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Abstract 

1. Recent advances in bio-logging open promising perspectives in the study of animal 

movements at numerous scales. It is now possible to record time-series of animal locations 

and ancillary data (e.g. activity level derived from on-board accelerometers) over extended 

areas and long durations with a high spatial and temporal resolution. Such time-series are 

often piecewise stationary, as the animal may alternate between different stationary phases 

(i.e. characterised by a specific mean and variance of some key parameter for limited periods). 

Identifying when these phases start and end is a critical first step to understand the dynamics 

of the underlying movement processes. 

2. We introduce a new segmentation-clustering method we called segclust2d (available as a R 

package at cran.r-project.org/package=segclust2d). It can segment bi- (or more generally 

multi-) variate time-series and possibly cluster the various segments obtained, corresponding 

to different phases assumed to be stationary. This method is easy to use, as it only requires 

specifying a minimum segment length (to prevent over-segmentation), based on biological 

rather than statistical considerations. 

3. This method can be applied to bivariate piecewise time-series of any nature. We focus here 

on two types of time-series related to animal movement, corresponding to (i) at large scale, 

series of bivariate coordinates of relocations, to highlight temporary home ranges, and (ii) at 

smaller scale, bivariate series derived from relocations data, such as speed and turning angle, 

to highlight different behavioural modes such as transit, feeding and resting. 

4. Using computer simulations, we show that segclust2d can rival and even outperform 

previous, more complex methods, which were specifically developed to highlight changes of 

movement modes or home range shifts (based on Hidden Markov  and Ornstein-Uhlenbeck 

modelling), which, contrary to our method, usually require the user to provide relevant initial 

guesses to be efficient. Furthermore we demonstrate it on actual examples involving a zebra's 
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small scale movements and an elephant's large scale movements, to illustrate how various 

movement modes and home range shifts, respectively, can be identified.  
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Introduction 

Landscapes are spatially and temporally variable at various scales (Levin, 1992), and animals 

are expected to adjust their movements to the characteristics of their local environment, so as 

to maximize the time spent in profitable (or safe) habitats and minimize time in adverse ones 

(Pyke, 1978). Recent advances in bio-logging have made it possible to acquire time-series of 

animal's locations, and possibly ancillary data such as activity level derived from on-board 

accelerometers, over extended areas and long durations with high spatial and temporal 

resolutions. Such locational time-series, and the various series that can be derived from them 

to describe the movement behaviour (e.g. turning angle, speed), are therefore expected to be 

piecewise stationary, i.e. to present a specific mean and variance for limited periods 

corresponding to stationary phases, alternating with rapid transition phases corresponding to 

changes of areas or behaviours (in practice, a phase can be considered as being stationary 

when the partial means and variances obtained for its first and second halves or for its three 

thirds are not markedly different). Identifying these stationary phases is a prerequisite to 

determine the biologically relevant scales of movement (Benhamou, 2014). It is therefore of 

paramount importance in two types of movement studies:  

Identifying behavioural modes. Foragers are generally expected to alternate intensive 

(area-concentrated) searching mode, characterised by high tortuosity and low speed, and 

extensive searching (transit) mode, characterised by low tortuosity and high speed (see Dias et 

al., 2009 for contrasting examples). A number of discrete time methods have been developed 

to attempt to identify the different movement modes (see Gurarie et al. 2016 and Edelhoff et 

al. 2016 for general reviews; see also Parton & Blackwell 2017 and Michelot & Blackwell 

2019 for continuous-time approaches). As the alternation of searching modes should result in 

piecewise "behavioural stationarity" when considering time-series of some movement 

parameters, several segmentation approaches have been developed to identify behavioural 
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modes by looking at breakpoints (i.e. rapid transitions between stationary phases; Barraquand 

and Benhamou, 2008; Gurarie et al., 2009; Nams, 2014). A more sophisticated approach 

based on Hidden Markov Models (HMM) has gained momentum in recent years. In this 

approach,  the joint step lengths and turning angles calculated from successive relocations are 

categorized among a predefined number of different modes modelled as hidden states 

(Morales et al., 2004; Langrock et al., 2012; McClintock et al., 2012; Beyer et al., 2013; 

Michelot et al., 2016). However, the convergence of HMM may depend on the ability of the 

user to specify relevant initial state-dependent probability distribution parameters. Here, we 

aim at developing an alternative approach which does not require such a pre-specification. As 

most previous methods, it focused on speed and tortuosity but deals with such variable 

through a penalised likelihood criterion. Furthermore, in addition to the spatio-temporal 

couple of metrics classically used in HMM-based segmentation, (linear and angular speeds), 

we aim at testing other couples of metrics which should be more able to differentiate between 

the various behavioural modes by accounting for spatial and temporal effects separately 

(Benhamou & Bovet 1989), or which present more suitable statistical characteristics (Gurarie 

et al. 2009). 

