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Morse shellings and compatible discrete Morse functions

Introduction

We recently [START_REF] Salepci | Tilings, packings and expected Betti numbers in simplicial complexes[END_REF] introduced a notion of tilings of finite simplicial complexes which are partitions of their geometric realizations by tiles. A tile is a maximal simplex deprived of several facets, that is of several codimension one faces. In each dimension n, there are thus n + 2 different tiles up to affine isomorphism, denoted by T n 0 , . . . , T n n+1 depending on the number of facets that have been removed, and the closed simplex itself is one of them, namely T n 0 , while the open simplex is another one, namely T n n+1 . Not all simplicial complexes are tileable, but skeletons and barycentric subdivisions of tileable ones are tileable by Theorem 1.9 of [START_REF] Salepci | Tilings, packings and expected Betti numbers in simplicial complexes[END_REF]. The boundary of any convex simplicial polytope is tileable, even shellable, by [START_REF] Bruggesser | Shellable decompositions of cells and spheres[END_REF], and the product of any sphere with a torus of positive dimension carries tileable triangulations which cannot be shelled by [START_REF] Welschinger | Morse shellings on products[END_REF], see §2.3. These tilings provide a geometric way to understand the h-vectors of finite tileable simplicial complexes, see [START_REF] Fulton | Introduction to toric varieties[END_REF][START_REF] Stanley | The upper bound conjecture and Cohen-Macaulay rings[END_REF][START_REF] Ziegler | Lectures on polytopes[END_REF] for a definition. Namely, if h n k denotes the number of tiles T n k needed to tile a complex K, then (h n 0 , . . . , h n n+1 ) coincides with the h-vector of K provided that h n 0 = 1 and in general, two tilings of K have the same h-vector (h n 0 , . . . , h n n+1 ) provided they have the same number 1 of tiles T n 0 , see Theorem 1.8 of [START_REF] Salepci | Tilings, packings and expected Betti numbers in simplicial complexes[END_REF]. These tilings also appeared to be useful to produce packings by disjoint simplices of the successive barycentric subdivisions Sd d (K), d > 0, see § 5 of [START_REF] Salepci | Tilings, packings and expected Betti numbers in simplicial complexes[END_REF]. They actually moreover seemed to be closely related to the discrete Morse theory of Robin Forman [START_REF] Forman | Morse theory for cell complexes[END_REF] even though this aspect has not been investigated in [START_REF] Salepci | Tilings, packings and expected Betti numbers in simplicial complexes[END_REF]. The tiles T n 0 behaved as critical points of index zero, the tiles T n n+1 as critical points of index n of a Morse function and the other ones as regular points. No analog though of critical points of intermediate indices. We now fill this gap.

We define a Morse tile to be a closed simplex deprived of several facets together with a unique face of possibly higher codimension. It is critical if and only if this codimension is maximal, see Definition 2.4. A Morse tiling of a finite simplicial complex K is a partition by Morse tiles such that for every j ≥ 0, the union of tiles of dimension greater than j is a simplicial subcomplex, see Definition 2.8. The previous notion of tiling, due to its relation with h-vectors, is now called h-tiling and slightly generalized to allow for tiles of various dimensions, see Definition 2.11. A Morse tiling on K is moreover said to be shellable iff K admits a filtration ∅ = K 0 ⊂ K 1 ⊂ . . . ⊂ K N = K by simplicial subcomplexes such that for every i ∈ {1, . . . , N }, K i \ K i-1 consists of a single Morse tile, see Definition 2.14. Replacing Morse tiles by basic tiles in this definition, we recover the classical notion of shellability, see Lemma 2.15, without some non-emptiness assumption though, see Remark 2.16 and [START_REF] Kozlov | Combinatorial algebraic topology[END_REF][START_REF] Ziegler | Lectures on polytopes[END_REF] for instance. These definitions actually extend to a larger class of sets, the Morse tileable or shellable sets, see subsections 2.2 and 2.3. We prove the following tiling theorem, see Corollary 2.10, Corollary 2.21 and Theorem 2.18.

Theorem 1.1. Skeletons and barycentric subdivisions of Morse tileable (resp. shellable) sets are Morse tileable (resp. shellable). Moreover, every Morse tiling on such a set induces Morse tilings on its barycentric subdivisions containing the same number of critical tiles with the same indices.

This tiling theorem relies in particular on the fact that the first barycentric subdivision of a Morse tile is itself a disjoint union of Morse tiles, see Theorem 2. [START_REF] Stanley | The upper bound conjecture and Cohen-Macaulay rings[END_REF]. Given a Morse tiling on a finite simplicial complex K, we also deduce packings by disjoint simplices in its successive barycentric subdivisions, see Proposition 2.24. Such packings were used in [START_REF] Salepci | Tilings, packings and expected Betti numbers in simplicial complexes[END_REF] to improve upper estimates on the expected Betti numbers of random subcomplexes.

We then associate to every Morse tiling a set of discrete vector fields, in the sense of Robin Forman [START_REF] Forman | Morse theory for cell complexes[END_REF][START_REF] Forman | A user's guide to discrete Morse theory[END_REF], which are compatible with the tiling. Their critical points are in one-to-one correspondence with the critical Morse tiles, see subsection 3.2. Moreover, due to Theorem 9.3 of [START_REF] Forman | Morse theory for cell complexes[END_REF], these vector fields are gradient vector fields of discrete Morse functions provided they have no non-stationary closed paths, see subsection 3.1. We provide a criterium for the latter condition to be satisfied, Theorem 3.14, that applies to Morse shellable complexes.

We thus get, see Corollary 3.15.

Theorem 1.2. Any discrete vector field compatible with a Morse shelling on a finite simplicial complex is the gradient vector field of a discrete self-indexing Morse function whose critical points are in one-to-one correspondence with the critical tiles of the shelling, preserving the index.

Such a relation with discrete Morse theory is well known in the case of shellings, see for instance [START_REF] Chari | On discrete Morse functions and combinatorial decompositions[END_REF]. However, this result applies to all triangulations of closed manifolds in dimension one and two. Indeed, Theorem 1.3. Every closed triangulated manifold of dimension less than three is Morse shellable.

Moreover it applies to all closed three-manifolds for some of their triangulations.

Theorem 1.4. Every closed manifold of dimension less than four carries a Morse shellable triangulation. Moreover given any smooth Morse function on the manifold, there exists a Morse shelled triangulation whose number of critical tiles coincides with the number of critical points of the function, in any index.

Not every Morse tiling shares the property given by Theorem 1.2 and not every simplicial complex is Morse tileable, see subsection 3.7. It would be of interest to find a triangulation of a closed manifold which is not Morse tileable. By [START_REF] Welschinger | Shellable tilings on partial simplicial complexes and their h-vectors[END_REF], every triangulation becomes Morse shellable after finitely many stellar subdivisions at maximal simplices. Given a Morse tiling on a closed triangulated manifold, there are many different compatible discrete vector fields and thus many associated discrete Morse functions in the case of Theorem 1.3 and Theorem 1.4, but they all have the same number of critical points with same indices. These critical points are in one-to-one correspondence with the critical tiles of the tiling, preserving the index. Such a Morse tiling thus provides an efficient way to bound the topology of the manifold.

Corollary 1.5. Let X be a closed triangulated n-manifold equipped with a Morse tiling T admitting a compatible discrete Morse function. Then, each Betti number b k (X) of X is bounded from above by the number of critical tiles c k (T ) of index k of T and the Morse inequalities hold true, namely k i=0 (-1)

k-i b i (X) ≤ k i=0 (-1) k-i c i (T ) for every 0 ≤ k ≤ n with equality if k = n.
A Morse shelling on a finite simplicial complex induces in fact two spectral sequences which converge to the (co)homology of the complex and whose first pages are free modules over the critical tiles of the shelling, see [START_REF] Welschinger | Spectral sequences of a Morse shelling[END_REF]. It would be of interest to extend Theorem 1.4 to all dimensions. We also actually do not know which are the closed three-manifolds that admit h-tileable triangulations, see subsection 3.7.

The second section of this paper is devoted to Morse tiles and tilings with the proof of Theorem 1.1 while the third one is devoted to discrete Morse theory and the proofs of Theorem 1.2, Theorem 1.3, Theorem 1.4 and Corollary 1.5.

Morse tilings 2.1 Morse tiles

Let us recall that an n-simplex is the convex hull of n + 1 points affinely independent in some real affine space and that the standard n-simplex ∆ n is the one spanned by the standard affine basis of R n+1 , see [START_REF] Munkres | Elements of algebraic topology[END_REF]. These are all isomorphic one to another by some affine isomorphism. A face of a simplex is the convex hull of a subset of its vertices.

For every n > 0 and every k ∈ {0, . . . , n + 1}, we set

T n k = ∆ n \ (σ 1 ∪ . . . ∪ σ k )
, where (σ i ) i∈{1,...,n+1} denote the facets of ∆ n , that is its codimension one faces. In particular, the tile T n n+1 is the open n-simplex

• ∆n and T n 0 = ∆ n is the closed one. These standard tiles were introduced in [START_REF] Salepci | Tilings, packings and expected Betti numbers in simplicial complexes[END_REF] and one of their key properties is the following. Proposition 2.1 (Proposition 4.1 of [START_REF] Salepci | Tilings, packings and expected Betti numbers in simplicial complexes[END_REF]). For every n > 0 and every k ∈ {0, . . . , n + 1},

T n+1 k is a cone over T n k , deprived of its apex if k = 0. Moreover, T n+1 k is a disjoint union T n+1 n+2 T n k T n k+1 . . . T n n+1 . In particular, the cone T n+1 k deprived of its base T n k is T n+1 k+1 . Proof. If k = 0, T n+1 0 = ∆ n+1 = c * T n 0 , where c denotes a vertex of ∆ n+1 . If k > 0, T n k = ∆ n \ (σ 1 ∪ . . . ∪ σ k ) by definition
, where σ i is a facet for every i ∈ {1, . . . , k}, and so Definition 2.2. A basic tile is a subset of a simplex isomorphic to a standard tile T n k via some affine isomorphism. The integer n ≥ 0 is the dimension of the tile while k ∈ {0, . . . , n + 1} is the order of the tile.

