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Abstract: Hooley proved that if f ∈ Z[X ] is irreducible of degree ≥ 2, then the fractions
{r/n}, 0 < r < n with f (r)≡ 0 (mod n), are uniformly distributed in ]0,1[. In this paper we
study such problems for reducible polynomials of degree 2 and 3 and for finite products of
linear factors. In particular, we establish asymptotic formulas for exponential sums over
these normalized roots.
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1 Introduction

Let f (X) be a polynomial of degree at least 2 with integer coefficients, and let h be a nonzero integer. We
consider for x≥ 1 the exponential sums

S( f ,x,h) = ∑
n≤x

∑
r (mod n)

f (r)≡0 (mod n)

e
(hr

n

)
(1)

with the standard notation e(t) = exp(2iπt); our interest is in fixed f and h while x tends to infinity. In
the case h = 1 we will write simply S( f ,x). Hooley [11, Theorem 1] proved that if f is irreducible,
then S( f ,x,h) = o(x) when x→ ∞. By Weyl’s criterion, this implies that the fractions r/n, where
0 < r < n and f (r) ≡ 0 (mod n), are uniformly distributed in ]0,1[. The condition that deg f ≥ 2 is
necessary in this result, as the roots of a linear polynomial are not equidistributed in ]0,1[. For example,
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CÉCILE DARTYGE AND GREG MARTIN

if f (n) = n+b, the exponential term in equation (1) is e(−hb/n) = 1+O(1/n) for fixed h and b, and
then S( f ,x,h) = x+O(logx). In general, when f (n) = an+b one can similarly obtain a formula of the
form S( f ,x,h) = xC( f ,h)+o(x) for some constant C( f ,h).

When f (n) = n2−D with D not a square, Hooley [10] obtained (using a different method) the more
precise bound S( f ,x,h)� f ,h x3/4 logx. The exponent 3/4 in this result was improved to 2/3 via the
theory of automorphic forms by Hejhal [8], Bykovski [2], and Zavorotny [21]. A variant of this problem
is the distribution of the fractions r/p, where 0 < r < p and f (r) ≡ 0 (mod p), for primes p. Duke,
Friedlander, and Iwaniec [5] proved that for f (X) = aX2 +2bX + c with ac−b2 > 0, we have

∑
p≤x

∑
0≤r<p

f (r)≡0 (mod p)

e
(hr

p

)
= o(π(x)).

In all of the above results, the polynomial f is assumed to be irreducible; what can we say about the
sums S( f ,x,h) when f is reducible? In this paper we examine reducible polynomials of degree 2 and
3 (in which case f has at least one linear factor) and on polynomials that factor completely into linear
factors. The hope is to obtain, not just an upper bound, but an actual asymptotic formula for S( f ,x,h),
analogously to the situation described above where f is itself linear.

For example, Sitar and the second author [15] obtained a general bound for reducible quadratic
polynomials f with discriminant D:

S( f ,x,h)�
√

D∏
p|h

(
1+

7
√

p

)
x(logx)

√
2−1(log logx)5/2. (2)

Since the number of summands of S( f ,x,h) has order x logx in this case, a consequence is that the the
fractions r/n, where 0 < r < n and f (r) ≡ 0 (mod n), are uniformly distributed in ]0,1[ for reducible
quadratic polynomials. However, this bound is still large enough to disguise a potential asymptotic main
term of size x caused by the roots of the linear factors of f .

In our first theorem, which is proved in Section 3, we provide such an asymptotic formula for
exponential sums with reducible quadratics:

Theorem 1. Let a,b,c,d be fixed integers with ac 6= 0, (a,b) = (c,d) = 1, and ad 6= bc, and set f (n) =
(an+b)(cn+d). Then for any nonzero integer h, there exists C( f ,h) ∈ C such that for any ε > 0, we
have

S( f ,x,h) = xC( f ,h)+O(x4/5+ε), (3)

where the implicit constant depends on f , h, and ε . When (h,ad−bc) = 1, the error term in equation (3)
can be improved to O(x3/4+ε).

The proof of this theorem provides an explicit but complicated formula for C( f ,h) (see equation (13)
below). In the particular case h = 1, we obtain S( f ,x) = xC( f ,1)+O(x4/5+ε) with

C( f ,1) =
(

µ(a)
a

+
µ(c)

c

) 6
π2 ∏

p|ac

(
1− 1

p2

)−1
.
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EXPONENTIAL SUMS WITH REDUCIBLE POLYNOMIALS

(Note in particular that it is possible for C( f ,1) to equal 0, namely if neither a nor c is squarefree; in
such a case, Theorem 1 is technically an upper bound rather than an asymptotic formula. The analogous
pedantic comment applies to Theorem 4 below.)

Our second result handles the case f (n) = n(n2 +1). In Section 4 we will prove:

Theorem 2. For f (n) = n(n2 +1), we have

S( f ,x) =
3x
4 ∏

p≡1 (mod 4)

(
1− 2

p2

)
+O

(x(log logx)7/2

(logx)1−1/
√

2

)
.

It is also possible to generalize Theorem 2 to S( f ,x,h) for a general nonzero integer h, as in the work of
Hooley, though we do not do so here. It is likely possible to extend Theorem 2 to general products of
two polynomials f1 f2 with f1 linear and f2 irreducible quadratic by adapting some ideas of [18] or [1].
However, such a generalization with a general f2 in place of n2 +1 is not straightforward; the case where
f2 has positive discriminant seems more difficult.

The next result, which we prove in Sections 5 and 6.1, handles in detail a special product of three
linear polynomials:

Theorem 3. For f (n) = n(n+1)(2n+1), we have

S( f ,x) = x ∏
p≥3

(
1− 2

p2

)
+O

(x(log logx)6

(logx)2

)
.

It was clear that this result could be generalized to arbitrary products of three linear polynomials.
However, after reading an earlier version of this manuscript, the anonymous referee pointed out that the
method can be extended to give an asymptotic formula for S( f ,x,h) when f is the product of four linear
polynomials, as well as a nontrivial upper bound for S( f ,x,h) when f is a product of any number of
linear polynomials. We prove the following result in Sections 6.2 and 7:

Theorem 4. Let h be a nonzero integer, let k ≥ 3 be an integer, and let f (n) = ∏
k
i=1(ain+bi) where the

coefficients a1,b1, . . . ,ak,bk are integers satisfying (a j,b j) = 1 for all 1≤ i≤ k and aib j 6= a jbi for all
1≤ i < j ≤ k.

(i) If k = 3 or k = 4, then there exists C( f ,h) ∈ C such that

S( f ,x,h) =C( f ,h)x+O
(
x(logx)k−5(log logx)6).

(ii) If k ≥ 5, then S( f ,x,h)� x(logx)k−5(log logx)6.

In both cases, the implicit constants depend on f and h.

As the number of fractions r/n, where 0 < r < n and f (r) ≡ 0 (mod n), for all n ≤ x has order of
magnitude x(logx)κ−1, where κ is the number of distinct irreducible factors of f , these theorems all
imply that the appropriate sequences of fractions are uniformly distributed in ]0,1[.

It is also worth remarking that it is only for convenience that we hypothesize that the linear factors in
Theorems 1 and 4 are not proportional to one another. Indeed, more generally consider a polynomial
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f = g2h: the roots of f modulo squarefree integers n are unaffected by the repeated factor g2, while if
p2 | n then the roots of g2 (mod n) form arithmetic progressions with common difference n/p, and thus
their contribution to the exponential sum S( f ,x,h) vanishes completely.

Before proceeding to the proofs of our theorems, we establish in the next section a lemma that is
used repeatedly throughout the paper. We adopt the following notation and conventions throughout
this paper: when a and b are relatively prime integers, āb will denote an integer such that āba ≡
1 (mod b). Furthermore, when the context will be clear, we will also use the simplified notation ā
for this multiplicative inverse of a to the implied modulus b, which is often the denominator of the
fraction in whose numerator ā appears. The letter p usually denotes a prime number. We adopt
the convention throughout that e(t) = exp(2iπt) unless t contains an expression of the form ā

b where

(a,b)> 1, in which case e(t) = 0. For example, the expression ∑0≤n≤p−1 e( n̄(n−1)
p ) is to be interpreted as

0+0+∑2≤n≤p−1 e(
n̄p(n−1)p

p ).

2 Exponential sums involving multiplicative inverses

We begin by establishing the following lemma on exponential sums (a slight variation of a result of
Hooley [12, Lemma 3]), which is the crucial tool of our paper.

Lemma 1. For any y < z, q≥ 2, t ∈ Z and (m,q) = 1 we have

∑
y<n≤z
(n,q)=1

n≡u (mod m)

e
( tn̄q

q

)
=

z− y
mq

µ

( q
(q, t)

)
ϕ(q)

ϕ(q/(t,q))
+O

(√
q(t,q) · τ(q) logq

)
.

In particular,

∑
y<n≤z
(n,q)=1

e
( tn̄q

q

)
=

z− y
q

µ

( q
(q, t)

)
ϕ(q)

ϕ(q/(t,q))
+O

(√
q(t,q) · τ(q) logq

)
. (4)

(While we have written the statement of the lemma, for ease of reference, with explicit subscripts on the
multiplicative inverses n̄q and explicit coprimality conditions of summation, we immediately revert to our
conventions of suppressing these notational signals.)