Identifying home range shifts. The recently emerging question of piecewise "locational 

stationarity" at the home range scale has been addressed in terms of movement scales 

(Benhamou, 2014), migration characteristics (Naidoo et al., 2012; Cagnacci et al., 2016) and 

of within-season shifts (Couriot et al 2018). Indeed, for an animal that exploits various 

temporary home ranges, the time-series of relocations coordinates can be assumed to be 

stationary for a relatively long time (when the animal exploited the area where it established 

its temporary home range), then non-stationary for a relatively short time (when the animal 

left its home range until it established a new one), and so on. It is worth noting that a shift in 

home range does not necessarily involve a shift in mean location. It may also correspond to a 

change in variance if the animal enlarged or shrank its home range, e.g. due to a change of 
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season (Naidoo et al., 2012; Monsarrat et al., 2013) or in reproductive status. Various 

methods have been proposed to detect home range shifts. The simple univariate approach 

based on the change in the beeline distance from a starting point (Bunnefeld et al., 2011) 

appears to be convenient in some cases but fully ignores movements leading the animal at a 

similar distance from the starting point but in another direction. More complex approaches 

rest on Ornstein-Uhlenbeck (OU) modelling, following Blackwell (1997). Breed et al. (2017) 

used a Bayesian framework to estimate the number of states of an underlying multi-state OU 

process. In this way, they could directly infer the effect of covariates on the transition rate 

between ranges, but used a simple K-means algorithm to assign locations to the different 

states (corresponding to the different home ranges). Gurarie et al. (2017) developed an 

alternative approach by introducing a non-stationary state in the OU process to model the 

shifts in home range location. However, as it requires that all home range phases and shifts 

are explicitly modelled, this approach tends to become cumbersome when there are several 

shifts to consider. Furthermore, it may require truly relevant initial guesses to correctly detect 

small shifts. We therefore aim at developing an alternative approach that could be more 

efficient than an OU-based approach to detect home range shifts and simpler to use. 

Additionally, as detecting shifts in behavioural modes and in home ranges settlements are 

conceptually similar, we focused on a generic approach that can be applied to both types of 

studies. 

Introducing a new method. Here we introduce a new method, called segclust2d, able to 

segment a bi- (and more generally multi-) variate time-series, and to cluster similar segments 

(corresponding to stationary phases) in a common class (corresponding to a given state) if 

desired. We demonstrate that this method, which is easy to use, can successfully identify 

stationary phases corresponding to temporary home ranges when based on bivariate locational 

time-series, as well as movement modes when based on bivariate time-series of metrics such 

as speed and tortuosity. It thus offers an efficient and user-friendly alternative to previous, 
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more complex, approaches. Furthermore, as this model applies to multivariate piecewise 

stationary time-series based on any kind of metrics, it can integrate additional time-series of 

ancillary data (e.g. activity level derived from on-board accelerometers) for a better 

segmentation-clustering of movement data. 

 

Methods 

STATISTICAL MODEL AND PARAMETER ESTIMATION 

General principle. Consider a multivariate time-series composed of C components (each 

corresponding to a univariate time-series). These components are assumed to be statistically 

independent, and should be normalized if they are of different nature, so as to have the same 

weight in subsequent procedures. The time-series is assumed to be piecewise stationary, i.e. to 

be made of an unknown number of stationary phases. In a given phase, the values taken by 

any of the C components are assumed to be independent of each other. One needs a reliable 

statistical model to detect and locate these phases, and possibly to cluster them when they are 

assumed to be the expressions of a limited number of unobserved states of the underlying 

process (e.g. behavioural modes). Likelihood-based segmentation methods provide a suitable 

statistical framework to detect changes of phases but raise two main issues from a statistical 

and algorithmical point of view: (i) determining the optimal number of segments and (ii) for a 

given number of segments, finding the optimal segmentation, i.e. determining the locations of 

the starting/ending points of the segments (called breakpoints). The latter reduces to a well-

known discrete optimization problem solved using a dynamic programming algorithm 

introduced by Bellman (1954; for a recent example, see Rigaill, 2015). For a time-series of n 

values that can potentially be cut at any point in K segments, the dynamic programming 

algorithm reaches the exact maximum likelihood solution with a complexity in O(n2
K), 

drastically smaller than the complexity in O(nK) involved by a force brute algorithm when 
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exploring the whole segmentation space. We will first introduce the models and the 

estimation procedure to optimally segment a multivariate signal for a predefined number of 

segments K and possibly (if clustering is required) a predefined number of states M. 

Afterwards, we will show how the optimal number of segments and possibly of clusters can 

be found based on a penalized likelihood criterion. Our approach is based on Lavielle (2005)'s 

segmentation method of univariate signals and its extension by Picard et al. (2007) to segment 

and cluster DNA sequences without assuming any kind of distribution for the segment 

lengths, such as a geometric distribution as HMM implicitly do (Karlin & Taylor, 1975). 

Optimal segmentation in K segments, with optional clustering in M states. Assume that there 

are K stationary phases in a multivariate time-series with total length n. A stationary phase 

corresponds to a segment. On each segment and for each of the C components (labelled 1 to 

C), the series is assumed to be a sequence of random variables sharing the exact same 

distribution, in particular the same mean and the same variance. As soon as one of these 

parameters changes, a new segment starts. Formally, the C components within a given 

segment k ∈ [1, …, K] starting at time t = tk-1+1 and ending at time t = tk (with t0 = 0 and tK = 

n by convention) are modelled as sequences of Gaussian independent random variables Y(t) = 

(Y1(t), …, YC(t))T for t = 1, …, n.  