(c * T n k )\{c} = (c * ∆ n )\((c * σ 1 )∪. . .∪(c * σ k )). However, c * ∆ n = ∆ n+1 and θ i = c * σ i is an n- simplex, i ∈ {1, . . . ,
The j-skeleton of a tile T n k is by definition the intersection of the j-skeleton of ∆ n with T n k ⊂ ∆ n . Proposition 2.1 provides a partition of the (n -1)-skeleton of T n k by basic tiles and by induction it provides a partition of all its skeletons by basic tiles of the corresponding dimensions. Proposition 2.3. For every n ≥ 0, every 0 ≤ k ≤ n + 1 and every j ∈ {k -1, . . . , n}, any partition of the j-skeleton of T n k given by Proposition 2.1 contains only tiles of order ≥ k. Moreover, it contains a unique tile of order k which is the trace of a j-dimensional face of

∆ n with T n k . If j < k -1, the j-skeleton of T n k is empty.
Proof. This result is given by Proposition 2.1 when j = n -1 and T n-1 k is indeed the trace of a facet of ∆ n with T n k , since it is the intersection of the subcomplex

T n-1 0 . . . T n-1 k of ∆ n with T n k , while T n-1 0 . . . T n-1 k-1 is disjoint from T n k .
The result then follows from Proposition 2.1 and a decreasing induction in general.

Let now τ be a face of ∆ n not contained in σ 1 ∪ . . . ∪ σ k and let l be its dimension, so that k ≤ l + 1 ≤ n. We set T n,l k = ∆ n \ (σ 1 ∪ . . . ∪ σ k ∪ τ ), it is uniquely defined by k, l, n up to permutation of the vertices of ∆ n . Definition 2.4. A Morse tile is a subset of a simplex isomorphic to T n,l k , 0 ≤ k ≤ l+1 ≤ n, via some affine isomorphism. It is critical when l = k -1 and k is then said to be its index while it is regular otherwise.

For every n ≥ 0 and every k ∈ {0, . . . , n}, we also denote the critical Morse tile

T n,k-1 k of index k by C n k and observe that T n,n-1 k = T n k+1 , while T -1 0 = ∅ by convention. In the case k = 0, C n 0 = ∆ n is the standard n-simplex while C n n
is the standard open n-simplex. The next lemma computes the contribution of each tile to the Euler characteristic of a tiled simplicial complex. Recall that the Euler characteristic is additive and may be computed with respect to the cellular structure of the simplicial complex, given by open simplices.

Lemma 2.5. For every

0 ≤ k ≤ n, χ(C n k ) = (-1) k . Likewise, for every 0 ≤ k ≤ l ≤ n -1, χ(T n k \ T l k ) = 0. Proof. If k = 0, T n k = C n 0 is the standard simplex ∆ n , so that χ(T n k ) = 1. If k = n + 1, T n k = C n n is the open simplex, so that χ(T n k ) = (-1) n . For every n ≥ 1, T n 1 = T n 0 \T n-1 0 has vanishing Euler characteristic. By Proposition 2.1, for every n ≥ 2, T n 2 = T n 0 \ (T n-1 0 T n-1 1 ) satisfies χ(T n 2 ) = χ(T n 0 ) -χ(T n-1 0 ) -χ(T n-1 1
) = 0. Then, by induction on k, for every k ≥ 1 and every n ≥ k, T n k = T n 0 \ (T n-1 0 . . . T n-1 k-1 ) has vanishing Euler characteristic so that any basic tile has vanishing Euler characteristic unless it is isomorphic to an open or a closed simplex. Then, for every 0

< k < n, χ(C n k ) = χ(T n k ) -χ(T k-1 k ) = 0 -(-1) k-1 = (-1)
k by definition and the additivity of the Euler characteristic. Likewise for every 0 ≤ k ≤ l ≤ n-1, χ(T n,l n ) = χ(T n k )-χ(T l k ) = 0. Proposition 2.6. For every 0 ≤ k ≤ j ≤ n, the j-skeleton of C n k admits a partition by basic tiles isomorphic to T j l with l > k and a unique critical Morse tile isomorphic to C j k . This skeleton is empty if j < k. Likewise, for every 0 ≤ k ≤ l < n -1, the j-skeleton of T n,l k is empty if j < k, admits a partition by basic tiles isomorphic to T j m with m > k if k ≤ j ≤ l together with a unique tile isomorphic to

T j,l k if l < j ≤ n. Proof. By definition, C n k = T n k \ T k-1 k
and by Proposition 2.3, the j-skeleton of T n k is empty if j < k -1 and admits a partition by basic tiles isomorphic to T j l , l ≥ k, with a unique tile of order k. The latter contains the unique (k -1)-dimensional tile of order k. The j-skeleton of C n k thus inherits a partition by tiles isomorphic to T j l with l > k and a tile isomorphic to

T j k \ T k-1 k = C j k .
In particular, it is also empty if j = k -1 by Proposition 2.3. Likewise, T n,l k = T n k \ T l k and by Proposition 2.3, the l-skeleton of T n k admits a partition by basic tiles isomorphic to T l m with m ≥ k, the tile of order k being unique. The l-skeleton of T n,l k thus inherits a partition by basic tiles of order m > k. It then follows from Proposition 2.3 that the same holds true for the j-skeleton of T n,l k with j ≤ l, these skeletons being empty if j < k. Finally, if j > l, we deduce from Proposition 2.3 that the j-skeleton of T n,l k admits a partition by tiles isomorphic to T j m with m > k and a tile isomorphic to T j k \ T l k = T j,l k . Hence the result.

Proposition 2.7. For every

0 < k < n, (c * C n k ) \ {c} = T n+1,k k . Moreover, this cone deprived of its base C n k is C n+1 k+1 . Similarly, for every k ≤ l ≤ n-1, (c * T n,l k )\{c} = T n+1,l+1 k and if this cone is deprived of its base T n,l k , it is T n+1,l+1 k+1 . Proof. By definition, C n k = T n k \ T k-1 k , so that (c * C n k \ {c}) = (c * T n k ) \ (c * T k-1 k ) = T n+1 k \ T k k = T n+1,k k . If the cone is deprived of its base, it gets T n+1 k+1 \ T k k+1 = C n+1 k+1 . Similarly, (c * T n,l k ) \ {c} = (c * T n k ) \ (c * T l k ) = T n+1 k \ T l+1 k = T n+1,l+1 k .
And if the cone is deprived of its base T n,n k , we get T n+1 k+1 \ T l+1 k+1 = T n+1,l+1 k+1 .

Morse tilings

We now introduce Morse tilings of finite simplicial complexes, or more generally of Morse tileable sets. For a definition of simplicial complexes, see for instance [START_REF] Munkres | Elements of algebraic topology[END_REF]. The relation between Morse tilings and discrete Morse theory is discussed in section 3.

Definition 2.8. A subset S of a finite simplicial complex K is said to be Morse tileable iff it admits a partition by Morse tiles such that for every j ≥ 0, the union of tiles of dimension greater than j is the intersection with S of a simplicial subcomplex of K. It is Morse tiled iff such a partition, called a Morse tiling, is given. The dimension of S is then the maximal dimension of its tiles.

The dimension of a Morse tileable set does not depend on the tiling, for it is also the maximal dimension of the open simplices contained in S. The trivial partition of a simplicial complex by open simplices is thus not a Morse tiling, though open simplices are Morse tiles. Recall that Proposition 2.1 provides in particular a partition of the boundary ∂∆ n+1 which contains each basic tile T n k exactly once, k ∈ {0, . . . , n + 1}. This is a Morse tiling of a triangulated sphere, even an h-tiling by Definition 2.11, with one critical tile of index 0 and one critical tile of index n. Theorem 1.4 provides in particular Morse tileable triangulations on every closed manifold of dimension less than four. Definition 2.9. Let S be a Morse tiled set. A subset S of S is said to be a Morse tiled subset iff it is a union of Morse tiles and there exists a subcomplex L of a finite simplicial complex K such that S ⊂ K and S = S ∩ L.

By definition thus, if S is a Morse tiled set, then for every j ≥ 0, the union of its tiles of dimension greater than j is a Morse tiled subset of S.

Corollary 2.10. Let S be a Morse tileable set. Then, all its skeletons are Morse tileable. Moreover, given a Morse tiling on S, there exist Morse tilings on its skeletons S (i) , i ≥ 0, such that every tile of S (i) is contained in a tile of S (i+1) . Proof. By definition, S is a subset of a finite simplicial complex K. Let n be the dimension of S and let a Morse tiling be given. By Proposition 2.3 and Proposition 2.6, the (n -1)skeleton of every n-dimensional tile of S admits a partition by Morse tiles. Then, the union of tiles of S of dimension less than n with the ones given by these partitions induces a partition of S (n-1) with tiles which are either tiles of S (n) = S or contained in such tiles. Moreover, by construction, for every j ∈ {0, . . . , n -1}, the union of tiles of dimension greater or equal to j in this partition is the intersection of K (n-1) with the union of tiles of dimension greater or equal to j in S. Since the latter is by definition the intersection with S of a subcomplex L of K, the former is the intersection with S of the complex of L (n-1) , so that S (n-1) is Morse tileable. The result is then obtained by induction, replacing S with S (n-1) .