Proof. We begin by collecting the summands according to the value of n (mod q), which we then detect

DISCRETE ANALYSIS, 20XX:XX, 31pp. 4

http://dx.doi.org/10.19086/da


EXPONENTIAL SUMS WITH REDUCIBLE POLYNOMIALS

using a further additive character:

∑
y<n≤z

n≡u (mod m)

e
( tn̄

q

)
= ∑

a (mod q)
e
( tā

q

)
∑

y<n≤z
n≡a (mod q)
n≡u (mod m)

1

= ∑
a (mod q)

e
( tā

q

)
∑

y<n≤z
n≡u (mod m)

1
q

q−1

∑
h=0

e
(h(n−a)

q

)

=
1
q

q−1

∑
h=0

(
∑

a (mod q)
e
( tā−ha

q

))(
∑

y<n≤z
n≡u (mod m)

e
(hn

q

))
, (5)

with the convention e(tā/q) = 0 if (a,q) > 1 as mentioned in the end of the introduction. The h = 0
summand contributes the main term:

1
q

(
∑

a (mod q)
e
( tā

q

))(
∑

y<n≤z
n≡u (mod m)

1
)
=

1
q

(
µ

( q
(q, t)

)
ϕ(q)

ϕ(q/(t,q))

)(
z− y

m
+O(1)

)

=
z− y
qm

µ

( q
(q, t)

)
ϕ(q)

ϕ(q/(t,q))
+O(1),

since the first sum on the left-hand side is a complete Ramanujan sum which has been evaluated classically
(see [16, equation (4.7)]). As for the summands where h 6= 0, the first inner sum on the right-hand side of
equation (5) is a complete Kloosterman sum, which was shown by Hooley [9, Lemma 2] (using Weil’s
bounds for exponential sums) to be�

√
q(t,q) · τ(q); therefore

1
q

q−1

∑
h=1

(
∑

a (mod q)
e
( tā−ha

q

))(
∑

y<n≤z
n≡u (mod m)

e
(hn

q

))

�
√

q(t,q) · τ(q) · 1
q

q−1

∑
h=1

∣∣∣∣ ∑
y<n≤z

n≡u (mod m)

e
(hn

q

)∣∣∣∣
=
√

q(t,q) · τ(q) · 1
q

q−1

∑
h=1

∣∣∣∣ ∑
(y−u)/m<λ≤(z−u)/m

e
(h(mλ +u)

q

)∣∣∣∣
=
√

q(t,q) · τ(q) · 1
q

q−1

∑
η=1

∣∣∣∣e(ηm̄u
q

)
∑

(y−u)/m<λ≤(z−u)/m
e
(

ηλ

q

)∣∣∣∣,
since (m,q) = 1 and thus the change of variables η = hm permutes the nonzero residue classes modulo q.
This last sum is a geometric series and is consequently�‖η/q‖−1, where ‖u‖ is the distance from u to
the nearest integer. Therefore we have the following bound for these summands:

�
√

q(t,q) · τ(q) · 2
q

q/2

∑
η=1

q
η
�
√

q(t,q) · τ(q) logq,

as required.
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3 Reducible quadratics (Theorem 1)

Throughout this section, we consider f (n) = (an+b)(cn+d) with a,b,c,d as in Theorem 1. All implicit
constants in this section may depend on f , h, and (where appropriate) ε .

Define ∆ = ad− bc. The simultaneous congruences an+ b ≡ cn+ d ≡ 0 (mod p) have a solution
only when −bā≡−dc̄ (mod p), or equivalently when p | ∆. We start with the case (h,ac∆) = 1; in the
following section we indicate how to deal with the general case.

3.1 The case (ac∆,h) = 1

We begin by handling some coprimality problem between the denominators n and ∆.

Lemma 2. We may write

S( f ,x,h) = ∑
g|∆

(g,ac)=1

µ
2(g) ∑

m≤x/g
(m,∆)=1

∑
r (mod mg)

(ar+b)(cr+d)≡0 (mod mg)

e
( hr

mg

)
.

Proof. First we sort by g = (n,∆):

S( f ,x,h) = ∑
g|∆

∑
m≤x/g

(m,∆/g)=1

∑
r (mod mg)

(ar+b)(cr+d)≡0 (mod mg)

e
( hr

mg

)
.

If p | g | ∆ and p | a then p | c as well, in which case (ax+b)(cx+d)≡ bd 6≡ 0 (mod p) and there are no
roots modulo p. Similarly, if p | (g,c), then f has no root modulo p. Thus we can add the condition of
summation (g,ac) = 1.

We can also assume that p2 - mg for every p | ∆. Indeed, if mg = qp2 for such a prime p, and if r is a
root of (ax+b)(cx+d) modulo qp2, then both ar+b≡ 0 (mod p) and cr+d ≡ 0 (mod p) since p | ∆;
and then all of r+qp, r+2qp, . . . , r+(p−1)qp are roots of (ax+b)(cx+d) modulo qp2, since

f (r+λqp)≡ (ar+b)(cr+d)+λqp(a(cr+d)+b(ar+b))≡ 0 (mod qp2).

The exponential sum over these roots r, r+qp, . . . , r+(p−1)qp vanishes (here we use the assumption
(h,∆) = 1, so that p - h), which justifies omitting these terms.

In particular, we may assume that g is squarefree (whence the introduction of the factor µ2(g)) and
that (m,g) = 1 (which combines with the existing condition (m,∆/g) = 1 to yield simply (m,∆) = 1),
completing the proof.

Next we separate the congruence conditions between the two factors of f .

Lemma 3. Suppose that g | ∆ is squarefree, (g,c) = 1, and (m,∆) = 1. The roots of (ar+b)(cr+d)≡
0 (mod mg) are in one-to-one correspondence with the factorizations k`= m with (k, `) = 1, (k,a) = 1,
and (`,c) = 1. The root r corresponds to the solution of the system of congruences

ar+b≡ 0 (mod k)

cr+d ≡ 0 (mod `)

r ≡ rg (mod g),
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where rg is the residue class rg ≡−dc̄ (mod g).

Proof. It is straightforward to check that the factorization corresponding to a root r of (ar+b)(cr+d)≡
0 (mod mg) is k = (ar+b,m) and `= (cr+d,m), and that this correspondence is the inverse function to
the correspondence described in the statement of the lemma.

By the Chinese remainder theorem, the solution of the system of congruences given in Lemma 3 can
be written as

r =−bāk` ¯̀kgḡk−dc̄`kk̄`gḡ`+ rgkk̄g` ¯̀g.

We thus obtain

S( f ,x,h) = ∑
g|∆

(g,ac)=1

µ
2(g) ∑

m≤x/g
(m,∆)=1

∑
k`=m
(k,`)=1

(k,a)=(`,c)=1

e
(−hbāk` ¯̀kgḡk−hdc̄`kk̄`gḡ`+hrgkk̄g` ¯̀g

mg

)

= ∑
g|∆

(g,ac)=1

µ
2(g) ∑

k`≤x/g
(k,`)=1

(k,a)=(`,c)=1
(k`,∆)=1

e
(−hbāk ¯̀kḡk

k

)
e
(−hdc̄`k̄`ḡ`

`

)
e
(hrgk̄g ¯̀g

g

)
.

We split this into two sums S( f ,x) = S1(x)+S2(x), where k ≤
√

x/g in S1(x) and k >
√

x/g in S2(x).
In S1(x), we use the standard “inversion formula” (obtained with Bézout’s identity) for (u,v) = 1,

ū
v
+

v̄
u
≡ 1

uv
(mod 1). (6)

This formula, used on the second exponential factor in the inner sum above, allows us to move ` out of
the denominators of the exponential terms and write S1(x) as

∑
g|∆

(g,ac)=1

µ
2(g) ∑

k≤
√

x/g
(k,a∆)=1

∑
`≤x/gk

(`,k)=(`,c∆)=1

e
(−hbāk ¯̀kḡk

k

)
e
(hd ¯̀cgk

cgk

)
e
(−hd

cgk`

)
e
(hrgk̄g ¯̀g

g

)
.

Next we remark that e(−d/cgk`) = 1+O(1/gk`). This effect of this error term is sufficiently small:

S1(x) = ∑
g|∆

(g,ac)=1

µ
2(g) ∑

k≤
√

x/g
(k,a∆)=1

∑
`≤x/gk

(`,k)=(`,c∆)=1

e
((−bcgākḡk +d + ckrgk̄g)h ¯̀cgk

cgk

)

+O((logx)2),

since ¯̀k ≡ ¯̀cgk (mod k) and ¯̀g ≡ ¯̀cgk (mod g). (We remind the reader that the implicit constants in this
section may depend on f , h, and ε .)

We rewrite the inner sum over ` as

∑
`≤x/gk

(`,ck∆)=1

e
( ∆

g (−bcgākḡk +d + ckrgk̄g)h ¯̀ck∆

ck∆

)
, (7)
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and then apply equation (4) with q = ck∆ and t = ht ′, where t ′ = ∆

g (−bcgākḡk + d + ckrgk̄g). Since
d + ckrgk̄g ≡ d + crg ≡ 0 (mod g), we see that t ′ is a multiple of ∆ but is relatively prime to both c and k.
We thus obtain

S1(x) = x ∑
g|∆

(g,ac)=1

µ
2(g) ∑

k≤
√

x/g
(k,ac∆)=1

µ
( ck
(ck,h)

)
cg∆k2

ϕ(ck∆)

ϕ(ck/(ck,h))

+O
(

∑
g|∆

(g,ac)=1

µ
2(g) ∑

k≤
√

x/g
(k,a∆)=1

(k(k,h))1/2+ε

)
.