The segmentation-only model (no clustering) is written simply as  

Y (t | t∈[ tk-1+1, tk]) ~ N(µk, σk
2), with µk = 
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where µk and σ2
k are the mean vector and the variance matrix for data in segment k. As the 

model parameters to be estimated vary independently between segments, dynamic 

programming can be used to segment the multivariate signal at best in K segments. Its 
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application is straightforward in this case, as it relies on the log-likelihood of each segment, 

which is simply equal to the sum of the log-likelihoods of the C components. 

 In the segmentation-clustering model, a state m, among M possible states, is assigned to 

every segment. Segments that are classified in state m are all assumed to share the same mean 

vector µm and the same variance matrix σ2
m. More formally, let Sk, denotes the state of the 

segment k, with k = 1, …, K. Sk is a latent random variable taking values in [1, ...,  M]. It is 

modelled through a multinomial distribution of parameters π = (πm) with m = 1, …, M, where 

πm corresponds to the probability for a segment to belong to state m. The segmentation-

clustering model can therefore be written as: 

Y(t | t∈[ tk-1+1, tk], Sk = m) ~ N(µm, σ2
m), with µm = 
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As the parameters (πm, µm, σ2
m) that characterise any state m are unknown and are to be 

estimated, resulting in a mixture distribution where segments are linked in terms of 

parameters, the optimal segmentation cannot anymore be obtained using dynamic 

programming alone. Following Picard et al. (2007), we designed the following two-step 

procedure, which is iterated up to convergence.  

1. Given a set of parameters (πm, µm, σ2
m) with m = 1, …, M, the best segmentation in K 

segments is obtained using dynamic programming. 

2. Given this segmentation, the values of parameters are estimated using an expectation-

maximization algorithm which is commonly used in latent variable modelling (Dempster 

et al., 1977). 

By mixing dynamic programming and expectation-maximization through this iterative 

procedure, segmentation and clustering processes work jointly (rather than the latter after the 

former) leading to the optimal segmentation given K and M. An additional procedure for 

initialising the EM algorithm is automatically performed to solve possible convergence issues 
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(see details in Supporting information 1). Note also that this method has to be applied 

separately to data coming from different individuals because it is not designed to perform a 

joint estimation of parameters for disjoint time-series (i.e. concerning different individuals). 

Finding the optimal numbers of segments and states. For both models (segmentation-only and 

segmentation-clustering), a minimum segment length Lmin (>5 records to warrant a 

sufficiently reliable estimation of the parameters) has to be set not only to speed up the 

algorithm, but also, more fundamentally, to prevent over-segmenting, based on biological 

considerations. For example, setting Lmin to a value of a few weeks when analysing locational 

time-series will prevent the algorithm from considering an area exploited only for a few days, 

corresponding to foray outside the usual home range or to stop-over during migration, as a 

distinct home range. Similarly, setting Lmin to a value long enough (depending on the species) 

when looking for changes of behavioural modes will force the algorithm to assign a given 

behavioural bout to a given mode even when it is interspersed by ephemeral events related to 

another behaviour (e.g. a long transit with opportunistic short feeding events on the move will 

be considered as a single transit phase). The likelihood is calculated for all number of 

segments K < 0.75 n/Lmin (larger values of K may generate inconsistent results), and for any 

number of states M (<K) one wishes to consider if clustering has to be involved. In the latter 

case, the optimal values of K and M are determined as those that maximize a Bayesian 

Information Criterion (BIC; Schwarz, 1978)-based penalized likelihood (Supporting 

information 1). However, as it will be shown in the Results section, it is usually preferable to 

set the number of states M based on biologically relevant grounds than to let the model 

selection criterion determine an optimal number of states based on a statistical basis (see also 

Pohle et al. 2017). When no clustering is involved, the optimal number of segments K is 

based in agreement with Lavielle (2005) on maximizing a K-penalized likelihood curve 

(Supporting Information 1). 
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COMPUTER SIMULATIONS 

We run simulations to assess the ability of our approach to detect home range shifts and 

changes of behavioural modes from bivariate time-series, and to compare it with that of other 

(OUM-based and HMM-based) methods. For each set of parameters of each type of 

simulation, we simulated 100 replicates. Distances are expressed in arbitrary unit length u. 