We prove in subsection 2.4 that the first barycentric subdivision of a Morse tileable set is also Morse tileable, see Corollary 2.21, so that the class of Morse tileable sets is stable under barycentric subdivisions and skeletons, proving Theorem 1.1. We already introduced in [START_REF] Salepci | Tilings, packings and expected Betti numbers in simplicial complexes[END_REF] a notion of tileable simplicial complexes sharing the same properties. Let us recall and slightly generalize this subclass of Morse tileable simplicial complexes. Definition 2.11. A subset S of a finite simplicial complex K is said to be h-tileable iff it admits a partition by basic tiles such that for every j ≥ 0, the union of tiles of dimension greater than j is the intersection with S of a simplicial subcomplex of K. It is h-tiled iff such a partition, called an h-tiling, is given. Definition 2.11 extends the definition given in § 4.2 of [START_REF] Salepci | Tilings, packings and expected Betti numbers in simplicial complexes[END_REF] where only simplicial complexes and basic tiles of the same dimension are admitted. Such a tiling is now called an h-tiling to avoid confusion with Morse tilings and due to its close relation with h-vectors discussed in § 4.2 of [START_REF] Salepci | Tilings, packings and expected Betti numbers in simplicial complexes[END_REF], see subsection 2.5.

Corollary 2.12. Let S be an h-tileable set. Then, all its skeletons are h-tileable. Moreover, given an h-tiling on S, there exist h-tilings on its skeletons S (i) such that every tile of S (i) is contained in a tile of S (i+1) . Corollary 2.13. Let S be an h-tileable set, then so is its first barycentric subdivision Sd(S).

The proofs of Corollary 2.12 and Corollary 2.13 have already been given in [START_REF] Salepci | Tilings, packings and expected Betti numbers in simplicial complexes[END_REF] in the case only simplicial complexes and tiles of the same dimension are involved. Since they are similar to the ones of Corollary 2.10 and Corollary 2.21, we do not repeat them.

Morse shellability

We now introduce another subclass of Morse tileable sets, the Morse shellable ones, which plays a role in section 3 and contains shellable simplicial complexes. Definition 2.14. A subset S of a finite simplicial complex K is said to be Morse shellable (resp. shellable) iff there exists a Morse tiling on S and a filtration ∅ = S 0 ⊂ S 1 ⊂ . . . ⊂ S N = S by Morse tiled subsets of S such that for every i ∈ {1, . . . , N }, S i \ S i-1 is a single Morse tile (resp. basic tile).

A finite simplicial complex K is classically said to be shellable iff there exists an ordering σ 1 , . . . , σ N of its maximal simplices such that for every i ∈ {2, . . . , N }, σ i ∩ (∪ i-1 j=1 σ j ) is nonempty and of pure dimension dim σ i -1, see Definition 12.1 of [START_REF] Kozlov | Combinatorial algebraic topology[END_REF] for instance. This means that each simplex σ 1 , . . . , σ N is not a proper face of a simplex in K and every simplex in

σ i ∩ (∪ i-1 j=1 σ j ), i ∈ {2, . . . , N }, is a face of a (dim σ i -1)
-dimensional one in this intersection. Definition 2.14 extends this classical notion of shellability. Indeed.

Theorem 2.15. A finite simplicial complex is shellable in the sense of Definition 2.14 iff there exists an ordering σ 1 , . . . , σ N of its maximal simplices such that for every i ∈ {2, . . . , N }, σ i ∩ (∪ i-1 j=1 σ j ) is either empty or of pure dimension dim σ i -1.

Proof. Let K be a finite simplicial complex which is shellable in the sense of Definition 2.14. There exists then a filtration

∅ = K 0 ⊂ K 1 ⊂ . . . ⊂ K N = K of K by finite simplicial complexes together with an h-tiling on K such that for every i ∈ {1, . . . , N }, K i \ K i-1 is a single basic tile T i . Let σ i be the closure of T i in K. Then, σ i ∩ (∪ i-1 j=1 σ j
) is either empty or of pure dimension dim σ i -1 by Definition 2.2. Moreover, σ i cannot be a proper face of a simplex in K by Definition 2.11, since otherwise the union of tiles of dimensions greater than dim σ i would not be a simplicial subcomplex of K.

Conversely, let us now assume that there exists an ordering σ 1 , . . . , σ N of the maximal simplices of a simplicial complex K such that for every i ∈ {2, . . . , N }, σ i ∩ (∪ i-1 j=1 σ j ) is either empty or of pure dimension dim σ i -1. This means that σ i ∩ (∪ i-1 j=1 σ j ) is a union of facets of σ i so that T i = σ i \ (∪ i-1 j=1 σ j ) is a basic tile. These tiles provide a partition of K and we have to prove that for every j ≥ 0, the union of tiles of dimension greater than j is a simplicial subcomplex of K. We proceed by induction on i ∈ {1, . . . , N }. For i = 1, there is nothing to prove. Assume now that the union i-1 j=1 T j is an h-tiling of K i-1 . Then, each open facet of σ i has to be contained in a tile of dimension at least dim σ i in K i-1 , since otherwise it would be the interior of one of the tiles T j , j < i, and σ j would be a proper face of σ i , a contradiction. Since by induction the union of tiles of dimensions at least dim σ i in K i-1 is a simplicial subcomplex of K i-1 , the same holds true then for the union of tiles of dimensions at least dim σ i in K i , which is a simplicial subcomplex of K i . The result follows.

Remark 2.16. The proof of Lemma 2.15 actually gives more, namely that any shelling of a simplicial complex ∅ = K 0 ⊂ K 1 ⊂ . . . ⊂ K N = K in the sense of Definition 2.14 provides a shelling σ 1 , . . . , σ N in the classical sense and vice-versa, where for every i ∈ {1, . . . , N }, σ i is the closure of the tile K i \ K i-1 and where however the non-emptiness condition in the classical definition of shelling has been removed. The latter allows for the underlying topological space |K| not to be connected, but it also allows for slightly more shellings, since an open one-dimensional simplex may connect two different shellings as in Figure 1.

These are the only new kinds of shellings though, since for all other basic tiles, the union of missing facets is connected. We may now revisit Proposition 2.3 and Proposition 2.6.

Lemma 2.17. The codimension one skeletons of Morse tiles are Morse shellable.

Proof. The (n-1)-skeleton of a closed n-simplex is well known to be shellable. A shelling is given by Proposition 2.1, where the order of the simplices of ∂∆ n = T n-1 0 . . . T n-1 n is given by the order of the tiles in the sense of Definition 2.2. If the Morse tile is basic, isomorphic to T n k , then by Proposition 2.1, the (n -1)-skeleton of

T n k is shelled by T n-1 k . . . T n-1 n
, again ordering the tiles by increasing order in the sense of Definition 2.2. Finally, if the Morse tile is not basic, isomorphic to

T n,l k = T n k \ T l k with k -1 ≤ l < n -1, the (n -1)- skeleton of T n,l k is likewise shelled by T n-1,l k T n-1 k+1 . . . T n-1 n .
Theorem 2.18. Let S be a Morse shellable set. Then, all its skeletons are Morse shellable. Moreover, given a Morse shelling on S, there exist Morse shellings on its skeletons S (i) , i ≥ 0, such that every tile of S (i) is contained in a tile of S (i+1) .

Proof. Let S be equipped with a Morse shelling. By Definition 2.14, there exists a filtration ∅ ⊂ S 1 ⊂ . . . ⊂ S N = S by Morse tiled subsets of S such that for every i ∈ {1, . . . , N }, S i \ S i-1 is a single Morse tile. Let n be the dimension of S, it is enough to prove this result for the (n -1)-skeleton of S, since replacing S by S (n-1) we get the result by decreasing induction. We proceed by induction on i ∈ {1, . . . , N }. If i = 1, S 1 is a single Morse tile and its (n -1)-skeleton is shellable by Lemma 2.17. Let us assume now that this result holds true for S i-1 and prove it for S i . By the induction hypothesis, the skeleton

S (n-1) i-1
is shellable and by Lemma 2.17, the (n -1)-skeleton of the Morse tile S i \ S i-1 is shellable as well. Then, the concatenation of these shellings provides a shelling of S (n-1) i . Indeed, for every j ≥ 0, the union of tiles of dimension greater than j in this concatenation is the intersection with S i of the (n -1)-skeleton of L j , where L j is a subcomplex of a complex K containing S such that the union of tiles of dimension greater than j in S is the trace L j ∩ S.

We likewise prove in subsection 2.4 that barycentric subdivisions of Morse shellable sets are Morse shellable, see Corollary 2.21.

The tiling theorem

For every Morse tile

T = ∆ n \(σ 1 ∪. . .∪σ k ∪τ ), we set Sd(T ) = Sd(∆ n )\ ∪ k i=1 Sd(σ i )∪Sd(τ )
, where Sd(∆ n ) denotes the first barycentric subdivision of ∆ n , see [START_REF] Munkres | Elements of algebraic topology[END_REF].

Theorem 2.19. The first barycentric subdivision of every Morse tile T is Morse shellable, shelled by tiles of the same dimension as T . Moreover, such a Morse shelling can be chosen such that it contains a critical tile iff T is critical and this critical tile is then unique of the same index as T .

The fact that the first barycentric subdivision of a basic tile is tileable has already been established in [START_REF] Salepci | Tilings, packings and expected Betti numbers in simplicial complexes[END_REF] and Theorem 2.19 also recovers the fact that Sd(∆ n ) is shellable, see Theorem 5.1 of [START_REF] Björner | Shellable and Cohen-Macaulay partially ordered sets[END_REF].

Proof. Let us first prove the result for basic tiles by induction on their dimension

n > 0. If n = 1, the partitions Sd(T 1 0 ) = T 1 0 T 1 1 , Sd(T 1 1 ) = 2T 1 1 and Sd(T 1 2 ) = T 1 1
T 1 2 are suitable with the filtration S 1 = T 1 0 and S 2 = Sd(T 1 0 ), see Figure 2.