In the previous formula we could insert the condition (c,k) = 1 in the main term, because the fact that
(h,c) = 1 means that µ(ck/(ck,h)) = 0 if (c,k)> 1. The error term is O(x3/4+ε). Let T1(x) denote the
main term. By the coprimality conditions among a,c,∆,k, we get

T1(x) = x ∑
g|∆

(g,ac)=1

µ2(g)µ
( c
(c,h)

)
cg∆

ϕ(c∆)

ϕ
( c
(c,h)

) ∑
k≤
√

x/g
(k,ac∆)=1

µ
( k
(k,h)

)
k2

ϕ(k)
ϕ
( k
(k,h)

) .
Let λh denote the function in the inner sum over k:

λh(k) =
µ
( k
(k,h)

)
k2

ϕ(k)
ϕ
( k
(k,h)

) .
Note that λh(k) is a multiplicative function of k. When p - h, we have λh(p) =−1/p2 and λh(pν) = 0
for ν ≥ 2. When p | h, if vp(h) is the p-adic valuation of h, we have:

λh(pν) =


ϕ(pν )

p2ν if ν ≤ vp(h)

− 1
pν+1 if ν = vp(h)+1

0 if ν ≥ vp(h)+2;

in particular, |λh(pν)| ≤ pvp(h)/p2ν always, which implies that |λh(n)| ≤ h/n2� 1/n2 since h is fixed.
We deduce that

∑
k≤
√

x/g
(k,ac∆)=1

λh(k) = ∑
(k,ac∆)=1

λh(k)+O(hx−1/2+ε),

from which we obtain T1(x) =C1(h,a,c,∆)x with

C1(h,a,c,∆) =
6

π2

µ
( c
(c,h)

)
ϕ(c∆)

c∆ϕ
( c
(c,h)

) ∏
p|∆

(p,ac)=1

(
1+

1
p

)

∏
p|ahc∆

(
1− 1

p2

)−1
∏
p|h

(p,ac∆)=1

(
1+

1
p
− 2

pvp(h)+1

)
.

(8)
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In the particular case h = 1, this gives

S1(x) =
6x
π2

µ(c)
c ∏

p|ac

(
1− 1

p2

)−1
+O(x3/4+ε).

In this last computation, we have used the fact that if p | (c,∆), then p | a. In the same way, we derive the
asymptotic formula

S2(x) =C1(h,c,a,∆)x+O(x3/4+ε) (9)

which, when h = 1, simplies to

S2(x) =
6x
π2

µ(a)
a ∏

p|ac

(
1− 1

p2

)−1
+O(x3/4+ε).

This finishes the proof of Theorem 1 in the case (h,ac∆) = 1.

3.2 The case (h,ac∆) 6= 1

The main difference when dealing with the case (h,ac∆) 6= 1 is that we lose some cancellation observed
in the proof of Lemma 2. We use the notation m | n∞ to indicate that p | m⇒ p | n, and we sort the
summands according to the prime factors they share with (h,ac∆):

S( f ,x,h) = ∑
δ |(h,ac∆)∞

∑
n≤x/δ

(n,(h,ac∆))=1

∑
0≤r<δn

f (r)≡0 (mod δn)

e
( hr

δn

)
. (10)

Since deg f = 2, the number of roots of f (r) ≡ 0 (mod δn) is less than 2ω(δn). Defining B = x1/5−ε

for some sufficiently small ε > 0, we split this sum as S( f ,x,h) = S>(x,h)+S≤(x,h), where δ > B in
S>(x,h) and δ ≤ B in S≤(x,h). When δ is large, a trivial upper bound is sufficient:

S>(x,h)� x logx ∑
δ |(h,ac∆)∞

δ>B

2ω(δ )

δ

� x logx ∑
δ |(h,ac∆)∞

δ ε1

δ

(
δ

B

)1−2ε1

=
x logx
B1−2ε1 ∏

p|(h,ac∆)

(
1− 1

pε1

)−1
.

(11)

When δ is not large, we adapt the method of the previous section. Since (n,δ ) = 1, we have by the
Chinese remainder theorem:

S≤(x,h) = ∑
δ |(h,ac∆)∞

δ≤B

∑
n≤x/δ

(n,(h,ac∆))=1

(
∑

0≤r0<δ

f (r0n)≡0 (mod δ )

e
(hr0

δ

))(
∑

0≤r1<n
f (r1δ )≡0 (mod n)

e
(hr1

n

))
.
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In order to suppress the dependence of n in the summation in r0, we split this sum according to n
modulo δ :

S≤(x,h) = ∑
δ |(h,ac∆)∞

δ≤B

∑
0≤α<δ

(α,δ )=1

(
∑

0≤r0<δ

f (r0α)≡0 (mod δ )

e
(hr0

δ

))

×
(

∑
n≤x/δ

(n,(h,ac∆))=1
n≡α (mod δ )

∑
0≤r1<n

f (r1δ )≡0 (mod n)

e
(hr1

n

))
.

Let G(α,δ ) denote the above sum over r0 and H(α,δ ) the double sum over n and r1, so that

S≤(x,h) = ∑
δ |(h,ac∆)∞

δ≤B

∑
0≤α<δ

(α,δ )=1

G(α,δ )H(α,δ ). (12)

It is convenient to notice now that the number of summands in the sum defining G(α,δ ) is at most the
number of roots of f (r) (mod δ ), and hence that sum is bounded by a constant depending on f : indeed, a
bound for that number of roots by Sitar and the second author [15, Lemma 3.4] implies that

|G(α,δ )| ≤ ∆
1/22ω(δ ) ≤ ∆

1/22ω(ac∆).

We handle the term H(α,δ ) in the same way as in the previous section. We write ∆ = ∆1∆2 with
(∆1,h) = 1 and ∆2 | (h,∆)∞. A version of Lemma 2 with ∆1 in place of ∆ gives

H(α,δ ) = ∑
g|∆1

(g,ac)=1

µ
2(g) ∑

m≤x/gδ

(m,∆)=1
gm≡α (mod δ )

∑
0≤r1<mg

f (r1δ )≡0 (mod mg)

e
(hr1

mg

)
.

The corresponding sum S1(x) is then of type

S1(x) = ∑
g|∆1

(g,ac)=1

µ
2(g) ∑

k≤
√

x/δg
(k,a∆)=1

∑
`≤x/gkδ

(`,k)=(`,c∆)=1
gk`≡α (mod δ )

e
((−bcgākḡk +d + ckrgk̄g)h ¯̀cgk

cgk

)

+O((logx)2).

Since (α,δ ) = 1, the condition gk`≡ α (mod δ ) implies that (g,δ ) = 1. The analogue of equation (7) is
now

Σ1 := ∑
`≤x/gk

(`,ck∆)=1
gk`≡α (mod δ )

e
( ∆1

g (−bcgākḡk +d + ckrgk̄g)h ¯̀ck∆

ck∆1

)
,
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in which the only real difference from before is the congruence gk` ≡ α (mod δ ). Let δ2 be the least
common multiple δ2 = [δ ,∆2]; we still have (δ2,ck∆1) = 1. The two conditions g`k ≡ α (mod δ ) and
(`,∆2) = 1 can be expressed using congruences modulo δ2:

Σ1 = ∑
0≤β<δ2/δ

(α k̄δ+δβ ,δ2)=1

∑
`≤x/gk

(`,ck∆1)=1
`≡α k̄δ+βδ (mod δ2)

e
( ∆1

g (−bcgākḡk +d + ckrgk̄g)h ¯̀ck∆

ck∆1

)
.

We apply Lemma 1 in the same way as in the case (∆,h) = 1 to obtain:

S≤(x,h) = xC(h,a,c,∆1) ∑
δ |(h,ac∆)∞

δ≤B

∑
0≤α<δ

(α,δ )=1

G(α,δ )

δ 2 +O
(

x3/4+ε
∑

δ |(h,ac∆)∞

δ≤B

δ
1/4
)
.

If we open the sum G(α,δ ) and exchange the order of summation with α , we find Ramanujan sums:

∑
0≤α<δ

(α,δ )=1

G(α,δ ) = ∑
0≤r0<δ

f (r0)≡0 (mod δ )

∑
0≤α<δ

(α,δ )=1

e
(hr0ᾱ

δ

)

= ∑
0≤r0<δ

f (r0)≡0 (mod δ )

µ

(
δ

(hr0,δ )

)
ϕ(δ )

ϕ

(
δ

(hr0,δ )

) .
Since G(α,δ )� 1 as previously remarked, the sum over δ in the main term converges as B tends to

∞ (note that the sum is not over all integers δ but rather only those integers with prime factors in a fixed
finite set, which is a very sparse sequence), and the error resulting from replacing the finite sum over δ

with the infinite series is� x/B1−ε . In the error term, the δ 1/4 roughly comes from the summation of the
k1/2 with k≤ (x/gδ )1/2 and with a trivial summation of the sum over α . This error term is O(x3/4+εB1/4).

This ends the proof of Theorem 1, with

C( f ,h) =C(h,a,c,∆1) ∑
δ |(h,ac∆)∞

1
δ 2 ∑

0≤r0<δ

f (r0)≡0 (mod δ )

µ

(
δ

(hr0,δ )

)
ϕ(δ )

ϕ

(
δ

(hr0,δ )

) , (13)

where C(h,a,c,∆1) is as in equation (8).

4 Linear times an irreducible quadratic (Theorem 2)

In this section we prove Theorem 2 concerning the polynomial f (t) = t(t2 +1).

4.1 First step: splitting S( f ,x)

Since (n,n2 + 1) = 1 we can write S( f ,x) as a sort of convolution, as in the previous section. The
following lemma is elementary:
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Lemma 4. Let g(t) be a polynomial with integer coefficients with g(0) = ±1, and let m be a positive
integer. The roots of rg(r)≡ 0 (mod m) are in one-to-one correspondence with the factorizations k`= m
with (k, `) = 1 and corresponding roots v of g(v)≡ 0 (mod m). The root r corresponds to the solution
modulo m of the system of congruences

r ≡ 0 (mod k)

r ≡ v (mod `).