Home range shifts. For simplicity, the animal was assumed to behave as a central place 

forager. We simulated its fine-scale movement as a central-place biased correlated random 

walk involving a differential klinokinetic mechanism, which results in a probability of 

presence decreasing exponentially with the distance D to the central place (Benhamou, 1989): 

at each time step, the animal turns by an angle αi drawn from a wrapped Gaussian distribution 

with a null mean and standard deviation si = s0[1+b(Di – Di-1)], with b=0.5 radian/u, and 

progresses by 1 unit length (1 u) in the new direction. The directional bias is generated by the 

modulation of si (in the range [0.5s0, 1.5s0]), which leads the animal to experience a higher 

probability to reverse its moving direction when its moves away of (Di>Di-1) than towards 

(Di<Di-1) the central place. In a batch of simulations, s0 was set to 0.5 radian, and the central 

place was first set at a given location for the first 10,000 time steps (phase 1), then shifted to 

another location by 85 u (60 u in both X and Y) for 10,000 additional time steps (phase 2), 

resulting in disjoint home ranges, and then shifted to a third location by 28 u (20 u in both X 

and Y) for 10,000 additional time steps (phase 3), resulting in overlapping home ranges. In 

another batch of simulations, the central place remained at the same location for the 30,000 

time steps, but s0 was set to 0.7 radian for time steps 10,001 to 20,000 (phase 2) and to 0.5 

radian otherwise (phases 1 and 3), involving a transitory enlargement of the home range. We 

finally sub-sampled the data sets by keeping one in every 60 locations. The home range 

phases were then defined by 166 locations each, with low serial correlation, and were thus 
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similar to actual datasets that are commonly used in home range studies. Note that in our 

approach that focuses on the contrast between the stationary phases, the actual lengths of 

these phases do not matter, provided they are longer than Lmin.  

Changes of behavioural modes. We simulated a random search movement as a correlated 

random walk where three types of activity – immobility (resting or standing), intensive (area-

concentrated) searching and extensive searching (transit) – alternate, each one lasting 20 time 

steps, this 60-step sub-series being repeated 5 times. The step lengths Li were drawn from a 

log-normal distribution with a mean equal to 0.5 u in the intensive mode or 1.0 u in the 

extensive mode, and with a standard deviation equal to 1/10th of the mean in both modes. 

Turning angles αi were drawn from a wrapped Gaussian distribution with a null mean and a 

standard deviation equal to 0.4 radian in the intensive mode or 0.3 radian in the extensive 

mode. To mimic possible factors (e.g. GPS recording noise) that can blur the contrast between 

the modes, the locations obtained in this way, as well those obtained for immobility phases, 

were submitted to bivariate Gaussian random noise with a null mean and various standard 

deviations ζ. Note that in order to assess the ability of a method to segment a behavioural 

time-series, the precise movement rules used in simulations are not important. What really 

matters is the contrast between the different phases: with a high contrast, all methods should 

work well, whereas with a low contrast, all methods should fail, whatever the movement rules 

considered. In the results section, we will present the results obtained with a standard 

deviation of the noise ζ set to 0.2, 0.3 and 0.4, involving a high, moderate and low contrast, 

respectively, between the three modes. 

 

METRICS  

For identifying home range shifts, the two signal components considered are orthonormal 

Cartesian coordinates (xi, yi) of locations (GPS locations expressed in decimal degrees as 
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longitude and latitude therefore require to be transformed in terms of easting and northing 

through a classical projection such as UTM). For identifying behavioural modes, the two 

components usually considered in HMM-based approaches are the classical metrics 

corresponding to the step lengths Li and the turning angles αi, computed from locations 

recorded at constant time intervals ∆t, and therefore acting as proxies for linear (Li/∆t) and 

angular (αi/∆t) speeds, respectively. We used such metrics for comparative purpose, but we 

also tested some variants, assumed to improve the contrast between the different modes. We 

computed the linear speed as (Li+Li+1)/(2∆t). Although this basic smoothing introduces some 

serial correlation (ρ = 0.5) which is not taken into account in our model, it should result in a 

less noisy signal. Furthermore, angular speed may show faded changes of searching modes 

because the intensive mode usually involves both a decrease in linear speed and an increase in 

path tortuosity but angular speed mechanically increases with both of them (Benhamou & 

Bovet, 1989; Barraquand & Benhamou, 2008). We therefore computed turning angles αi
* 

based on a constant step length r rather than at constant time interval. For this purpose, each 

location Xi = (Xi, Yi) is considered the centre of a virtual circle with radius r, and the entrance 

and exit locations Pen and Pex are determined through linear interpolation (Supporting 

information 2). The turning angle αi
* is then computed in [-π, π] as the angular deviation 

between vectors Pen→Xi and Xi→Pex (both with length r) rather than vectors Xi-1→Xi (with 

length Li) and Xi→Xi+1 (with length Li+1) as done to compute αi. When both Li and Li+1 are 

larger than r, one gets αi
* = αi, whereas |αi

*| tends, on average, to be larger (random search 

paths) or smaller (directed paths) than |αi| when r is larger. In our simulations, we noticed that 

using a radius larger than the median of the overall step length distribution tends to improve 

the discrimination between the fast and slow movement modes but to worsen the 

discrimination between the slow movement mode and the immobility mode. We therefore 

chose to set r to the median of the step length distribution, and accordingly used this value in 
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all our analyses. We also tested the two orthogonal signals provided by the "persistence 

speed" Li+1cos(αi)/∆t and "turning speed" Li+1sin(αi)/∆t (Gurarie et al., 2009; Gloaguen et al., 

2015). 