Sd(T 1 0 ) Sd(T 1 1 ) Sd(T 1 2 )
Figure 2: Tilings of subdivided one-dimensional tiles. Now, let us assume that the result holds true for r ≤ n -1 and let us prove it for r = n. From Proposition 2.1 (see also Corollary 4.2 of [START_REF] Salepci | Tilings, packings and expected Betti numbers in simplicial complexes[END_REF]), ∂∆ n has a partition n k=0 T n-1 k which is such that for every r ∈ {0, . . . , n}, r k=0 T n-1 k is a subcomplex of ∂∆ n covered by r + 1 tiles. We equip Sd(∂∆ n ) = n k=0 Sd(T n-1 k

) with the partition by basic tiles given by the induction hypothesis. There exists a filtration L 1 ⊂ . . . ⊂ L (n+1)! = Sd(∂∆ n ) such that for every j ∈ {1, . . . , (n + 1)!}, L j is a subcomplex which is the union of j tiles of the partition. Indeed, if

S k i is the filtration of Sd(T n-1 k
) given by the induction hypothesis, k ∈ {0, . . . , n}, i ∈ {1, . . . , n!}, we set for every

j = kn! + i, L j = k-1 r=0 T n-1 r S k i
, which is a subcomplex by the induction hypothesis. Then, Sd(∆ n ) gets a partition by cones over the tiles of Sd(∂∆ n ) centered at the barycenter of ∆ n where all the cones except the one over T n-1 0 are deprived of their apex. From Proposition 2.1 this partition induces a shelling of Sd(∆ n ) = Sd(T n 0 ) with a unique tile of order zero and no other critical tile, the cones over the filtration (L j ) j∈{1,...,(n+1)!} providing the shelling. For every k ∈ {1, . . . , n + 1}, we equip Sd(

T n k ) = Sd(∆ n ) \ k-1 j=0 Sd(T n-1 j
) with the shelling induced by removing the bases of all the cones over the tiles included in k-1 j=0 Sd(T n-1 j ) ⊂ Sd(∂∆ n ) in the preceding shelling. From Proposition 2.1, these cones deprived of their bases are basic tiles so that we get as well a shelling of Sd(T n k ) which, as in [START_REF] Salepci | Tilings, packings and expected Betti numbers in simplicial complexes[END_REF], has no more basic tile of order zero as soon as k > 0 and gets a unique basic tile of order n + 1 when k = n + 1. The result is proved in the case of basic tiles.

Let us now prove the result for non-basic tiles T n,l k . The shelling of Sd(T n,l k ) is again induced by the one of Sd(∆ n ). We obtained the shelling of Sd(T n k ) by considering the cones deprived of their bases for every tile of the tiling of Sd(T n-1 j ) with 0 ≤ j < k. Among the (n + 1)! tiles belonging to the tiling of Sd(T n k ), n! are cones deprived of their apex over the tiles of the tiling of Sd(T n- 2. One may check that Sd(C 3 2 ) does not admit any partition involving only critical Morse tiles and basic tiles so that non-basic regular Morse tiles are needed to get Theorem 2.19.

(C n k ) = Sd(T n k ) \ Sd(T k-1 k ) hence consists of a tile C n k = T n k \ T k-1 k together with tiles T n,k-1 m = T n m \ T k-1 m with 0 < m < k
Corollary 2.21. Let S be a Morse tileable (resp. shellable) set, then so is its first barycentric subdivision Sd(S). Moreover, given a Morse tiling (resp. shelling) on S, any induced tiling (resp. shelling) on Sd(S) contains the same number of critical tiles with the same indices.

Proof. Let us first assume that S is a Morse tileable subset of a finite simplicial complex K. In order to equip Sd(S) with a Morse tiling, we first equip S with a Morse tiling and then, for each of its tile T , equip Sd(T ) with a Morse tiling given by Theorem 2.19. It is indeed a tiling since for every j ≥ 0, the union of tiles of dimension greater than j of Sd(S) is the first barycentric subdivision of the union of tiles of dimension greater than j of S, so that if the latter is the intersection with S of a subcomplex L j of K, then the former is the intersection with Sd(S) of the subcomplex Sd(L j ) of Sd(K).

Let us now prove that the barycentric subdivision of S is shellable, provided S is. Let then S be equipped with a Morse shelling. By Definition 2.14, there exists a filtration ∅ ⊂ S 1 ⊂ . . . ⊂ S N = S by Morse tiled subsets of S such that for every i ∈ {1, . . . , N }, S i \ S i-1 is a single Morse tile. We proceed by induction on i ∈ {1, . . . , N }. If i = 1, S 1 is a closed simplex and the result follows from Theorem 2.19. Let now the result be proved up to the rank i -1. Then S i \ S i-1 is a Morse tile and we get a shelling of Sd(S i ) by concatenation of the shelling of Sd(S i-1 ) with the shelling of Sd(S i \ S i-1 ) given by Theorem 2.19, as in the proof of Theorem 2.18. By Theorem 2.19, these induced tiling (resp. shelling) on Sd(S) contain the same number of critical tiles of the same indices as the one of S. Hence the result.

Packings and h-vectors

When an h-tiling T of a finite h-tileable simplicial complex K only involves tiles of the same dimension n, we may encode the number of tiles of each order into the h-vector h(T ) = (h 0 (T ), . . . , h n+1 (T )) of the tiling, see Definition 4.8 of [START_REF] Salepci | Tilings, packings and expected Betti numbers in simplicial complexes[END_REF]. Then, by Theorem 4.9 of [START_REF] Salepci | Tilings, packings and expected Betti numbers in simplicial complexes[END_REF], two h-tilings T and T of K have the same h-vectors provided h 0 (T ) = h 0 (T ) and if moreover h 0 (T ) = 1, this h-vector h(T ) coincides with the h-vector of K by Corollary 4.10 of [START_REF] Salepci | Tilings, packings and expected Betti numbers in simplicial complexes[END_REF], see also [START_REF] Fulton | Introduction to toric varieties[END_REF][START_REF] Ziegler | Lectures on polytopes[END_REF] for a definition. In particular, h-tilings provide in this situation a geometric interpretation of the h-vector as the number of tiles of each order needed to tile the complex. A part of these results remains valid in the case of Morse tilings. Namely, for every Morse tiling T on a Morse tileable set, let us denote by h j 0 (T ) (resp. h j 1 (T )) the number of basic tiles of dimension j and order zero (resp. order one) contained in T , j ≥ 0. Proposition 2.22. Let T be a Morse tiling on an n-dimensional Morse tileable set S. Then, n j=0 (j + 1)h j 0 (T ) + h 1 (T ) = f 0 (S), where h 1 (T ) = n j=0 h j 1 (T ) and f 0 (S) denotes the number of vertices of S.

Proof. By Proposition 2.3 and Proposition 2.6, the only Morse tiles which contain vertices are basic tiles of order zero and one. The former contain j + 1 vertices if they are of dimension j while the latter contain a single vertex, whatever their dimension is. Counting the number of vertices of S by using the partition T , we deduce the result.

Corollary 2.23. Let T and T be two Morse tilings on a Morse tileable set which contain only tiles of the same dimension. Then, h 0 (T ) = h 0 (T ) if and only if h 1 (T ) = h 1 (T ).

As in §5 of [START_REF] Salepci | Tilings, packings and expected Betti numbers in simplicial complexes[END_REF], Morse tilings can be used to produce packings by disjoint simplices in Morse tileable sets. Proposition 2.24. Let T be a Morse tiling on a Morse tileable set S. Then, it is possible to pack in Sd(S) a disjoint union of simplices containing, for every j ≥ 0, at least h j 0 (T ) + h j 1 (T ) j-dimensional ones.

Proof. A basic tile T ⊂ ∆ j of order zero or one contains at least one vertex v and a jsimplex of Sd(∆ j ) containing v is contained in Sd(T ). A choice of such a simplex for each subdivided basic tile of order zero or one provides a suitable packing.

The packings given by Proposition 2.24 have non-trivial asymptotic under a large number of barycentric subdivisions. Indeed, assume for instance that the Morse tiling T only contains tiles of the same dimension n. Then, by Theorem 2.19, h 0 (Sd d (T )) is constant, so that by Proposition 2.22, h 0 (Sd d (T )) + h 1 (Sd d (T )) ∼ d→+∞ f 0 (Sd d (S)), while by [START_REF] Brenti | f -vectors of barycentric subdivisions[END_REF] (see also [START_REF] Delucchi | Face vectors of subdivided simplicial complexes[END_REF][START_REF] Salepci | Asymptotic measures and links in simplicial complexes[END_REF]), f 0 (Sd d (S)) fn(S)(n+1)! d converges to a positive limit q 0 as d grows to +∞, where f n (S) denotes the number of n-dimensional tiles of S. Proposition 2.24 makes it possible to pack at least a number of disjoint n-simplices in Sd d (S) asymptotic to q 0 f n (S)(n + 1)! d-1 as d grows to +∞. Such packings where used in [START_REF] Salepci | Tilings, packings and expected Betti numbers in simplicial complexes[END_REF] to improve upper estimates on the expected Betti numbers of random subcomplexes in a simplicial complex K. More general packing results are obtained in § 5 of [START_REF] Salepci | Tilings, packings and expected Betti numbers in simplicial complexes[END_REF], where simplices are allowed to intersect each other in low dimensions.

3 Morse shellable triangulations and discrete Morse theory

Discrete Morse theory

Let us recall few notions of the discrete Morse theory introduced by Robin Forman, see [START_REF] Forman | Morse theory for cell complexes[END_REF][START_REF] Forman | A user's guide to discrete Morse theory[END_REF]. Let K be a finite simplicial complex. For every p ≥ 0, we denote by K [p] its set of p-simplices and for every τ, σ in K, τ > σ means that σ is a face of τ .

