol. 8, no. 5, pp. 3903–3923, May 2015. F. S. Akinrinola, "Torrefaction and Combustion Properties of some Nigerian Biomass," The University of Leeds, 2014.
 - [20]
- 471 472 473 474 475 T. G. Bridgeman, J. M. Jones, I. Shield, and P. T. Williams, "Torrefaction of reed canary grass, wheat straw and willow [21] to enhance solid fuel qualities and combustion properties," Fuel, vol. 87, no. 6, pp. 844-856, May 2008.
- 476 477 478 479 [22] A. Panahi, Y. A. Levendis, N. Vorobiev, and M. Schiemann, "Direct observations on the combustion characteristics of Miscanthus and Beechwood biomass including fusion and spherodization," Fuel Process. Technol., vol. 166, pp. 41-49, Nov. 2017.
- [23] C. Mock, H. Lee, S. Choi, and V. Manovic, "Combustion Behavior of Relatively Large Pulverized Biomass Particles at 480 Rapid Heating Rates," Energy & Fuels, vol. 30, no. 12, pp. 10809-10822, Dec. 2016.
- Brice Piednoir, "Comportement en combustion de résidus de biomasse : mise en évidence de synergies par mélange sous [24] forme de granulés," Thèse Université de Perpignan Via Domitia, 2017.
- 481 482 483 484 485 [25] C. Meesri and B. Moghtaderi, "Experimental and numerical analysis of sawdust-char combustion reactivity in a drop tube reactor," Combust. Sci. Technol., vol. 175, no. 4, pp. 793-823, Apr. 2003.
 - [26] M. V. Gil, J. Riaza, L. Álvarez, C. Pevida, J. J. Pis, and F. Rubiera, "Kinetic models for the oxy-fuel combustion of coal and coal/biomass blend chars obtained in N2 and CO2 atmospheres," *Energy*, vol. 48, no. 1, pp. 510–518, 2012. M. V. Gil, J. Riaza, L. Álvarez, C. Pevida, J. J. Pis, and F. Rubiera, "Oxy-fuel combustion kinetics and morphology of
- 486 487 488 489 [27] coal chars obtained in N2 and CO2 atmospheres in an entrained flow reactor," Appl. Energy, vol. 91, no. 1, pp. 67-74, Mar. 2012.
- 490 W. J. McLean, D. R. Hardesty, and J. H. Pohl, "Direct observations of devolatilizing pulverized coal particles in a [28] 491 492 combustion environment," Symp. Combust., vol. 18, no. 1, pp. 1239-1248, 1981.
- R. Khatami, C. Stivers, and Y. A. Levendis, "Ignition characteristics of single coal particles from three different ranks in [29] 493 O2/N2 and O2/CO2 atmospheres," Combust. Flame, vol. 159, no. 12, pp. 3554-3568, Dec. 2012.
- 494 [30] E. Marek and B. Światkowski, "Experimental studies of single particle combustion in air and different oxy-fuel 495 atmospheres," Appl. Therm. Eng., vol. 66, no. 1-2, pp. 35-42, May 2014.
- 496 [31] U. Olsbye, O. Moen, Å. Slagtern, and I. M. Dahl, "An investigation of the coking properties of fixed and fluid bed 497 reactors during methane-to-synthesis gas reactions," Appl. Catal. A Gen., vol. 228, no. 1-2, pp. 289-303, Mar. 2002.

- 498 499 500 501 502 K. Matsumoto, K. Takeno, T. Ichinose, T. Ogi, and M. Nakanishi, "Gasification reaction kinetics on biomass char obtained as a by-product of gasification in an entrained-flow gasifier with steam and oxygen at 900–1000°C," *Fuel*, vol. [32] 88, no. 3, pp. 519–527, Mar. 2009.
- P. Ollero, A. Serrera, R. Arjona, and S. Alcantarilla, "The CO2 gasification kinetics of olive residue," Biomass and [33] Bioenergy, vol. 24, no. 2, pp. 151-161, Feb. 2003.