 

PRACTICAL IMPLEMENTATION OF THE METHOD 

Both segclust2d procedures (segmentation-only and segmentation-clustering) have been 

currently implemented for bivariate times-series (the case we considered in this paper) in an R 

package (available at cran.r-project.org/package=segclust2d). An integrated module makes it 

possible to derive the various movement variables mentioned in this paper from locations 

data. Because our approach requires large amounts of computer memory, it cannot deal with 

too long time-series (> 10000 values) on small desktop computers. It is worth noting however 

that, even in absence of any memory constraints, it is usually not a good practice to attempt to 

directly segment very long series, which encompass both very large scale phenomena (thanks 

to their large extent) and very small scales phenomena (thanks to their high resolution). 

Indeed, small-scale data are usually not relevant for analysing large-scale patterns and 

therefore act more as noise than as information in this context. For these reasons, some sub-

sampling (thinning) is automatically performed by segclust2d when necessary. Thus, in our 

home range simulations, keeping one in every 60 locations makes it possible to drastically 

shorten the time-series by eliminating fine-scale movements (klinokinetic process), which are 

characterised by a high level of serial correlation in location and in direction. Such details are 

clearly not relevant for the question of home range shifts, where only the overall phase-

dependent mean and/or the variance of locations matter (accordingly, our approach ignores 

serial correlations occurring in any stationary phase). Conversely, for fine-scale movement 

studies, the characteristics of the environment are liable to change (e.g. due to seasonal 

variations) when considering a time-series running over an extended duration, possibly 

leading to change the characteristics of the behavioural classes expected. It appears therefore 
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preferable to consider the various phases (e.g. seasons) separately rather than to attempt to 

deal with the long time-series as a whole. Finally note that the time-series to be analysed are 

assumed to be regular (no gaps). Nevertheless, some gaps in location data do not matter when 

the metrics used directly correspond to northing and easting, as they will not change their 

mean and variance. In contrast, for derived metrics such as speed or turning angle, however, 

the occurrence of missing locations may result in noticeable changes of the values obtained, 

and is therefore likely to bias the segmentation-clustering process.  

 

Results 

IDENTIFYING HOME RANGE SHIFTS 

Simulated movements. Figure 1 shows an example where the centre of the home range was 

shifted (by 85 u between phases 1 and 2, and by 28 u between phases 2 and 3), and an another 

example where the home range was enlarged during the phase 2 with respect to phases 1 and 

3. The segmentation-only procedure correctly determined that the actual number of phases 

was equal to 3 in 98 out of the 100 replicates involving shifts in mean location (i.e. central 

place), and in 88 out of the 100 replicates involving shifts in variance (i.e. change in home 

range size). In these cases, the timing of the various shifts were also correctly determined 

(mean±SD = 10152±79 and 20092±188 time steps for the 85-u and 28-u shifts in mean 

location, respectively; mean±SD = 10035±1184 and 19942±1314 time steps for the first and 

second shifts in variance of the same amplitude). In contrast, the OU-based algorithm 

"marcher", which was specifically developed by Gurarie et al. (2017) to identify home range 

shifts in mean location, requires that the number of shifts has been specified, and is unable to 

detect shifts in variance. Without initial information about the possible timing of the shifts, 

this method relies on a simple k-means procedure to get initial guesses, and was then only 

able to detect the large shift in location (mean±SD = 10152±937 time steps; the small one 
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occurred anywhere unpredictably between 15000 and 30000 time steps, based only on 75 

replicates, as the algorithm failed to provide any result for 25 replicates). However, the 

"marcher" algorithm proved able to correctly detect the two shifts in mean location (mean±SD 

= 10152±82 and 19967±239 time steps for the 85-u and 28-u shifts in mean location, 

respectively) when the actual home range centres and shift dates were provided as truly 

relevant initial guesses. 

Illustrative example. We used the GPS track of an African Elephant (Loxodonta africana), 

recorded for > 2.5 years to illustrate the way the segclust2d/segmentation-only procedure can 

identify home ranging phases and shifts. The whole time-series of easting and northing 

coordinates appeared to be stationary, and thus corresponds to a large multiannual (possibly 

lifetime) home range. At smaller scale, it also appeared to be piecewise stationary. It can 

therefore be segmented to highlight temporary (possibly seasonal) smaller home ranges and 

the shifts between them (Fig. 2). However, some of the phases so highlighted are clearly 

nonstationary. In particular, segments 1 (days 1 to 46) and 5 (days 655 to 761) correspond 

mainly to a slow south-westwards migration between the two core areas of the multiannual 

home range. Segment 2 also corresponds to a nonstationary, migratory (southwards moving) 

phase, which went through an area used as a temporary home range during segments 4 and 6. 

This indicates that a same area can be used in different ways at different periods. 