Definition 3.1 (Page 91 of [START_REF] Forman | Morse theory for cell complexes[END_REF]). A function f : K → R is a discrete Morse function iff for every p-simplex σ of K [p] , the following two conditions are satisfied:

1. #{τ ∈ K [p+1] | τ > σ and f (τ ) ≤ f (σ)} ≤ 1, 2. #{ν ∈ K [p-1] | ν < σ and f (ν) ≥ f (σ} ≤ 1.
Definition 3.2 (Definition 9.1 of [START_REF] Forman | Morse theory for cell complexes[END_REF]). A discrete vector field on a simplicial complex K is a map W : K → K ∪ {0} such that:

1. ∀p ≥ 0, W (K [p] ) ⊂ K [p+1] ∪ {0}.
2. For every σ ∈ K [p] , either W (σ) = 0 or σ is a face of W (σ).

3. If σ ∈ Im(W ), then W (σ) = 0. 4. For every σ ∈ K [p] , #{v ∈ K [p-1] | W (v) = σ} ≤ 1.

Definition 3.3 (Remark on page 131 of [9]

). A critical point of a discrete vector field W on a simplicial complex K is a simplex σ ∈ K such that W (σ) = 0 and σ / ∈ Im(W ).

We set the index of a critical point σ of a discrete vector field W to be the dimension of σ. Definition 3.4 (Definition 6.1 of [START_REF] Forman | Morse theory for cell complexes[END_REF]). The gradient vector field of a discrete Morse function f : K → R is the discrete vector field W f : K → K ∪ {0} such that for every p-simplex σ ∈ K, W f (σ) = 0 if there is no (p + 1)-simplex τ such that τ > σ and f (τ ) ≤ f (σ) while W f (σ) = τ otherwise.

Remark 3.5. The gradient vector field is actually defined on oriented simplices in [START_REF] Forman | Morse theory for cell complexes[END_REF] and Definition 3.4 should rather read W f (σ) = -∂τ, σ τ in case τ > σ and f (τ ) ≤ f (σ). However, orientations do not play any role throughout this paper. Definition 3.6 (Definition 9.2 of [START_REF] Forman | Morse theory for cell complexes[END_REF]). Let W be a discrete vector field. A W -path of dimension p is a sequence of p-simplices γ = σ 0 , σ 1 , . . . , σ r such that:

1. If W (σ i ) = 0, then σ i+1 = σ i . 2. If W (σ i ) = 0, then σ i+1 = σ i and σ i+1 < W (σ i ) (i.e. σ i+1 is a facet of W (σ i )).
The path γ is said to be closed iff σ r = σ 0 and to be non-stationary iff σ 1 = σ 0 . Remark 3.7. These Definitions 3.2 -3.6 are given in [START_REF] Forman | Morse theory for cell complexes[END_REF] in the more general setting of regular CW-complexes rather than simplicial complexes. They extend to Morse tiled sets in the sense of Definition 2.8 as well, replacing simplices by their relative interiors. Theorem 3.8 (Theorem 9.3 of [START_REF] Forman | Morse theory for cell complexes[END_REF]). Let W be a discrete vector field on a finite simplicial complex. There is a discrete Morse function f for which W is the gradient vector field if and only if W has no non-stationary closed paths. Moreover, for every such W , f can be chosen to have the property that if a p-simplex is critical, then f (σ) = p.

A Morse function given by Theorem 3.8 is said to be self-indexing. We finally recall that the critical points of a discrete Morse function on a finite simplicial complex span a chain complex which computes its homology, see Theorem 7.3 of [START_REF] Forman | Morse theory for cell complexes[END_REF].

Compatible discrete vector fields

We are now going to prove that a Morse tiled set carries discrete vector fields compatible with the tiling, since every Morse tile carries discrete vector fields, see Remark 3.7. Proposition 3.9. For every n ≥ 0, every k ∈ {0, . . . , n + 1} and every decomposition

T n k = T n-1 k . . . T n-1 n
T n n+1 given by Proposition 2.1, the tile T n k has a discrete vector field

W n k such that W n k (T n-1 n ) = T n n+1
and such that for every l ∈ {k . . . , n -1} the restriction of W n k to T n-1 l coincides with one vector field W n-1 l . Such a vector field has no critical point if 0 < k < n + 1, a unique critical point of index zero if k = 0 and a unique critical point of index n if k = n + 1.

Proof. We proceed by induction on n. If n = 0, we set W n k = 0 for every k ∈ {0, 1} and the result holds true. Let us suppose that the result is proved up to the dimension n -1 and prove it for the dimension n. Let then k ∈ {0, . . . , n + 1} and a decomposition

T n k = T n-1 k . . . T n-1 n
T n n+1 be chosen (given by Proposition 2.1). If k = n + 1, we set W n n+1 = 0 and the tile T n n+1 is critical of index n since it has no facet. Otherwise, we set W n k (T n-1 n ) = T n n+1 and for every l ∈ {k, . . . , n -1} we set the restriction of W n k to the tile isomorphic to T n-1 l to be W n-1 l through such an isomorphism. By the induction hypothesis, it has no critical point, unless k = 0 where it has a unique critical point of index zero. Proposition 3.9 defines many discrete vector fields on the tile T n k , n ≥ 0, k ∈ {0, . . . , n+ 1}, which have all been denoted by W n k . Indeed, such a vector field depends on the choice of a partition

T n k = T n-1 k . . . T n-1 n
T n n+1 , but also on a similar choice of a partition of the (n -1)-dimensional tiles T n-1 k , . . . , T n-1 n-1 and by induction, on such a choice of an h-tiling on all skeletons of T n k , compare subsection 2.1. In particular, for every face

τ of ∆ n not contained in σ 1 ∪ • • • ∪ σ k , where T n k = ∆ n \ (σ 1 ∪ • • • ∪ σ k )
and dim τ = l ∈ {k, . . . , n -2}, we may choose these partitions in such a way that τ \ (σ 1 ∪ • • • ∪ σ k ) is a basic tile of order k of the l-skeleton of T n k , which is thus preserved by W n k . Such a vector field W n k then restricts to a discrete vector field on the complement T n,l k = T n k \ T l k . Corollary 3.10. For every n ≥ 0 and every k ∈ {0, . . . , n}, the critical Morse tile C n k inherits from any vector field given by Proposition 3.9 a discrete vector field which has a unique critical point of index k. Moreover, for every 0 ≤ k < l+1 ≤ n, the standard regular Morse tile T n,l k inherits from any vector field given by Proposition 3.9 which preserves T l k ⊂ T n k a discrete vector field without any critical point. Proof. By Proposition 2.3, the k-skeleton of T n k is tiled by a unique tile

T k k = T k-1 k T k k+1
and by Proposition 3.9,

W n k (T k-1 k ) = T k k+1
, for any vector filed W n k given by this proposition. Thus, W n k induces a discrete vector field on

C n k = T n k \ T k-1 k
, just by restriction. The tile T k k+1 ⊂ C n k is then critical since it is no more in the image of W n k , so that this vector field on C n k has a unique critical point of index k. Likewise, the vector field W n k of T n k preserves T l k and thus restricts to a vector field on T n,l k = T n k \ T l k . By Proposition 3.9, it has no critical point. Definition 3.11. Let S be a Morse tiled set. A discrete vector field on S is said to be compatible with the tiling iff it preserves the tiles and its restriction to each tile is given by Proposition 3.9 or Corollary 3.10 via some affine isomorphism.

We deduce the following. Theorem 3.12. Let K be a finite simplicial complex equipped with a Morse tiling. Then, the critical points of any discrete vector field compatible with the tiling are in one-to-one correspondence with the critical tiles, preserving the index. If moreover such a vector field has no non-stationary closed paths, then it is the gradient vector field of a self-indexing discrete Morse function on K whose critical points are in one-to-one correspondence, preserving the index, with the critical tiles of the tiling.

Proof. By Definition 2.8, the Morse tiling on K provides a partition of K by Morse tiles. The vector fields given by Proposition 3.9 and Corollary 3.10 thus induce discrete vector fields on K whose critical points are in one-to-one correspondence with the critical Morse tiles, preserving the index. Now, Theorem 3.8 guarantees that such a vector field is the gradient vector field of some discrete self-indexing Morse function on K provided that it has no non-stationary path.

We finally provide a criterium which ensures that a compatible discrete vector field has no non-stationary closed path. This criterium given by Theorem 3.14 applies to Morse shellings, see Definition 2.14 and Corollary 3.15. Lemma 3.13. Every discrete vector field given by Proposition 3.9 or Corollary 3.10 has no non-stationary closed path in the corresponding Morse tile.

Proof. It is enough to prove the result for a basic tile T n k equipped with a discrete vector field W n k given by Proposition 3.9, since vector fields given by Corollary 3.10 on non-basic Morse tiles are restriction of the formers, so that every path on a non-basic Morse tile is also a path on the corresponding basic tile, with the exception of the stationary path at the critical point in the case of a critical Morse tile. We then prove the result by induction on the dimension n of the tile. If n = 0, there is nothing to prove, every path is stationary. Otherwise, let us choose a partition

T n k = T n-1 k . . . T n-1 n
T n n+1 given by Proposition 2.1 and an associated discrete vector field

W n k . A path of dimension n of W n k is stationary, since W n k (T n n+1
) has to vanish. A path of dimension n-1 which begins with T n-1 n continues in one of the tiles T n-1 k , . . . , T n-1 n-1 and is then stationary as in the previous case. Any other path is contained in one of the tiles T n-1 k , . . . , T n-1 n-1 , so that the result follows from the induction hypothesis.

Theorem 3.14. Let K 0 ⊂ K 1 ⊂ . . . ⊂ K N = K be a filtration of Morse tiled finite simplicial complexes such that for every i ∈ {1, . . . , N }, K i \ K i-1 is a single Morse tile. Let W be a compatible discrete vector field on K such that its restriction to K 0 has no nonstationary closed path. Then, W has no non-stationary closed path and it is the gradient vector field of a discrete self-indexing Morse function on K.