We have by Lemma 4

S( f ,x) = ∑
n≤x

∑
k`=n

(k,`)=1

∑
0≤v<`

v2+1≡0 (mod `)

e
( k̄v
`

)
.

Let y1 = x1/3(logx)−A and y2 = x1/3(logx)B with A,B > 0 to be chosen. We split the sum S(x) into three
parts according to the size of k: S( f ,x) = S1(x)+S2(x)+S3(x) with

S1(x) = ∑
y2<k≤x

∑
`≤x/k
(k,`)=1

∑
0≤v<`

v2+1≡0 (mod `)

e
( k̄v
`

)

S2(x) = ∑
y1<k≤y2

∑
`≤x/k
(k,`)=1

∑
0≤v<`

v2+1≡0 (mod `)

e
( k̄v
`

)

S3(x) = ∑
1≤k≤y1

∑
`≤x/k
(k,`)=1

∑
0≤v<`

v2+1≡0 (mod `)

e
( k̄v
`

)
.

We shall see momentarily that in S1(x), it is possible to use equation (4) in the same way as in the
proof of Theorem 1; the main term in our asymptotic formula for S( f ,x) arises from this sum. This
approach works only when k is sufficiently large (or ` sufficiently small), which is to say when k is
slightly bigger than x1/3. This is our motivation for the choice of y2.

The converse is true for S3(x), in which ` is the largest parameter. In this case we use the fact that
the second factor is quadratic. We can apply a lemma of Gauss on the correspondence of the roots of
n2 + 1 ≡ 0 (mod `) and certain representations ` = r2 + s2 as the sum of two squares. This approach
works when k = o(x1/3), which is why we choose y1 close to x1/3.

The remaining range k ∈ ]y1,y2] is covered by a direct application of Hooley’s result [11]. Since
y1 and y2 are close together, Hooley’s general bound applied to the irreducible polynomial X2 + 1 is
sufficient.

4.2 The first two sums

In the sum S1(x), the variable k is large and thus we arrange for some cancellation in the sum over this
variable:

S1(x) = ∑
`<x/y2

∑
0≤v<`

v2+1≡0 (mod `)

∑
y2<k≤x/`
(k,`)=1

e
( k̄v
`

)
.
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Let ρ(m) denote the number of roots modulo m of the polynomial n2 +1:

ρ(m) = #{0≤ v < m : v2 +1≡ 0 (mod m)}. (14)

For any ` < x/y2 and any 0≤ v < ` with v2 +1≡ 0 (mod `), we apply equation (4) to bound the inner
sum in k:

S1(x) = ∑
`≤x/y2

∑
0≤v<`

v2+1≡0 (mod `)

((x/`− y2

`

)
µ(`)+O(

√
` · τ(`) log`)

)

= x ∑
`≤x/y2

µ(`)ρ(`)

`2 − y2 ∑
`≤x/y2

µ(`)

`
+O

(
∑

`≤x/y2

√
` · τ(`)ρ(`) log`

)
= x∏

p

(
1− ρ(p)

p2

)
+O(y2xε +(x/y2)

3/2(logx)5).

= x∏
p

(
1− ρ(p)

p2

)
+O(x(logx)5−B).

In the third equality above, we used the calculation

∑
`≤x/y2

√
` · τ(`)ρ(`) log`�

( x
y2

)3/2
logx ∑

`≤x/y2

τ(`)ρ(`)

`

�
( x

y2

)3/2
logx ∏

p≤x/y2

(
1+

∞

∑
k=1

τ(pk)ρ(pk)

pk

)
,

followed by the fact that ρ(pk)≤ 2 for all prime powers pk. (We could in fact replace the exponent 5−B
by 2−3B/2, using the fact that ρ(pk) = 0 if p≡ 3 (mod 4), but that improvement is not significant for
our purposes.)

In the sum S2(x), the variable k is in a crucial range (corresponding to when the size of k is close to√
`) where the methods for both S1(x) and S3(x) fail. The bound for S2(x) will be a direct consequence

of the work of Hooley:

Lemma 5. Let P(X) ∈ Z[X ] be an irreducible polynomial of degree n≥ 2. If hk 6= 0 then we have

∑
`≤x

(`,k)=1

∑
v (mod `)

P(v)≡0 (mod `)

e
(hk̄v

`

)
�h,P x

(log logx)(n
2+1)/2

(logx)δn
,

where δn = (n−
√

n)/n!.

The case k = 1 is [11, Theorem 1]; the proof can be adapted with no difficulty for all k ∈ N and provides
then a result that is uniform in k. The dependence on h in this result of Hooley is due only to the
appearance of (h, `) in certain intermediate computations.

We apply this lemma with P(X) = X2 +1 and replacing x by x/k:

S2(x)� ∑
y1≤k≤y2

x
k
(log logx)5/2

(logx)1−1/
√

2
� x

(log logx)7/2

(logx)1−1/
√

2
,

using the fact that log(y2/y1)� log logx.
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4.3 The sum S3(x)

In this section we use the special shape of the polynomial n2 + 1 to find an upper bound for S3(x).
Following the ideas of the two articles of Hooley [10, 12] concerning τ(n2 + 1) and P+(n2 + 1) (the
number of divisors of n2 +1 and the largest prime factor of n2 +1, respectively), we employ the Gauss
correspondence between the roots of v2 +1≡ 0 (mod `) and certain representations of `= r2 + s2 as the
sum of two squares. Indeed for such integers r,s with (rs, `) = 1, we have (r̄s)2 +1 ≡ 0 (mod `). The
parameter k̄ in the exponential gives rise to some coprimality problems. The first author [3] resolved such
a difficulty when k is squarefree; in equation (15) we will use an elegant formula of Wu and Xi [20] to
handle the general case.

As in the proof of Theorem 1, in the following argument the condition k2 = (k,r∞) means that
p | k2⇒ p | r and (k/k2,r) = 1.

Lemma 6. For ` > 1, there is a one-to-one correspondence between the representations of ` by the form
` = r2 + s2 with (r,s) = 1, r > 0,s > 0 and the solutions of the congruence v2 + 1 ≡ 0 (mod `). This
bijection is given by:

v
`
=

s̄
r
− s

r(r2 + s2)
(mod 1).

For k ≥ 1, k = k1k2 with k2 = (k,r∞) we have

k̄v
`
=
−rk2(r2 + s2)

k1s
+

r
ks(r2 + s2)

− rk1s(r2 + s2)

k2
(mod 1). (15)

The first part of this lemma is proved in detail in the book of Smith [19, Art. 86], while equation (15) is
[20, Lemma 7.4].

By this lemma, still using the notation k = k1k2, we have

S3(x) = ∑
k1k2≤y1
(k1,k2)=1

∑
r2+s2≤x/(k1k2)
(r,s)=1,r>0,s>0
(k1k2,r∞)=k2

e
(−rk2(r2 + s2)

k1s
+

r
ks(r2 + s2)

− rk1s(r2 + s2)

k2

)
.

First we remove the term e
(
r/ks(r2 + s2)

)
: since

e
( r

ks(r2 + s2)

)
= 1+O

( 1
ksr

)
,

replacing this term by 1 results in a corresponding error in S3(x) that is O((logx)4).
Following the notation of several authors, we denote by (k1s)[ and (k1s)] the squarefree and squarefull

part, respectively, of k1s. Since ((k1s)[,(k1s)]) = 1, we can use the Chinese remainder theorem as in the
proof of Theorem 1:

1
k1s
≡ (k1s)]

(k1s)[
+

(k1s)[

(k1s)]
(mod 1).
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Inserting this in S3(x), we obtain

S3(x) = ∑
k1k2≤y1
(k1,k2)=1

∑
r2+s2≤x/(k1k2)
(r,s)=1,r>0,s>0
(k1k2,r∞)=k2

K(r)W (r)+O((logx)4), (16)

with

K(r) = e
(−rk2(r2 + s2)(k1s)]

(k1s)[

)
W (r) = e

(−rk2(r2 + s2)(k1s)[

(k1s)]
− rk1s(r2 + s2)

k2

)
.

Let S4(x) denote the contribution to S3(x) of the k1,k2,r,s such that (k1s)] > (logx)45 or k2 > (logx)5,
and S5(x) the remaining contribution, that is, the contribution of the k1,k2,r,s such that k2 ≤ (logx)5 and
(k1s)] ≤ (logx)45.

First we prove that
S4(x)� x(logx)−3. (17)

We remark that if m2 is the largest square divisor of (k1s)] then m2 ≥ ((k1s)])2/3. We deduce that
when (k1s)] > (logx)45, there exists m > (logx)15 such that m2 | (k1s)]. We can write this divisor in the
following way: m2 = u2v2w2 with u2 | k1, v2 | s, and w | (k1,s). Thus we have max{u2,v2,w2} ≥ m2/3

and there exists d > (logx)5 such that d2 | k1 or d2 | s or d | (k1,s). In the first case (when d2 | k1), the
contribution of the k1,k2,r,s is less than

∑
(logx)5<d≤y1

∑
d2k1k2<y1

∑
max{r,s}�x1/2/(d2k1k2)1/2

1� x(logx)−3.

Similarly, in the second case (when d2 | s), we have a contribution less than

∑
k1k2<y1

∑
r�(x/k1k2)1/2

∑
(logx)5<d

∑
s�x1/2/(d2k1/2

1 k1/2
2 )

1� x(logx)−3.

Finally the contribution of the terms with d | (k1,s) is less than

∑
d>(logx)5

∑
dk1k2≤y1

∑
max{r,ds}�(x/dk1k2)1/2

1� x(logx)−3.