IDENTIFYING BEHAVIOURAL MODES 

Simulated movements. An example of a path with three behavioural modes (extensive 

searching, intensive searching and resting) is shown in Fig. 3 with the corresponding time-

series in terms of turning angle αi
* and smoothed speed (Li+Li+1)/(2∆t). In this example, the 

segclust2d/segmentation-clustering procedure appears able to detect the true number of modes 

(M = 3) and to attribute almost all locations to the right mode. We compared our method with 
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a HMM-based method specifically designed to deal with movement data (Michelot et al., 

2016; McClintock & Michelot, 2018) when the true number of modes has been specified. The 

results obtained from 100 replicates showed that our procedure rivals with the HMM-based 

method although the latter was helped by initial state-dependent probability distribution 

parameters which were tuned to their true values for each behavioural state (Fig. 4 with 

medium noise level ζ = 0.3). With a very low noise level (ζ < 0.2), an excellent fit was 

obtained with all methods and metrics considered, whereas with  a very high noise level (ζ > 

0.4) the percentage of correct state assignment became closer to the value expected for a 

random assignment (33%; see Supporting information 3.1 results with ζ = 0.2 and ζ = 0.4). It 

also appeared that the angular (αi/∆t) and linear (Li/∆t) speeds are suitable metrics for 

detecting behavioural changes with HMM only when the noise is not too high. With a high 

noise level, better results were obtained with both methods when using any other couple of 

metrics. The best fits were obtained with turning angle αi
* or it absolute value |αi

*| and 

smoothed speed. When the true number of modes is unknown, our method can also estimate 

this number as the most likely number of clusters, but the fraction of correct estimates is too 

low to consider the result as reliable (Supporting information 3.2). 

Illustrative example. We used a 24-h GPS track of a plains zebra (Equus quagga) to illustrate 

the way the segclust2d/segmentation-clustering procedure can identify the occurrences of the 

various movement modes (Fig. 5). Although, in this example, the most likely number of 

modes was estimated to be five, we present the segmentation obtained when setting this 

number to three, assuming that the biologically relevant modes should be resting (or any other 

non-moving behaviour such as standing), feeding and transiting (the other two modes 

detected by our procedure when using five modes were assumed to correspond to mixed 

behaviours). 
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Discussion  

We showed that the method we proposed, segclust2d, which extends the methods developed 

by Lavielle (2005) and Picard et al. (2007) to multivariate time-series, makes it possible to 

reliably detect two types of change that are of key importance when studying free-ranging 

animal movements: home range shifts, based on bivariate time-series of location coordinates 

(segmentation-only procedure), and changes of behavioural modes, based on bivariate time-

series of turning angles and speed (segmentation-clustering procedure). In any case, this new 

method is straightforward to tune: the user has just to set the minimum segment length (Lmin) 

to a biologically relevant value. Nevertheless, it proved to work at least as well as, and often 

better than, other recent methods specifically designed to deal with either home range shifts 

(Gurarie et al., 2017) or changes of behavioural modes (Michelot et al., 2016, McClintock & 

Michelot, 2018). 

Gurarie et al. (2017) developed an OU-based method to identify home range shifts in 

mean location. Using computer simulations, we compared this approach, as implemented in 

Gurarie et al.'s "marcher" algorithm, with segclutst2d/segmentation-only. Both methods are 

well able to detect large shifts in mean location. However, our method is also able to detect 

small shifts in mean location, whereas Gurarie et al.'s method requires a priori information on 

the actual mean locations and the shifts dates to correctly detect them, although this is 

precisely in this case that such information is usually lacking (i.e., they can hardly be 

guesstimated from visual inspection of the data). Furthermore, contrary to Gurarie et al.'s 

method, which can deal only with a few number of shifts which have to be specified in 

advance, our method can work with any number of shifts and is able to correctly estimate this 

number by itself in most cases. It is also able to reveal changes in home range size. Yet, to be 

efficient, our method does not require any initial guess. It simply requires specifying a 

minimum length (Lmin) for stationary phase to be called a temporary home range, shorter 
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phases being assumed to correspond to transitory exploitations of restricted areas rather than 

to home ranges. However, whereas our method considers migrations as simple breakpoints, 

Gurarie et al.'s method can estimate the duration of migrations. 

The elephant we considered in our illustrative example tended to move back and forth 

between two main areas. This kind of space use is common in migrating birds that commute 

between reproductive and wintering home ranges. However, there are numerous studies 

showing more complex patterns, with an animal setting several distinct temporary home 

ranges successively (Naidoo et al., 2012; Benhamou, 2014; Cagnacci et al., 2016; Couriot et 

al. 2018). The segmentation of a long piecewise locational time-series in phases 

corresponding to temporary home ranges opens promising perspectives to understand how the 

occurrences and durations of home ranges are related to environmental co-variates, which is a 

prerequisite to infer long-term consequences for population distribution (Mueller & Fagan, 

2008). The elephant illustrative example also shows that, although the model underlying 

segclust2d looks for stationary phases, there is no guarantee that all segments obtained are 

really stationary. This occurs because changes of stationary phases are modelled as 

breakpoints but may in fact correspond to slow progressive changes. 