Proof. We prove the result by induction on i ∈ {0, . . . , N }. If i = 0, the result holds true by hypothesis. Let i > 0 and W be a discrete vector field on K compatible with the Morse tiling and whose restriction to K 0 has no non-stationary closed path. Then, K i \ K i-1 is reduced to a single Morse tile and by Lemma 3.13, it has no non-stationary closed path. Now, a W -path on K i is either contained in K i \ K i-1 , or it meets K i-1 and cannot leave K i-1 once it entered in this subcomplex by definition. In both cases, from the induction hypothesis, it cannot have any non-stationary closed path. Hence the result. Corollary 3.15. Every discrete vector field compatible with a Morse shelling of a finite simplicial complex is the gradient vector field of a discrete self-indexing Morse function. Moreover its critical points are in one-to-one correspondence with the critical tiles of the shelling, preserving their indices.

Proof. From Theorem 3.14, any discrete vector field compatible with any Morse shelling is the gradient vector field of a discrete Morse function, since its restriction to K 0 = ∅ has no non-stationary closed path. The result follows then from Theorem 3.12.

Proof of Theorem 1.3

Proof. Let K be a finite simplicial complex homeomorphic to a closed surface, which we may assume to be connected. We have to prove that there exists a filtration K 1 ⊂ . . . ⊂ K N of Morse tiled simplicial complexes such that K N = K and such that for every i ∈ {1, . . . , N }, K i is the union of i Morse tiles, see Definition 2.14. In order to prove the existence of the filtration, we proceed by induction on i > 0. If i = 1, we choose any closed simplex in K and declare that K 1 is this simplex, tiled by a single critical tile of index 0. Let us assume by induction that we have constructed a tiled subcomplex K i with i tiles. If there exists an edge e in K i which is adjacent to only one triangle of K i , we know from the Dehn-Sommerville relations that K contains a triangle T adjacent to e and not contained in K i . Then T \ K i is isomorphic to a triangle deprived of at least one face of dimension one and thus at most one face of codimension greater than one, so that T \ K i is a Morse tile by Definition 2.4. We set K i+1 to be the union of K i and T (together with its faces) and equip it with the Morse tiling given by the one of K i completed by T \ K i . If now all edges of K i are adjacent to two triangles of K i , let us prove that K i = K. From the Dehn-Sommerville relations, we know that every edge is adjacent to at most two triangles of K i . We observe that the link of every vertex in K is a triangulated circle, so that the star of a vertex in K is a cone over a polygone, see Figure 3. Let v be a vertex in K. Since the underlying topological space |K| is connected, there exists a path v 0 , v 1 , . . . , v k such that v 0 ∈ K i , v k = v and for every j ∈ {0, . . . , k -1}, [v j , v j+1 ] is and edge of K. Then, by construction, v 0 is adjacent to a triangle of K i and since all edges of K i are adjacent to two triangles, all triangles adjacent to v 0 have to be in K i , see Figure 3. Thus v 1 belongs to K i as well and by induction, v belongs to K i . Hence, K i contains all vertices of K and also all triangles and edges adjacent to them, so that K i = K. The proof is similar in dimension 1.

The proof of Theorem 1.3 is algorithmic and the shellings it provides do not use any regular Morse tile of vanishing order.

Morse tilings on triangulated handles

Recall that a handle of index i and dimension n is by definition a product of an idimensional disk with an (n -i)-dimensional one, see § 6 of [START_REF] Rourke | Introduction to piecewise-linear topology[END_REF]. We likewise define a handle of index i in discrete geometry to be the product of simplices ∆ i × ∆ n-i , or rather in what follows the product

• ∆i × ∆ n-i of
an open simplex of dimension i with a closed (n -i)-simplex, suitably triangulated. Our purpose is to define a Morse shelling on such triangulated i-handle for i = 1 or n -1, the general case being postponed to [START_REF] Welschinger | Morse shellings on products[END_REF]. Proposition 3.16. For every n ≥ 2, ∆ 1 × ∆ n-1 has a subdivision into n simplices σ 1 , . . . , σ n of dimension n turning it into a shellable simplicial complex. Moreover, writing ∂∆ 1 = {0, 1}, it can be chosen in such a way that for every i ∈ {1, . . . , n}, dim(σ i ∩ ({0} × ∆ n-1 )) = n-i and dim(σ i ∩({1}×∆ n-1 )) = i-1. For every i ∈ {1, . . . , n}, the subcomplex K n i = σ 1 ∪ . . . ∪ σ i inherits the h-tiling made of one basic tile of order zero and i -1 basic tiles of order one.

Proof. If n = 2, the square ∆ 1 × ∆ 1 is the union of two triangles meeting along a diagonal and the result follows. If n > 2, let c be a vertex of {0} × ∆ n-1 so that this simplex is the cone c * ({0} × ∆ n-2 ) over its facet ∆ n-2 . Then, the convex domain

∆ 1 × ∆ n-1 is a cone centered at c over the base (∆ 1 × ∆ n-2 ) ∪ ({1} × ∆ n-1 ). By induction, the lateral part ∆ 1 × ∆ n-2 has a subdivision σ 1 ∪ . . . ∪ σ n-1 such that for every i ∈ {1, . . . , n -1}, dim(σ i ∩ ({0} × ∆ n-2 )) = n -1 -i and dim(σ i ∩ ({1} × ∆ n-2 )) = i -1 and such that σ 1 ∪ . . . ∪ σ i = T n-1 0 T n-1 1 . . . T n-1 1
. We then set, for every i ∈ {1, . . . , n -1}, σ i = c * σ i and σ n = c * ({1}×∆ n-1 ), see Figure 4. The result follows, since ({1}×∆ n-1 )\({1}×∆ n-2 ) is isomorphic to T n-1 1 and the cone over a basic tile of order one remains a basic tile of order one by Proposition 2.1.

c Figure 4: A triangulation on ∆ 1 × ∆ 2 .
Corollary 3.17. For every n ≥ 2, the handles

• ∆1 ×∆ n-1 , ∆ 1 × • ∆n-1 and the product T 1 1 × ∆ n-1 inherit from Proposition 3.
16 the structure of Morse shellable sets. Moreover, for every i ∈ {1, . . . , n}, the subset

K n i ∩( • ∆1 ×∆ n-1 ) gets tiled by a disjoint union i-1 j=0 T n,j 1 , K n i ∩ (∆ 1 × • ∆n-1 )
by one critical tile of index n -1 and i -1 basic tiles of order n and

K n i ∩(T 1 1 ×∆ n-1
) by basic tiles of order one, where K n i is the subcomplex given by Proposition 3.16.

Corollary 3.17 thus provides a Morse shelling on the triangulated one-handle

• ∆1 ×∆ n-1 (resp. on the triangulated (n -1)-handle ∆ 1 × • ∆n-1 ) containing a unique critical tile, of index one (resp. of index n -1).
Proof of Corollary 3.17. By Proposition 3.16, for every i ∈ {1, . . . , n},

K n i = σ 1 ∪. . .∪σ i = T n 0 T n 1 . . . T n 1 and dim(σ 1 ∩ ({0} × ∆ n-1 )) = n -1, so that {0} × ∆ n-1 is contained in σ 1 and disjoint from the tiles T n 1 . Thus, K n i ∩ (T 1 1 × ∆ n-1 ) = K n i \ ({0} × ∆ n-1 ) inherits the h-tiling σ 1 \ ({0} × ∆ n-1 ) i j=2 (σ j \ K n j-1
) made of i basic tiles of order one. The last part of Corollary 3.17 is proved. By Proposition 3.16 now, ∆

1 × ∆ n-1 = σ 1 ∪ . . . ∪ σ n with dim(σ i ∩ ({1} × ∆ n-1
)) = i -1 so that by induction on i ∈ {1, . . . , n}, the intersection of {1}×∆ n-1 with σ i is a face of dimension i-1 not contained in σ 1 ∪. . .∪σ i-1 ∪({0}×∆ n-1 ).

By Definition 2.4, the 1-handle

• ∆1 ×∆ n-1 thus inherits the Morse tiling n-1 j=0 T n,j l made of one critical tile C n 1 of index one and regular Morse tiles T n,l 1 with l ∈ {1, . . . , n -1} and moreover for every i ∈ {1, . . . , n}, K n i ∩ (

• ∆1 ×∆ n-1 ) = i-1 j=0 (T n,j 1 
). Let us finally, prove the result for the (n -1)-handle ∆ 1 × 

Simple triangulations on an annulus

In dimension three, the tiled two-handle ∆ 1 ×

• ∆2 given by Corollary 3.17 is obtained from the triangulated three-ball ∆ 1 × ∆ 2 given by Proposition 3.16 by removing the cylinder ∆ 1 × ∂∆ 2 . The latter inherits a triangulation with six triangles, see Figure 4. Each of these triangle has an edge on the boundary component {0} × ∂∆ 2 or {1} × ∂∆ 2 and the opposite vertex on the opposite component. We label by d (res. u) the triangles having an edge on the boundary component {0} × ∂∆ 2 (resp. {1} × ∂∆ 2 ) and choose the standard orientation on ∂∆ 2 , so that these six triangles produce the cyclic word w = ududdu while this cyclic word encodes in a unique way the triangulation up to homeomorphisms preserving the boundary components and the orientation, see Figure 5. A triangulation of the annulus is a homeomorphism with a two-dimensional simplicial complex and if this triangulation is simple each triangle of this complex has one edge mapped to some boundary component and thus encoded by either d or u and the opposite vertex on the other component. We may join the middle points of the two remaining edges by some arc in the triangle. The union of all these arcs then gives a closed curve homotopic to the boundary components and choosing an orientation on this curve, we read on it a finite cyclic word in the alphabet {d, u}. Each boundary component has to contain at least three edges so that this cyclic word has to contain each letter at least three times. Conversely, one may reverse the procedure to associate to every such cyclic word a simple triangulation on the annulus, which is uniquely defined up to homeomorphisms preserving the boundary components and the orientation.