It remains to evaluate the contribution to S4(x) of the terms where k2 > (logx)5. Since k2 = (k1k2,r∞), we
have q(k2) | r where q(k2) = ∏p|k2 p is the squarefree kernel of k2. Thus, the contribution of r is bounded
by x1/2/(q(k2)(k1k2)

1/2), and then the corresponding summation of all the k1,k2,r,s with k2 > (logx)5 is
less than

∑
(logx)5<k2<y1

∑
k2k1<y1

x
k1k2q(k2)

� x(logx)−3
∑

k2≥1

1

q(k2)k
1/5
2

� x(logx)−3.
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The rest of this section is devoted to the sum S5(x), which can be written as

S5(x) = ∑
k1k2≤y1
(k1,k2)=1

k2≤(logx)5

∑
r2+s2≤x/(k1k2)

r,s>0,(r,s)=1
q(k2)|r
(k1,r)=1

(k1s)]≤(logx)45

K(r)W (r).

If we replace r by q(k2)r′, the sum over r′ has the shape

SR = ∑
r′<R,(r′,s)=1

K(r′q(k2))W (r′q(k2))

for some quantity R = R(s,k1,k2)� x1/2/(q(k2)
√

k1k2). It is then standard to complete the sum:

SR =
1

k1k2s

k1k2s

∑
h=1

( k1k2s

∑
a=1

(a,s)=1

K(aq(k2))W (aq(k2))e
( ah

k1k2s

))(
∑

r′<R
e
(
− hr′

k1k2s

))
.

As before, the inner sum over r′ is geometric and is�min
{

R,‖h/k1k2s‖−1
}

. Let Sa denote the inner
sum over the variable a, which is a complete sum. Applying the Chinese remainder theorem many times,
we have:

Sa = ∏
p|(k1s)[

(
∑

a (mod p)
Kp(a)e(ha/p)

)
∏

pν‖k2(k1s)]

(
∑

a (mod pν )
Wpν (a)e(ha/pν)

)
,

where

Kp(a) = e
(−aq(k2)k2(a2q(k2)2k2

2(k1s/p)2 + s2)

p

)
.

and Wpν is an exponential term modulo pν whose argument is a similar rational function in a. Since
k2(k1s)] ≤ (logx)50, a trivial bound for the sums on the a (mod pν ) when pν | k2(k1s)] is sufficient,
yielding

Sa� ∏
p|(k1s)[

∣∣∣ ∑
a (mod p)

Kp(a)e(ha/p)
∣∣∣ ∏

pν‖k2(k1s)]
pν

� (logx)50
∏

p|(k1s)[

∣∣∣ ∑
a (mod p)

Kp(a)e(ha/p)
∣∣∣.

(It is in fact possible to find in [20, Appendix B] a useful nontrivial bound for the sums that we have
estimated trivially.)

Since (k1s)[ is squarefree, we can apply Weil’s bound for exponential sums of a rational function.
The formulation we use is a particular case derived from [4, equation (3.5.2)].

Lemma 7. Let P1(Fp) be the projective line on Fp, and let f : P1(Fp)→ P1(Fp) be a nonconstant
rational function. For all u ∈ P1(Fp), let vu( f ) be the order of the pole of f at u if f (u) = ∞ and
vu( f ) = 0 otherwise. Then we have∣∣∣ ∑

u∈P1(Fp)
f (u)6=∞

e
( f (u)

p

)∣∣∣≤ ∑
vu( f )6=0

(1+ vu( f ))p1/2 (18)
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Since Kp(a)e(ha/p) has at most 3 poles (including the pole at ∞), which are simple, we have

∣∣∣ ∑
a (mod p)

Kp(a)e(ha/p)
∣∣∣≤ 6

√
p,

from which we deduce that

|Sa| ≤ 6ω((k1s)[)
√

k1s(logx)50.

Returning to SR, we have obtained

SR�
R

k1k2s
6ω((k1s)[)

√
k1s(logx)50 +6ω((k1s)[)

√
k1s(logx)51,

which gives the following upper bound for S5(x):

S5(x)� (logx)51
∑

k1k2≤y1
k2≤(logx)5

∑
s�
√

x/(k1k2)

6ω((k1s)[)
( √

x
q(k2)

√
k1k2s

+
√

k1s
)

� x3/4y3/4
1 (logx)63.

If we take y1 = x1/3(logx)−100 we obtain S5� x(logx)−12, which is enough for the proof of Theorem 2.

5 Three linear factors (Theorem 3)

In this section we consider one of the simplest cases of a product of three linear factors, namely the case
f (n) = n(n+1)(2n+1). Since (n,(n+1)(2n+1)) = (n+1,2n+1) = 1, our exponential sum is now

S( f ,x) = ∑
n≤x

∑
r (mod n)

f (r)≡0 (mod n)

e
( r

n

)

= ∑
n1n2n3≤x

∑
r (mod n1n2n3)

n1|r
r+1≡0 (mod n2)
2r+1≡0 (mod n3)

e
( r

n1n2n3

)
;

note that the inner sum has one term when n1, n2, and n3 are pairwise coprime and n3 is odd, and no
terms otherwise.

Let y2 = x1/3(logx)B with B > 0 to be specified. As in the previous sections we split the sum S( f ,x),
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writing S( f ,x) = ∑
4
i=1 Si(x) where

S1(x) = ∑
n1n2n3≤x

n1>y2

∑
r (mod n1n2n3)

n1|r
r+1≡0 (mod n2)
2r+1≡0 (mod n3)

e
( r

n1n2n3

)

S2(x) = ∑
n1n2n3≤x

n1≤y2
n2>y2

∑
r (mod n1n2n3)

n1|r
r+1≡0 (mod n2)
2r+1≡0 (mod n3)

e
( r

n1n2n3

)

S3(x) = ∑
n1n2n3≤x
n1,n2≤y2

n3>y2

∑
r (mod n1n2n3)

n1|r
r+1≡0 (mod n2)
2r+1≡0 (mod n3)

e
( r

n1n2n3

)

S4(x) = ∑
n1n2n3≤x

n1,n2,n3≤y2

∑
r (mod n1n2n3)

n1|r
r+1≡0 (mod n2)

2r+1≡0 (mod n3)

e
( r

n1n2n3

)
.

5.1 The first three sums

Using a method similar to Section 2 above, the solution r of the congruences in the above sums can be
written as

r = n1
(
−(n1n3)n2

n3− (2n1n2)n3
n2
)
,

and therefore the exponential summand in the Si(x) becomes

e
( r

n1n2n3

)
= e
(−n1n3

n2
− 2n1n2

n3

)
. (19)

For S1(x) this gives:

S1(x) = ∑
n2n3≤x/y2
(2n2,n3)=1

∑
y2<n1≤x/(n2n3)

e
( n̄1(n3(n3)n2

−n2(2n2)n3
)

n2n3

)
.

We apply equation (4) with t = n3(n3)n2
−n2(2n2)n3

. In this case (t,n2n3) = 1 and we obtain:

S1(x) = ∑
n2n3≤x/y2
(2n2,n3)=1

((x/(n2n3)− y2

n2n3

)
µ(n2n3)+O(

√
n2n3 · τ(n2n3) logx)

)
.

DISCRETE ANALYSIS, 20XX:XX, 31pp. 18

http://dx.doi.org/10.19086/da


EXPONENTIAL SUMS WITH REDUCIBLE POLYNOMIALS

The error term is O
(
(x/y2)

3/2(logx)5
)

which is sufficiently small if B is large enough, and therefore

S1(x) = x ∑
(2n2,n3)=1

µ(n2)µ(n3)

n2
2n2

3
+O(y2xε)+O

(
(x/y2)

3/2(logx)5)
= x

6
π2 ∑

n2

µ(n2)

n2
2

∏
p|2n2

(
1− 1

p2

)−1
+O

(
(x/y2)

3/2(logx)5)
= x

6
π2 ∏

p≥3

(
1− 1

p2−1

)
+O

(
(x/y2)

3/2(logx)5).
We handle the sum S2(x) in the same way, but this time summing first over n2 instead of n1. Applying

the inversion formula (6), we can rewrite equation (19) in the following way:

e
( r

n1n2n3

)
= e
( n̄2

n1n3
− 1

n1n2n3
− 2n1n2

n3

)
= e
( n̄2(1− (2n1)n3

n1)

n1n3

)
+O

( 1
n1n2n3

)
.

The error term O(1/n1n2n3) yields a contribution to S2(x) that is less than O((logx)3). Then we apply
equation (4):

S2(x) = ∑
n1n3≤x/y2

n1≤y2
(2n1,n3)=1

(( x
n1n3

− y2

)
µ(n1n3)

n1n3
+O(

√
n1n3 · τ(n1n3) logx)

)
.

We finish in the same way as for S1(x), obtaining the same asymptotic formula.
For S3(x) the corresponding method is to write

e
( r

n1n2n3

)
= e
( n̄3(1− (n1)n2

2n1)

2n1n2

)
+O

( 1
n1n2n3

)
,

and then after applying equation (4)

S3(x) = ∑
n1n2≤x/y2

max{n1,n2}≤y2
(n1,n2)=1

(( x
n1n2

− y2

)
µ(2n1n2)

2n1n2
+O(

√
n1n2 · τ(n1n2) logx)

)
.

The corresponding main term this time is

S3(x) = x ∑
(n1,n2)=1

µ(2n1n2)

2n2
1n2

2
=− 4x

π2 ∏
p≥3

(
1− 1

p2−1

)
+O

(
(x/y2)

3/2(logx)5).
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Summing these contributions of S1(x), S2(x), and S3(x) in the decomposition at the start of this section,
we deduce that

S( f ,x) =
8x
π2 ∏

p≥3

(
1− 1

p2−1

)
+O

(
|S4(x)|+(x/y2)

3/2(logx)5)
= x ∏

p≥3

(
1− 2

p2

)
+O

(
|S4(x)|+ x/(logx)3B/2−5).