 Since the pioneering paper by Morales et al. (2004), HMM-based methods have often 

been considered the best way to detect changes of behavioural modes of remotely tracked 

animals. An alternative approach was proposed by Barraquand & Benhamou (2008). It 

consisted in computing the series of residence time within a virtual circle running along the 

path and to search for the most likely breakpoints using Lavielle (2005)'s univariate 

segmentation method. However, although the residence time provides a simple and reliable 

univariate signal easy to segment and interpret, the values obtained depend not only on the 

type of behaviour that is performed but also on how long it is performed, preventing the 

segments corresponding to the same behaviour from being easily clustered. In the present 

study, we show using computer simulations that the segclust2d/segmentation-clustering 
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procedure rivals (and can even outperform) a HMM-based method initialised with state-

dependent probability distribution parameters tuned to their true values for the different 

behavioural modes. With actual data, as the true values of parameters are usually unknown, 

our method, which does not require any initial guess, should have a clear advantage over the 

HMM-based method. It is worth noting that the best results were obtained with the joint use 

of metrics other than linear and angular speeds, such as smoothed speed and turning angle 

measured at constant step length, which were expected to improve the contrast between the 

intensive and extensive searching modes. Interestingly, using absolute rather than signed 

values of turning angles measured at constant step length works at best with our method 

whereas right and left turns were balanced in any mode in our simulated movements. Such 

metrics should be particularly useful to distinguish between intensive and extensive modes 

when the former involves turning systematically right or left, i.e. characterised by markedly 

either negative or positive mean turning angles, whereas the latter involves balanced turning, 

as occurs in some species (e.g. Smith, 1974). As it results also in a reliable identification 

when turns are balanced in both intensive and extensive searching, we recommend using it 

systematically when using our method to distinguish between extensive and intensive 

searching phases. 

In the illustrative example on zebra's movements, five behavioural modes were 

detected by the segclust2d/segmentation-clustering procedure in the time-series of smoothed 

speed and absolute value of the turning angles measured at constant step length. Nevertheless, 

based on behavioural observations, we chose to segment the time-series with only three 

modes assumed to correspond to immobility, feeding and transit. Indeed, although our method 

can estimate the number of states based on a statistical criterion, it turns out in the computer 

simulations that this number was poorly estimated, despite the behavioural modes were 

clearly defined in this case. With actual data, there can be some mixing between modes, for 

instance transit and opportunistic feeding at some times, so that the estimation of the number 
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of relevant modes may become unreliable. Thus, we recommend using the capacity of the 

segclust2d/ segmentation-clustering procedure to estimate the number of states only when this 

number cannot be fixed a priori based on biological arguments. A similar conclusion was 

reached by Pohle et al. (2017) for HMM-based methods. It is also worth noting that feeding 

and resting can be distinguished based on movement characteristics only in animals which 

have to move significantly (with respect to the location recording noise) to feed. For animals 

which feed mainly without markedly moving, such as some browser herbivores and carcass-

eating carnivores, ancillary activity data, such as those provided by on-board accelerometers, 

are required to distinguish these two behavioural modes. As our method can work conjointly 

on any number of time-series of any nature, future implementation could integrate activity 

(accelerometer-based) time-series for a better identification of resting vs. active phases. 

 The segmentation of piecewise stationary time-series, possibly complemented by the 

clustering of the resulting segments into functional classes, is key to understanding the 

dynamics of underlying processes. Based on bivariate time-series of metrics such as easting 

and northing (home range shift studies), or speed and turning angles (movement mode 

studies), segclust2d has the potential to facilitate discovery in the field of movement ecology 

(e.g. see Thaker et al. 2019). It is worth noting that this approach is not restricted to studies of 

home-range shifts or of changes of movement modes. For example, the segmentation-only 

procedure can be used for highlighting marked changes in moving direction by segmenting 

the joint series of corresponding cosines and sines. If necessary, this approach can potentially 

apply to more dimensions as well, so as to consider ancillary variables such as activity and 

other metrics such as distance to a nest, proxies of habitat quality, or any other variable that 

may be relevant when studying animal movements. As it can deal with two or more variables 

of any nature, our approach should be useful not only in movement ecology but also in many 

other fields, using appropriate metrics.  
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A theoretical limitation of our approach is that the metrics used are assumed to result 

in Gaussian and independent (for a given segment) values. The normality assumption makes 

computations easier but other distributions can be considered (Cleynen et al., 2014). For 

segmentation-only, deviation of the data from normality is not problematic, as the cost of 

additional segments, based on the log-likelihood when assuming normality, can be interpreted 

more generally (i.e. for any distribution) as a contrast based on mean and variance. For 

segmentation-clustering, the way deviation from normality may affect the results remain 

unclear. Furthermore, dynamic programing cannot be directly applied when some dependence 

is considered in this framework, even if some possibilities have recently emerged (Chakar et 

al., 2017). However, computer simulations showed that our method is quite robust to 

violations of these assumptions. Thus, in home range shift study, despite northings and 

eastings showed a large serial correlation (even after subsampling; see Fig. 1a,b) and were not 

normally distributed, our method was nevertheless able to correctly detect the small shift in 

mean location in 98% of replicates. Our method was also able to perform an efficient 

segmentation-clustering in the movement mode study, despite a serial correlation (r=0.5) was 

mechanically introduced when considering the smoothed rather than usual speed, and the 

speed (drawn from a log-normal distribution) and the turns obtained for resting phases (and 

for any phase when turns were taken in absolute value) were not normally distributed. Some 

mathematical transformations may be used to attempt to normalise the data. However, using a 

log-transformed speed, which should a priori look like more Gaussian, did not improve the 

segmentation (results not shown), probably because the smoothing over two steps as well as 

the noise that affects the locations tend to distort the initial distribution. The choice of the 

metrics used should therefore first favour those that appear as being the easiest to interpret in 

terms of biological significance and the most able to give birth to piecewise stationary time-

series (i.e. the most likely to reveal the occurrence of a breakpoint between two successive 

phases). The question of normality and independence certainly matters, but to a lesser extent. 
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For home range shift studies, northings and eastings appear to be the obvious choice. For 

movement mode studies, the smoothed speed and the absolute value of turns at constant step 

length, which characterise the movement in terms of temporal and spatial component 

separately, and seem able to maximize the contrast between the various modes when the 

recording noise is high, are certainly the two metrics to consider first. 
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Captions 