Lemma 3.20. There exists four cyclic words in the alphabet {d, u} which contain each letter three times. Namely, w = ududdu, w = duduud, uuuddd and ududud.

Proof. There is indeed a unique word containing the sequence uuu, there are two words containing the sequence uu but not uuu, for they have to contain the sequence duud and there is a single word which does not contain the sequence uu. These four words are thus uuuddd, w = duudud, w = duuddu and ududud.

Let us now declare that a compression of two letters of a cyclic word in the alphabet {d, u} is the replacement of a sequence dd (resp. uu) by the single letter d (resp. u), while a suppression is the replacement of udu (resp. dud) by ud (resp. du). The following lemmas will be useful in the proof of Theorem 1.4. Lemma 3.21. It is possible to reduce any finite cyclic word in the alphabet {d, u} containing each letter at least three times to a word of six letters given by Lemma 3.20 by applying finitely many compressions or suppressions.

Proof. If the word contains only six letters, there is nothing to prove. Otherwise it contains one letter at least four times, say the letter u. Then, either it contains the sequence uu or dd and a compression decreases the number of letters in this word, or it contains the sequence udu and a suppression decreases the number of letters by one. The result follows thus by induction.

Let us also declare that a subdivision of such a word is the replacement of the letter u by the sequence duud and of the letter d by dd. Lemma 3.22. It is possible to reduce any finite cyclic word in the alphabet {d, u} containing each letter at least three times to w by applying finitely many compressions or suppressions and a single subdivision.

(n -1)-simplices [σ 0 , . . . , σn-1 ] and [ θ0 , . . . , θn-1 ] in each connected component of Sd(L). These simplices have the required property from what precedes. Hence the result.

Proof of Theorem 1.4. Let a smooth Morse function be given on the closed n-dimensional manifold X, n ≤ 3. We know from Morse theory that it induces a handle decomposition of X, that is, it decomposes X into finitely many sublevels, starting from the empty set and ending with X in such a way that one passes from a sublevel to the next one by attaching some handle, see Theorem 3.2 of [START_REF] Milnor | Morse theory[END_REF] or also [START_REF] Cerf | Le théorème du h-cobordisme (Smale)[END_REF][START_REF] Rourke | Introduction to piecewise-linear topology[END_REF]. We are going to prove the result by having each sublevels being triangulated and equipped with a Morse shelling and by performing each handle attachment by gluing a Morse tiled handle. Moreover, we will check that the shelling can be extended through the handle to get the result by finite induction.

There is no obstruction to attach a zero-handle whatever is, it consists in adding a disjoint closed n-simplex to the triangulation. Lemma 3.23 makes it possible to attach a one-handle whatever n is as well, after performing one barycentric subdivision. Indeed, let X 0 be an n-dimensional simplicial complex homeomorphic to a manifold with boundary and let it be equipped with a Morse shelling. By Corollary 2.21, Sd(X 0 ) inherits a Morse shelling with the same number of critical tiles and same indices as X 0 , while |Sd(X 0 )| and |X 0 | are homeomorphic to each other. By Lemma 3.23, we may find two disjoint (n -1)-simplices in the boundary of Sd(X 0 ), each simplex being chosen in any of the connected component of this boundary, such that every simplex of Sd(X 0 ) intersects their union along a single face, possibly empty. There is then no obstruction to attach the one-handle • ∆1 ×∆ n-1 along these two (n -1)-simplices and to equip this handle with the triangulation and Morse shelling given by Corollary 3.17. Moreover, attaching the n-tiles given by Corollary 3.17 one after the other to Sd(X 0 ), following the shelling order, we extend the Morse shelling of Sd(X 0 ) through the handle to get a Morse shelled simplicial complex Sd(X 0 ) (∆ 1 × ∆ n-1 ) homeomorphic to the manifold with boundary obtained after attaching the one-handle to X 0 . This already proves Theorem 1.4 in dimension n = 1.

Let us now prove that it is possible to attach a Morse shelled two-handle in dimension three. Let X 1 be a three-dimensional simplicial complex homeomorphic to a manifold with boundary and equipped with a Morse shelling. The two-handle has to be attached along a tubular neighborhood of a two-sided closed curve C embedded in a boundary component Σ of X. By Theorem A1 of [START_REF] Epstein | Curves on 2-manifolds and isotopies[END_REF] it can be assumed to be the image of a P L-embedding of S 1 , deforming it by some ambient isotopy if necessary. We then perform a large number d 0 of barycentric subdivisions on X 1 and isotope slightly C to get a new curve C which does not contain any vertex of Sd d (Σ), is transverse to its edges and is such that for every triangle T of Sd d (Σ), either C is disjoint from T , or C intersects T along a connected piecewise linear arc joining two different edges, see Figure 7.

The union of all triangles meeting C is then a regular neighborhood N homeomorphic to an annulus equipped with a simple triangulation, see Definition 3. orientation encode the homeomorphism in a unique way up to isotopy. By Proposition 3.19, the simple triangulation of N gets then encoded by a cyclic word w N in the alphabet {d, u} containing each letter at least three times. Moreover, by Lemma 3.22, this word can be reduced to w = ududdu using finitely many suppressions or compressions together with a single subdivision. We are going to prove that these operations can be performed by attaching basic tiles of order two along N or by performing one barycentric subdivision.

To begin with, we may assume by Lemma 3.23 that any simplex of X 1 intersects N along a single face, possibly empty, replacing X 1 by Sd(X 1 ) if necessary. Then, if two consecutive triangles of N are encoded by dd (resp. uu), we may attach a basic tile of order two along them to get a new Morse shelled simplicial complex together with annulus N as its boundary which gets encoded by the word obtained from w N after the compression dd → d (resp. uu → u). This new simplicial complex is homeomorphic to X 1 by Lemma 3.25 of [START_REF] Rourke | Introduction to piecewise-linear topology[END_REF]. As long as the cyclic word contains at least four times the letter d (resp. u), there is no obstruction to perform the attachement, since a simplex of X 1 can intersect the union of the two consecutive triangles only along a single face. Moreover, we keep the property that any simplex intersects N along a single face, possibly empty, since N contains only one facet of the basic tile of order two, see Figure 8. Likewise, if three consecutive triangles of N are encoded by udu (resp. dud), we may attach two basic tiles of order two, first along du (resp. ud) to get uud (resp. ddu) and then along uu (resp. dd) to get ud (resp. du), see Figure 9. Again, there is no obstruction to perform these attachments as long as the cyclic word contains the letter u (resp. d) at least four times and we get a new Morse shelled simplicial complex and neighborhood N whose triangulation gets encoded by the word obtained from w N after the suppression udu → ud (resp. dud → du). The homeomorphism type of the pair (|X 1 |, N ) has not been altered by this procedure. Finally, as explained at the end of subsection 3.5, we may perform a barycentric subdivision on X 1 and keep one half of the triangulated annulus Sd(N ), namely the one containing the subdivided boundary component encoded by u, to get a new annulus whose simple triangulation gets encoded by a word deduced from w N after one subdivision, see Figure 6. By Corollary 2.21 and Lemma 3.22, we may thus assume that the triangulation on the regular neighborhood N is in fact encoded by w = ududdu and moreover that any simplex of X 1 intersects N along a single face, possibly empty. Corollary 3.17 then provides a Morse shelled two-handle that can be attached to the boundary component Σ along N . Moreover, we may attach the three tiles of the handle one after the other to X 1 , following the shelling order, to extend the Morse shelling of X 1 through the handle.

d d d

In order to prove Theorem 1.4, it remains now to check that it is also possible to attach a Morse shelled top-dimensional handle in dimensions two and three. Let thus X 2 be a simplicial complex homeomorphic to an n-dimensional manifold with boundary and equipped with a Morse shelling and let Σ be a boundary component of X 2 which we assume to be homeomorphic to a (n -1)-sphere. By Corollary 2.21 and Lemma 3.22 we may assume that any simplex of X 2 intersects Σ along a single face, possibly empty. If n = 2, Σ is a triangulated circle. If the latter contains only three edges, we glue a basic tile of order one followed by a basic tile of order two and three to cap it, for the union

T 2 1 T 2 2 T 2 3
is the shelled open disk ∂∆ 3 \ ∆ 2 . If Σ contains more than three edges, we may find two consecutive ones which are not faces of a same triangle of X 2 and attach a basic tile of order two along them to decrease by one the number of edges in this boundary component. After a finite induction, we are led to the previous case and cap Σ to get a Morse shelled simplicial complex homeomorphic to a manifold with one less boundary component. Theorem 1.4 is now proved in dimension n = 2.

If n = 3, Σ is a triangulated two-sphere. If this triangulation has just four vertices, we attach a basic tile of order one followed by basic tiles of order two, three and four to cap Σ, for the union T If this triangulation has more than four vertices, we are going to prove by induction that it can be modified to reduce its number of vertices. Indeed, if Σ contains a vertex v of valence three, there is no obstruction to attach a basic tile of order three along the three adjacent triangles to get a new simplicial complex and triangulated sphere with the same vertices as Σ but v, see Figure 10, since the triangulation has more than four vertices by hypothesis.

If Σ contains a vertex v of valence greater than three, then its link Lk Σ (v) in Σ is a triangulated circle containing more than three vertices. From Jordan's theorem we deduce that at least one of these vertices, say w, has the property that if an edge in Σ has its v boundary in Lk Σ (v) and contains w, then this edge is included in Lk Σ (v). We then choose two consecutive triangles adjacent to v, one of them having [v, w] in its boundary, and attach a basic tile of order two along them. We get a new simplicial complex and a triangulated sphere with same vertices, but the valence of v has decreased by one, see Figure 11. Moreover, the basic tile of order two has still one triangle adjacent to v and w. We attach a basic tile of order two along this triangle and the one next to it adjacent to v not containing w to decrease the valence of v by one more, as in Figure 11. We may continue by induction until the valence of v has decreased to three and then attach as before a basic tile or order three to get a new triangulated sphere with same vertices as Σ but v. Moreover, once this last attachement is performed, we keep the property that any simplex of the simplicial complex intersects its boundary along a single face, possible empty. After a finite induction, we are led to the case where Σ is a triangulated sphere with just four vertices and cap it as before by a shelled open disk. We have thus attached a triangulated three-handle to X 2 along Σ and extended the shelling of X 2 through this handle. Hence the result.