5.2 The sum S4(x)

It remains to handle S4(x). Let y1 = x1/3(logx)−A with A > 0 to be specified. Let I denote the interval
I = [y1,y2]. First we remark that the number of summands for which min{n1,n2,n3}< y1 is� y1y2

2, and
hence

S4(x) = ∑
n1n2n3≤x
n1,n2,n3∈I

∑
r (mod n1n2n3)

n1|r
r+1≡0 (mod n2)

2r+1≡0 (mod n3)

e
( r

n1n2n3

)
+O

( x
(logx)A−2B

)
.

We introduce a new parameter z = exp(logx/(10loglogx)). We now write n2 = a2b2, n3 = a3b3
with P+(a2a3) ≤ z < P−(b2b3) where P+(n) and P−(n) are, respectively, the largest and smallest
prime factors of n. Using two more parameters v and w, we split S4(x) as S4(x) = S5(x) + S6(x) +
S7(x) +O(x(logx)2B−A), where max(a2,a3) ≤ v in S5(x), max(a2,a3) > w in S6(x), and finally v <
max{a2,a3} ≤ w in S7(x).

In S5(x), since a2,a3 are small we have:

S5(x)≤ ∑
a2,a3≤v

∑
n1,a2b2∈I

∑
b3≤x/(n1n2a3)

1

� x
logz ∑

a2,a3≤v
∑

n1,a2b2∈I

1
n1n2a3

� x(logv)2(log logx)2

(logz)2 .
(20)

The (logz)2 above comes from the sieving conditions on b2 and b3. In particular, we have used the
following inequality

∑
y1/a2≤b2≤y2/a2

1
b2
� log logx

logz
, (21)

which can be derived by partial summation from [1, Proposition 1]. The bound (20) is sufficiently small
when (logv)(log logx) = o(logz) (we will eventually choose v to be a power of logx). We remark that
this step is the main obstacle to having an upper bound less than x/(logx)2 in the error term in Theorem 3.

For S6(x), we estimate each summand trivially by 1; therefore we may assume that a3 > w is
abnormally large (the bound when a2 > w is exactly the same) and that n2 is unrestricted. Following
some ideas of Hooley [12], we note that if a3 > w, then either ω(a3)≥ logw/(2logz), or else there exists
d > w1/4 such that d2 | a3. We therefore have (ignoring here the condition that b3 has no small prime
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factors)

S6(x)≤ ∑
n1,n2∈I

∑
w1/4<d<y2

∑
b3≤x/(n1n2d2)

1+ ∑
n1,n2∈I

∑
a3<y2

ω(a3)≥(logw)/2logz

∑
b3≤x/(n1n2a3)

1

� ∑
n1,n2∈I

∑
d>w1/4

x
n1n2d2 + ∑

n1,n2∈I
∑

a3≤y2

x2ω(a3)−logw/(2logz)

n1n2a3

� x(log logx)2

w1/4 + x2− logw/(2logz)(log logx)2(logx)2.

(22)

It remains to handle the term S7(x). We begin in the same way as for S1(x):

S7(x) = ∑
a2b2,a3b3∈I

P+(a2a3)≤z<P−(b2b3)
v<max(a2,a3)≤w

∑
n1≤x/(n2a3b3)

e
( n̄1(a3b3(a3b3)n2

−n2(2n2)a3b3
)

n2a3b3

)
. (23)

Unfortunately, equation (4) is not sufficient here. Since a3 is not too small and b3 is not too big, the
denominator has three factors not too small and we can apply the recent work of Wu and Xi [20] on
the q-analog of the van der Corput method. Such an approach was initiated by Heath–Brown [7] and
developed by Graham and Ringrose [6], and more recently by Irving [13, 14] and by Wu and Xi [20],
where the arithmetic exponent pairs are obtained when the denominator has good factorization properties.
As in the proof of Theorem 2, we denote by n] and n[ the squarefull and squarefree parts of the integer n;
and we write

e
( n̄1(a3b3(a3b3)n2

−n2(2n2)a3b3
)

n2a3b3

)
= K(n1)W (n1),

with

K(n1) = e
( n̄1(n2a3b3)][a3b3(a3b3)n2

−n2(2n2)a3b3
]

(n2a3b3)[

)
,

W (n1) = e
( n̄1(n2a3b3)[[a3b3(a3b3)n2

−n2(2n2)a3b3
]

(n2a3b3)]

)
.

Lemma 8. Uniformly for any integers α,A,N,δ ∈N, q= q1q2q3 squarefree integer such that (αδ ,q) = 1
and any rational function R with integer coefficients, we have

∑
A<n≤A+N
(n,q)=1

e
(

α n̄
q

+
R(n)

δ

)
� N1/2q1/2

3 +N3/4q1/4
2

+N3/4q1/8
1 δ

1/43ω(q1)
( N

q1
+ log(q1δ )

)1/4
.

We emphasize that the implicit constant above is absolute, and in particular does not depend on R: we
handle the contribution of this term R(n)/δ quite trivially. In our application, the denominator δ is small,
so the prospects for cancellation are modest in any case.
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We prove Lemma 8 in the next section; assuming the lemma for the moment, we can complete
the proof of Theorem 3. We apply Lemma 8 to the inner sum in equation (23) with q = n[2b[3a[3 and
δ = n]2b]3a]3, where N = x/(n2a3b3). After doing so, by positivity we may again assume that v < a3 ≤ w
(the bound when v < a2 ≤ w is exactly the same) and ignore all restrictions upon n2. We obtain

S7(x)� ∑
n2∈I

∑
a3b3∈I

v<a3≤w

{√ x
n2a3b3

√
a[3 +

( x
n2a3b3

)3/4
(b[3)

1/4

+
( x

n2a3b3

)3/4
(n[2)

1/8(n]2a]3b]3)
1/43ω(n[2)

( x
n2n[2a3b3

+ logx
)1/4}

.

We now have to compute all the different sums:

S7(x)�
√

xy2
√

w(logz)−1 +(xy2)
3/4v−1/4 + x23/24+ε . (24)

Theorem 3 now follows from the estimates (20), (22), and (24) upon taking w = x1/24, v = (logx)4B,
B = 10, and A = 30, for example.

6 Short exponential sums

6.1 Proof of Lemma 8

In this section we prove Lemma 8, which will complete the proof of Theorem 3. This lemma is in fact
a variant of a particular case of a result of Wu and Xi [20, Theorem 3.1 and Proposition 3.2]. While
we do not need to introduce significant new ideas, the results of [20] cannot be applied directly in our
context because we need a more precise version of the function Nε in our error bounds. Careful attention
to their paper reveals that it is possible to adapt some arguments to replace this Nε by a quantity of the
type Cω(q1)(logN)α . In many circumstances such a refinement is not necessary, but for us it is important
due to the very restricted range of the factor a3.

For brevity we will write J = ]A,A+N], W (n) = e(R(n)/δ ), and

E(J) = ∑
n∈J

e
(

α n̄
q

)
W (n)

for the sum to be estimated. We begin by remarking that we may assume that q2 < N and q3 < N, for
otherwise the lemma is trivial. For any function Ψ and any h ∈ Z we define

∆h(Ψ)(n) = Ψ(x)Ψ(x+h).

Lemma 9. Let q = q1q2 with (q1,q2) = 1, J = ]A,A+N] an interval and Ψi : Z/qiZ→ C. Then for
1≤ L≤ N/q2, we have∣∣∣∑

n∈J
Ψ1(n)Ψ2(n)

∣∣∣2�‖Ψ2‖∞

(
L−1N2 +L−1N ∑

0<|`|≤L

∣∣∣ ∑
n∈J

n+`q2∈J

∆`q2(Ψ1)(n)
∣∣∣).
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This formula, which Wu and Xi call an A-process by analogy with the A-process of the classical van der
Corput method, follows from the proof of [20, Lemma 3.1].

We apply this lemma with

ψ1(n) = e
(

α q̄3n̄
q1q2

)
W (n), ψ2(n) = e

(
αq1q2n̄

q3

)
.

Writing L3 = [N/q3] (which is at least 1), this gives (see also the beginning of the proof of [20, Theo-
rem 3.1])

|E(J)|2� L−1
3 N2 +L−1

3 N ∑
0<|`3|≤L3

|U(`3)|, (25)

with

U(`3) = ∑
n∈J(`3)

e
(

α q̄3(n̄− (n+ `3q3))

q1q2

)
W (n)W (n+ `3q3)

where J(`3) is some interval contained in J. Note that we may write U(`3) = ∑n∈J Ψ3(n)Ψ4(n) where

ψ3(n) = e
(

α q̄2q̄3(n̄− (n+ `3q3))

q1

)
W (n)W (n+ `3q3)1J(`3)(n),

ψ4(n) = e
(

α q̄1q̄3(n̄− (n+ `3q3))

q2

)
,

(26)

where 1J(`3) is the indicator function of J(`3). We again apply Lemma 9 to each U(`3), writing L2 =
[N/q2] (which again is at least 1); we have written ψ3(n) as in equation (26) so as to make this choice of
L2 valid even when the length of J(`3) is much smaller than N. We obtain

|U(`3)|2� L−1
2 N2 +L−1

2 N ∑
0<|`2|≤L2

|U(`2, `3)|, (27)

with now

U(`2, `3) = ∑
n∈J(`2,`3)

e
(F(n)

q1

)
W̃ (n),

where J(`2, `3) is some interval contained in J(`3), and

F(n) = αq2q3
[
n̄− (n+ `3q3)− (n+ `2q2)+(n+ `2q2 + `3q3)

]
, (28)

W̃ (n) =W (n)W (n+ `3q3)W (n+ `2q2)W (n+ `2q2 + `3q3).