 

Fig. 1. Examples of application of the segclus2d/segmentation-only procedure to 

highlight home range phases and shifts in simulated movements. Top panels show the 

simulated paths (after 1/60 subsampling) corresponding to three home range phases (two 

shifts), either in mean location (a) or in variance (b). The corresponding time-series for both 

location coordinates (x, y) are presented in panel (c) and (d), respectively. The horizontal 

colour bars running along the time axis show the true occurrences of the three phases, 

whereas the coloured bands appearing over the x and y signals show their occurrences as 

estimated using the segclust2d/segmentation-only method with Lmin = 45 locations 

(corresponding to 2700 time steps because of the 1/60 subsampling) and provide the 

estimated mean (plain horizontal line running in the middle of the band) ± standard deviation 

(band width) for each segment separately. 

 
Fig. 2. Example of application of the segclust2d/segmentation-only procedure to 

highlight home range phases and shifts in an African elephant's movement recorded 

over 1000 days. (a) Rough path representation obtained by linking the locations subsampled 

so as to keep a single GPS location per day; (b) Corresponding time-series of locations 

coordinates (easting and northing). The coloured bands appearing over the time-series show 

the estimated mean (plain horizontal line running in the middle of the band) ± standard 

deviation (band width) of each of the seven segments obtained using the segmentation-only 

method with Lmin = 30 days. 
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Fig. 3. Example of application of the segclust2d/segmentation-clustering procedure to 

highlight behavioural changes in a simulated movement. (a) Simulated path as a 

composite correlated random walk, incorporating an additional noise with standard deviation 

ζ = 0.3 u that affects locations; (b) Determination using BIC-based penalised likelihood of the 

most likely numbers of states (M = 3) and segments (K = 15) (big orange dot), and of the most 

likely number of segments for the other three numbers of states considered (large squares at 

the top of the curves). (c) Corresponding time-series in terms of absolute turning angle 

computed with a constant step length, |αi
*|, and smoothed speed, (Li+Li+1)/(2∆t), segmented 

with Lmin = 10 and M = 3; the coloured bands appearing over the two time-series show the 

estimated occurrences and mean (plain horizontal line running in the middle of the band) ± 

standard deviation (band width) for each of the three movement modes whereas the horizontal 

colour bars running along the time axis show the true occurrences of these modes. 

 

Fig. 4. Comparative performances of the segclust2d/segmentation-clustering procedure 

vs. a HMM-based method for highlighting behavioural changes. The boxplots show the 

proportion of correct state assignments, obtained for various bivariate signals when the true 

number of states is known (M = 3), as estimated from 100 replicates simulated with the same 

parameters as to the one illustrated in Fig. 3 (noise ζ = 0.3). The star (*) indicates turning 

angles computed with a constant step length, in terms of arithmetic (αi
*) or absolute (|αi

*|) 

values. The white boxplots show the results obtained with HMM-based R package 

momentuHMM (McClintock & Michelot 2018), with initial state-dependent probability 

distribution parameters tuned to their true values for the different states (using the following 

distributions: Gaussian for persistence and turning speeds, Li+1cos(αi)/∆t and Li+1sin(αi)/∆t, 

wrapped Cauchy for angular speed αi/∆t and turning angle αi
*, Weibull for linear speed Li/∆t, 

smooth speed (Li+Li+1)/(2∆t), and absolute value of turning angle |αi
*|). The grey boxplots 

shows the results obtained using the segclust2d/segmentation-clustering procedure with Lmin = 

10. 



31 

Fig. 5: Example of application of the segclust2d/segmentation-clustering procedure to 

highlight behavioural changes in a 24-h zebra's movement. (a) Path representation 

obtained by linking GPS locations recorded every 8 minutes; (b) Determination using BIC-

based penalised likelihood of the most likely numbers of states (M = 5) and segments (K = 

20) (big orange dot), and most likely numbers of segments for the other number of states 

considered (large squares at the top of the curves), with Lmin = 5 (i.e. 40 min.). (c) 

Corresponding time-series in terms of absolute turning angle computed with a constant step 

length, |αi
*|, and smoothed speed, (Li+Li+1)/(2∆t), segmented with M = 3 (leading to K = 15); 

the coloured bands appearing over the two time-series show the estimated occurrences and 

mean (plain horizontal line running in the middle of the band) ± standard deviation (band 

width) for each of the three clusters considered. 