The shellings given by the proof of Theorem 1.4 do not use any regular Morse tile of vanishing order, as the ones given by the proof of Theorem 1.3.

Proof of Corollary 1.5. Let f be a discrete Morse function compatible with T . By Theorem 3.12, the critical points of f are in one-to-one correspondence, preserving the index, with the critical tiles of the tiling, so that for every k ∈ {0, . . . , n}, f has c k (T ) critical points of index k. Theorem 7.3 of [START_REF] Forman | Morse theory for cell complexes[END_REF] then provides a chain complex which computes the homology of X and which has dimension c k (T ) in grading k, it is the discrete Morse complex. The result then follows from the classical Morse inequalities deduced from this chain complex.

Final remarks

1. It would be of interest to prove Theorem 1.4 in any dimension. In [START_REF] Welschinger | Morse shellings on products[END_REF], we deduce from Theorem 1.4 that any finite product of closed manifolds of dimension less than four carries Morse shellable triangulations. By [START_REF] Welschinger | Shellable tilings on partial simplicial complexes and their h-vectors[END_REF], every finite simplicial complex becomes Morse shellable after finitely many stellar subdivisions at maximal simplices.

2. The h-tiling of ∂∆ 2 made of three basic tiles of order one has no critical tile. Example 4.5 of [START_REF] Salepci | Tilings, packings and expected Betti numbers in simplicial complexes[END_REF] also provides h-tiled triangulations on the two-torus having no critical tile, while by Theorem 1.1 of [START_REF] Welschinger | Morse shellings on products[END_REF], any product of a sphere and a torus of positive dimension carries h-tileable triangulations using only regular tiles. In these examples, every discrete vector field compatible with the tiling has closed non-stationary path, so that by Theorem 3.8 they cannot be the gradient vector fields of some discrete Morse functions.

3. By Lemma 2.5 and the additivity of the Euler characteristic, an even dimensional closed manifold equipped with an h-tiled triangulation has non-negative Euler characteristic. In particular, no triangulation on a closed surface of genus greater than one is h-tileable. We do not know which closed three-manifold carry h-tileable triangulations.

4. The two-dimensional simplicial complex containing four triangles depicted in Figure 12, where the points a are glued together, is not Morse tileable. It would be of interest to exhibit a closed triangulated manifold which is not Morse tileable.

a a Figure 12: A simplicial complex which is not Morse tileable.

5. Triangulations on any smooth closed manifold always exist, see for example [START_REF] Whitney | Geometric integration theory[END_REF], and topological closed manifolds of dimension less than four have a unique smooth structure, see [START_REF] Bing | An alternative proof that 3-manifolds can be triangulated[END_REF][START_REF] Moise | Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung[END_REF]. Also, Morse functions exist on all closed manifolds, see [START_REF] Milnor | Morse theory[END_REF] and handle decompositions also exist on P L-manifolds, see Proposition 6.9 of [START_REF] Rourke | Introduction to piecewise-linear topology[END_REF].
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 1 k}. It follows from the definition that T n+1 k = (c * T n k )\{c}. It is the cone over T n k deprived of its apex c. The base T n k of this cone is the intersection of T n+1 k+1 with the base θ = ∆ n of the cone ∆ n+1 = c * ∆ n . Thus, T n+1 k \T n k = (c * ∆ n )\(θ 1 ∪. . .∪θ k ∪θ) = T n+1 k+1 . The result holds true for k = 0 as well, since by definition T n+1 ∆ n+1 \ ∆ n = T n+1 0 \ T n 0 . By induction, we deduce that for every k ∈ {0, . . . , n + 1}, T n+1 k ∩ ∂∆ n+1 is the disjoint union T n k . . . T n n+1 .
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 1 Figure 1: A non classical shelling.
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 111 and by induction, for every k -1 ≤ l ≤ n -1, (l + 1)! of them are iterated cones over the tiles of the tiling of Sd(T l k ). If l = k -1, the tiling of Sd(T k-1 k ) contains a unique tile T k-1 k = • ∆k-1 together with tiles T k-with 0 < m < k by the previous case. Hence, the k! tiles of the tiling of Sd(T n k ) which intersect Sd(T k-⊂ Sd(T n k ) consist of a tile T n k and tiles T n m with 0 < m < k by Proposition 2.1. The Morse tiling induced on Sd
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 1 and tiles T n m with 0 < m ≤ n. As before, this Morse tiling is a Morse shelling, the Morse shelling being obtained by concatenation. Finally, if l ≥ k, the shelling of Sd(T l k ) contains tiles T l m with 0 ≤ m ≤ l, the first inequality being strict if k > 0. The (l + 1)! tiles of the tiling of Sd(T n k ) which intersect Sd(T l k ) ⊂ Sd(T n k ) thus consist of tiles T n m with 0 ≤ m ≤ l by Proposition 2.1, they are iterated cones of the previous ones. The Morse shelling induced on Sd(T n,l k ) = Sd(T n k ) \ Sd(T l k ) hence consists of tiles T n,l m = T n m \ T l m with 0 < m ≤ l and of tiles T n j with 0 < j ≤ n. Remark 2.20. 1. We actually proved that the regular Morse tiles involved in the partition of Sd(C n k ) are either basic, or isomorphic to T n,k-with 0 < m < k. Likewise, the tiles involved in the partition of Sd(T n,l k ) are either basic or isomorphic to T n,l m with 0 < m ≤ l < n -1.
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 3 Figure 3: The star of a vertex v in K.
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  ∆n-1 by induction on n. For n = 2, it has already been proved in the first part. In general, as in the proof of Proposition 3.16, let c be a vertex of{0} × ∆ n-1 so that ∆ 1 × • ∆n-1 is the union of the cone c * (∆ 1 × ∆ n-2) over the lateral face deprived of its base and apex and the cone c * ({1}× • ∆n-1 ) over the upper face. The latter is isomorphic to a standard tile T n n by Proposition 2.1 while by the induction hypothesis, the former is the union of one critical tileC n n-1 = (c * C n-1 n-2 )\C n-1 n-2 and n-2 basic tiles T n n = (c * T n-1 n-1 )\T n-1 n-1, by Proposition 2.7 and Proposition 2.1. The same induction provides the result since for every i ∈ {1, . . . , n -1},K n i = c * K n-1 i .
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 5319 Figure 5: A simple triangulation on ∆ 1 × ∂∆ 2 encoded by ududdu.
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 7 Figure 7: A piecewise-linear arc joining two edges.
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 8 Figure 8: Compression dd → d.
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 9 Figure 9: Suppression udu → ud.

  shelled open disk ∂∆ 4 \ ∆ 3 .
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 10 Figure 10: Removal of a vertex.

Figure 11 :

 11 Figure 11: Decreasing the valence of a vertex.
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Proof. By Lemma 3.21, we may assume that the word has six letter and by Lemma 3.20 that it is one of the four words ududud, uuuddd, w and w. Now, after a single subdivision, these words can be reduced to w using compressions and suppressions. For example, uuuddd becomes duudduudduuddddddd. By selecting the first sequence duu and compressing the other ones, it reduces to duududud. After two suppressions dud → du and udu → ud, we get w. The proof is similar for the other words.

Let us finally observe that if we perform a barycentric subdivision on an annulus equipped with a simple triangulation, then this annulus becomes the union of two triangulated annuli separated by the triangulated circle joining the barycenters of the triangles and of the inner edges, see Figure 6.

d d u u

Figure 6: Barycentric subdivision on a simple triangulation.

One of these annuli contains the subdivided boundary component labelled by u while the other one contains the subdivided boundary component labelled by d. Now, if the original simple triangulation is encoded by some cyclic word w in the alphabet {d, u}, the word encoding the former is deduced from w by performing a single subdivision and the latter by performing the similar substitutions d → uddu and u → uu.

Proofs of Theorem 1.4 and Corollary 1.5

We need the following lemma. Lemma 3.23. Let (K, L) be a simplicial complex homeomorphic to a compact n-dimensional manifold with boundary (M, ∂M ). Then, any simplex of Sd(K) intersects Sd(L) along a single face, possibly empty. Moreover, Sd(L) contains two disjoint (n-1)-simplices in each connected component such that any simplex of Sd(K) intersects their union along a single face, possibly empty. Proof. By definition, for every simplex τ of the first barycentric subdivision Sd(K) of K, there exists a collection of simplices σ 0 , . . . , σ n of K such that for every 0 ≤ i < j ≤ n, σ i is a face of σ j and such that the vertices of τ are the barycenters σi of σ i , i ∈ {0, . . . , n}, see [START_REF] Munkres | Elements of algebraic topology[END_REF]. If τ ∩ Sd(L) = ∅, let j ∈ {0, . . . , n} be the greatest element such that σj ∈ Sd(L). Then, σ j is in L, so that its faces σ 0 , . . . , σ j-1 are in L as well and σ0 , . . . , σj-1 are in Sd(L). The intersection of the simplex [σ 0 , . . . , σn ] with Sd(L) is then the face [σ 0 , . . . , σj ]. Now, L contains at least two (n -1)-simplices σ, θ in each connected component and σ (resp. θ) contains a vertex σ 0 (resp. θ 0 ) which is not in θ (resp. not in σ). Choosing flags σ 0 < σ 1 < . . . < σ n-1 = σ and θ 0 < θ 1 < . . . < θ n-1 = θ, we get two disjoint