Then we complete the above sum over n ∈ J(`2, `3):

U(`2, `3) =
1

q1δ

q1δ

∑
a=1

e
(F(a)

q1

)
W̃ (a)

q1δ

∑
h=1

∑
n∈J(`2,`3)

e
(h(a−n)

q1δ

)
� N

q1δ

∣∣∣ q1δ

∑
a=1

e
(F(a)

q1

)
W̃ (a)

∣∣∣+ ∑
1≤h<q1δ

1
h

q1δ

∑
a=1

e
(F(a)

q1

)
W̃ (a)e

( ha
q1δ

)
.
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We denote by Σa(h) the inner sum on a in the second term and perform the same manipulations as for the
sums Sa in the proof of Theorem 2, resulting in

Σa(h) =
q1δ

∑
a=1

e
(F(a)

q1

)
W̃ (a)e

( ha
q1δ

)
=

δ

∑
u=1

W̃ (q1u)e
(hu

δ

)
∏
p|q1

p

∑
v=1

e
(F(vδq1/p)+hv

p

)
.

(29)

The function F in equation (28) can be rewritten in the following way, with λ = αq2q3:

F(n) =
λG(n)

n(n+ `2q2)(n+ `3q3)(n+ `2q2 + `3q3)
,

where G(n) is a polynomial with constant term `2q2`3q3(`2q2 + `3q3) (the exception being when p |
(`2q2 + `3q3), in which case we actually have F(n) = 2λ`2q2`3q3/(n(n+ `2q2)(n+ `3q3))). If p - `2`3,
the function F(vδq1/p)+hv of v has at most 5 poles, each pole being simple (including the pole at ∞);
this is most clearly seen from the definition (28) of F(n). Then by Lemma 7 we have∣∣∣ p

∑
v=1

e
(F(vδq1/p)+hv

p

)∣∣∣≤ 10
√

p

when p - `2`3. We deduce from equation (29) that

|Σa(h)| ≤
δ

∑
u=1

∏
p|q1

p-`2`3

10
√

p ∏
p|q1

p|`2`3

p≤ 10ω(q1)δ
√

q1(q1, `2`3)
1/2.

Then

∑
`2≤L2

|U(`2, `3)| � δ
√

q1

(
logq1 +

N
q1

)
10ω(q1) ∑

`2≤L2

(q1, `2`3)
1/2. (30)

For the sum on `2 we have for any `3 ≤ L3:

∑
`2≤L2

(q1, `2`3)
1/2 ≤ ∑

d|q1

√
d(`3,q1/d)1/2

∑
`2≤L2/d

1� τ(q1)L2(q1, `3)
1/2. (31)

Inserting this bound into equation (30) and tracing the results back through equations (27) and (25)
results in

E(J)� NL−1/2
3 +NL−1/4

2 +N3/4
( N

q1δ
+ log(q1δ )

)1/4
q1/8

1 δ
1/410ω(q1)/4

τ(q1)
3/4.

It remains to replace L2 by [N/q2] and L3 by [N/q3], and to observe that

10ω(q1)/4
τ(q1)

3/4 = 80ω(q1)/4 ≤ 3ω(q1),

to finish the proof of Lemma 8.

DISCRETE ANALYSIS, 20XX:XX, 31pp. 24

http://dx.doi.org/10.19086/da


EXPONENTIAL SUMS WITH REDUCIBLE POLYNOMIALS

6.2 Generalization of Lemma 8, the Ak-process

In this section, we indicate how to iterate the ideas of the proof of Lemma 8 to obtain bounds for short
exponential sums whose denominator can be decomposed into k+1 factors. This generalization relies on
techniques from two important papers of Irving [13, 14]; again, our contribution here consists mainly in
replacing a factor of Nε by a more precise error term.

Essentially, we would like to apply Lemma 9 consecutively k times. Irving has given a precise
formulation of this iteration; to enounce his result, we need to introduce some notation corresponding to
the iterates of the ∆h(Ψ) used in the previous section. For any complex-valued function f , define

f (n;h1, . . . ,hk) = ∏
S⊂{1,...,k}

f
(
n+∑

s∈S
hs
)σ(S)

,

where σ(S) denotes that the complex conjugate is taken when #S is odd. With this notation, we may
quote [14, Lemma 2.2]:

Lemma 10. Let k ∈N and q0, . . . ,qk ∈N. For each 0≤ i≤ k, let fi : Z→C be a function with period qi

such that fi(n)� 1. Set q = q0 · · ·qk and f (n) = ∏
k
i=0 fi(n). If I is any interval of length at most N, then

∣∣∣∑
n∈I

f (n)
∣∣∣2k

�k

k

∑
j=1

N2k−2k− j
q2k− j

k− j+1

+N2k−k−1 q
q0

∑
0<|h1|≤N/q1

· · · ∑
0<|hk|≤N/qk

∣∣∣ ∑
n∈I(h1,...,hk)

f0(n;q1h1, . . . ,qkhk)
∣∣∣, (32)

where I(h1, . . . ,hk) is a subinterval of I.

We also quote the following combinatorial lemma [13, Lemma 4.5]:

Lemma 11. Let p≥ 3 be prime and h1, . . . ,hk ∈ Fp. Suppose that for every b∈ Fp, the number of subsets
S⊂ {1, . . . ,k} with b = ∑s∈S hs is even. Then some hi must equal 0.

We are now prepared to establish our generalization of Lemma 8.

Lemma 12. Uniformly for any integers α,A,N, any positive integers δ ,k, any positive integers q0, · · · ,qk
such that q = q0 · · ·qk is squarefree and coprime to αδ , and any rational function R with integer
coefficients,

∑
A<n≤A+N
(n,q)=1

e
(

α n̄
q

+
R(n)

δ

)
�k

k

∑
j=1

N1−1/2 j
q1/2 j

j

+N1−1/2k
q1/2k+1

0 δ
1/2k

(2k+2 +4)ω(q0)/2k
(( N

q0

)1/2k

+(logq)1/2k
)
.

Proof. We apply Lemma 10 with

f (n) = e
(

α n̄
q

)
W (n) = e

(
α n̄(q/q0)

q0
+

R(n)
δ

) k

∏
i=1

e
(

α n̄(q/qi)

qi

)
,
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where as in the previous section W (n) = e(R(n)/δ ). Our desire at this point is to apply Weil’s bound to
the sums over n that arise from equation (32). After the same manipulations as in the proof of Lemma 8,
the analogue of equation (29) is now

Σa(m) =
δ

∑
u=1

W (aq0;q1h1, . . . ,qkhk)e
(mu

δ

)
×∏

p|q0

p

∑
v=1

e
(mv+∑S⊂{1,...,k}(−1)#Sα(vδq0/p+∑s∈S hsqs)

p

)
.

(33)

In order to apply Weil’s bound (Lemma 7), we need to confirm that the argument of the exponential is
nonconstant modulo p (even if p | m).

Note that the numerator in equation (33) can be written as

mv+ ∑
S⊂{1,...,k}

(−1)#S
α(vδq0/p+∑

s∈S
hsqs)

= mv+α ∑
t (mod p)

(vδq0/p+ t) ∑
S⊂{1,...,k}

∑s∈S hsqs≡t (mod p)

(−1)#S (34)

When p - h1 · · ·hk (so that indeed p - h1q1 · · ·hsqs), Lemma 11 implies that at least one of the inner sums
on the right-hand side of equation (34) has an odd number of terms, and in particular (by considering its
parity) is nonzero. In particular, the numerator in equation (33) is nonconstant, and thus Lemma 7 can be
applied.

The number of poles of this numerator is at most 2k +1. When p - h1 · · ·hk, Lemma 7 implies that the
corresponding sum is less than 2(2k+1)

√
p. We deduce that Σa(m)� δ (2k+1+2)ω(q0)

√
q0(q0,h1 · · ·hk)

1/2.
The proof concludes with quite similar computations to those in the proof of Lemma 8, with the function
τ(q1) from equation (31) replaced by ∑d1···dk|q0 1/

√
d1 · · ·dk� 2ω(q0).

7 Product of k linear factors

This section is devoted to the proof of Theorem 4. We will skip some details when the arguments are
similar to the previous proofs. All implicit constants in this section may depend on f and h.

Define A = ∏1≤i< j≤k(aib j − a jbi)∏
k
i=1 ai. The first step follows the beginning of the proof of

Theorem 1 in Section 3.2. However, since f has more than two linear factors, the discussions related
to the greatest common divisor of A, h, and the denominators n are more delicate. This is why in our
splitting analogous of (10), the summation of δ will be for δ | (hA)∞ instead of δ | (h,A)∞. We keep
the notations S( f ,x,h) = S>(x,h)+S≤(x,h), where in S>(x,h) the parameter δ | (hA)∞ exceeds B, but
now with B = (logx)10k instead of x1/5−ε . We bound S>(x,h) by x(logx)k−1B−1+ε with ε > 0 arbitrarily
small as in equation (11) (indeed ε = 1/10 will suffice for us).

For S≤(x,h), however, an analogous version of equation (12) is not sufficient. This is due to the fact
that a trivial summation on δ < B would bring a factor B > (logx)k into our error terms, and we can win
only a factor (logx)4 in an error term (denoted by T (1)

5 (r,δ ) later in this section) arising from certain
denominators n that are the product of several divisors of the same size.
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Nevertheless, we still begin by applying the Chinese remainder theorem as in Section 3.2:

S≤( f ,x,h) = ∑
δ |(Ah)∞

δ≤B

∑
0≤r<δ

f (r)≡0 (mod δ )

T (r,δ ), (35)

with now
T (r,δ ) = ∑

n≤x/δ

(n,Ah)=1

∑
0≤r1<n

f (r1δ )≡0 (mod n)

e
(hr1

n
+

hrn̄
δ

)
.

The number of roots r in equation (35) is O(Aω(δ )) (see Nagell [17, p. 90, Theorem 54] for an even more
precise result) and thus O(1) with our conventions for implicit constants. Since our polynomial f is the
product of k linear functions, generalizations of Lemma 3 and equation (6) allow us to write

T (r,δ ) = ∑
m1···mk≤x/δ

(m1···mk,Ah)=1

∑
0≤r1<m1···mk

mi| fi(r1δ )(1≤i≤k)

e
( hr1

m1 · · ·mk
+

hrm1 · · ·mk

δ

)
,

where (mi,m j) = 1 for all 1≤ i < j ≤ k and

r1 ≡−δ̄

k

∑
i=1

āibi ∏
j=1
j 6=i

m j(∏
j=1
j 6=i

m j)mi (mod m1 · · ·mk),

so that

e
( hr1

m1 · · ·mk

)
=

k

∏
i=1

e
(−hδ̄ āibi∏ j=1

j 6=i
m j

mi

)
. (36)

We set y= x1/3(logx)10k and write T (r,δ ) = T1(r,δ )+T2(r,δ ), where the sum T2(α,δ ) contains precisely
those summands for which max{m1, . . . ,mk}> y.

We decompose T2(r,δ ) = S1 + · · ·+Sk into k sums, where each Si is defined by the conditions mi > y
and m j ≤ y for j < i. In each Si, we use the inversion formula (6) and apply Lemma 1 as in the proof of
Theorem 3. This yields an asymptotic formula of the shape Si = xCi( f ,h,δ )+O((x/y)3/2

√
δ (logx)k)

for some constants Ci( f ,h,δ ) similar to the constants found in Section 3.2 in the proof of Theorem 1.
These contributions comprise the main term in Theorem 4 when k = 3 and k = 4. It remains to find

an upper bound for T1(r,δ ). This upper bound will be o(x) only for k = 3 and k = 4, which allows for
our asymptotic formula in those cases; for k ≥ 5 it provides only a nontrivial upper bound as stated in
Theorem 4.

We split the sum T1(r,δ ) into k! subsums according to the ordering of the mi. Let T (1)
1 (r,δ ) denote

the subsum of T1(r,δ ) with the additional condition that m1 ≥ m2 ≥ ·· · ≥ mk; the estimate we find for
this subsum will hold for all k! subsums. We would like to deal with T (1)

1 (r,δ ) simply by applying
Lemma 12; however, this lemma is not efficient enough when m3 is close to m1. Consequently, we make
one more splitting T (1)

1 (r,δ ) = T (1)
3 (r,δ )+T (1)

4 (r,δ ), where T (1)
3 (r,δ ) consists of the terms for which

m3 ≤ m1(logx)−k4k
.
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Concentrating first on T (1)
3 (r,δ ), we do dyadic splittings in all k variables, writing T (1)

3 (r,δ ) as
O(logk x) subsums S(M1, . . . ,Mk) that are restricted to mi satisfying Mi < mi ≤ 2Mi for all 1≤ i≤ k; here
the bounds Mi are powers of 2, satisfying 2kM1 · · ·Mk ≤ x, such that M1 ≤ y while 2Mi ≤ y for 2≤ i≤ k.
The ordering of the mi also implies that M1 ≥M2 ≥ ·· · ≥Mk.

By the inversion formula (6), we can eliminate the variable m1 in the denominator in equation (36):

e
(
−hb1a1δm2 · · ·mk

m1

)
= e
( hb1m1

a1δm2 · · ·mk

)
e
( hb1

a1δm1 . . .mk

)
,

The second exponential term above is 1+O(1/δM1 · · ·Mk) and can be replaced by 1 with an admissible
error. Thus we have, for some λ depending on m2, . . . ,mk,δ ,r, f but not on m1,

S(M1, . . . ,Mk)

= ∑
Mi<mi≤2Mi (2≤i≤k)

(m2···mk,Ah)=1

∑
M1<m1≤2M1

max{m2,··· ,mk}≤m1≤x/(m1···m2)
(m1,Ahm2···mk)=1

e
(

λm1

a1δm2 · · ·mk

)
+E,

where E is a sufficiently small error term. Next we separate the squarefree and the squarefull parts of this
denominator. With the same notation as in the proof of Theorem 3, we obtain a formula of the shape

e
(

λm1

a1m2 · · ·mk

)
= e
(

αm1

(a1m2 · · ·mk)[
+

R(n)
δ (a1m2 · · ·mk)]

)
.

Writing q] = (a1m2 · · ·mk)
], we find that Lemma 12 gives the estimate

S(M1, . . . ,Mk)� x
k

∑
j=3

(M j/M1)
1/2 j−2

+ x(δq])1/2k
(logx)2k+3(M−1/2k

2 +(logx)1/2k
M1/2k+1

2 M−1/2k

1

)
.

Since Mk ≤ ·· · ≤M3 ≤M1(logx)−k4k
, this estimate saves enough powers of logx to compensate for the

number of subsums and the summation over δ ; we obtain a bound for T (1)
3 (r,δ ) that is admissible for

Theorem 4.
It remains to handle T (1)

4 (r,δ ), where a direct application of Lemma 12 is not sufficient. We will
proceed as in the sum S4(x) in Section 5.2. Recalling that m1 ≥m2 ≥ ·· · ≥mk, we let `∈ {2, . . . ,k} be the
largest index such that m` > m1(logx)−k4k

. For 2≤ i≤ `, we factor mi = cidi with P+(ci)≤ z < P−(di)

where z = exp(logx/(800k log logx)). We also introduce the parameters w = x1/(50k) and v = (logx)10k4k
.

Let T (1)
6 (r,δ ) be the analogue of the sum S6(x) in Section 5.2, which is the contribution of the

(m1, . . . ,mk) such that ci > w for some i ∈ {2, . . . , `}. With a computation similar to the one in equa-
tion (22), we find:

T (1)
6 (r,δ )� x(logx)k

w1/4 + x2−logw/(2logz)(logx)k� x(logx)k−8log2,
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where the final estimate is sufficient since 8log2 > 5.
We next examine T (1)

7 (r,δ ), the analogue of S7(x) in Section 5.2, corresponding to the case where
there is at most one i ∈ {2, . . . , `} with ci ≤ v. Without lost of generality we can suppose that c2 ≤ v
and ci ∈ [v,w] for all 3≤ i≤ `. We introduce some dyadic splittings, similar to those in our treatment
of T (1)

3 (r,δ ), of T (1)
7 (r,δ ) into O((logx)k) sums S7(M1, . . . ,Mk) with Mi < cidi ≤ 2Mi for 2≤ i≤ ` and

Mi < mi ≤ 2Mi for i ∈ {1}∪{`+1, . . . ,k}. We apply Lemma 12 with k replaced by k+ `−4 and with
the parameters

N = 2M1,

q0 = c2d2,

q1 = d3, q2 = d4, . . . , q`−2 = d`,

q`−1 = m`+1, q` = m`+2, . . . , qk−2 = mk,

qk−1 = c3, qk = c4, . . . , qk+`−4 = c`.

With the notations q] = (a1m2 · · ·mk)
] and k1 = k+ `−4, Lemma 12 gives

S7(M1, . . . ,Mk)

= ∑
∗

m2,...,mk

[ `−2

∑
j=1

M1−1/2 j

1 d1/2 j

j+2 +
k−2

∑
j=`−1

M1−1/2 j

1 m1/2 j

j+2 +
k+`−4

∑
j=k−1

M1−1/2 j

1 c1/2 j

j−k+4

+M1−1/2k1

1 M1/2k1+1

2 (δq])1/2k1
(2k1 +4)ω(m2)/2k1

((M1

M2

)1/2k1

+(logx)1/2k1

)]
,

where the asterisk on the sum indicates that the m j and the c j,d j satisfy the previously indicated conditions.
At this point, computations analogous to those at the end of Section 5.2 give a bound for T (1)

7 (r,δ ) that is
sufficiently small.

Finally, we examine T (1)
5 (r,δ ), the analogue of S5(x) in Section 5.2, corresponding to the case where

ci ≤ v for at least two indices i ∈ {2, . . . , `}. The estimation of this part of the sum is where we fail to
obtain an asymptotic formula for S( f ,x,h) when k ≥ 5.

Without loss of generality we can suppose that c2≤ v and c3≤ v. If we define I(m1)= [m1/(logx)k4k
,m1],

then
T (1)

5 (r,δ )� ∑
m1≤y

∑
m5,...,mk≤m1

∑
c2,c3≤v

∑
c2d2∈I(m1)
c3d3∈I(m1)

∑
m4≤x/(δm1c2d2c3d3m5···mk)

m4≤m1

1.

(In this line, the sum over m5, . . . ,mk does not occur if k = 3 or k = 4; in fact, the case k = 3 is handled
exactly in the same way as in the estimation of S5(x) in Section 5.2.) We use equation (21) for the sum
over the sifted variables d2, d3, gaining an additional factor of (logz)2 in the estimate:

T (1)
5 (r,δ )� x(log logx)2(logx)k−3

δ (logz)2 � xδ
−1(log logx)4(logx)k−5. (37)

Since the number of roots r is bounded uniformly in δ and ∑δ |(Ah)∞ δ−1� 1, we see that the bound (37)
is sufficiently small. This completes the proof of Theorem 4.
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