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A NEW APPROACH TO PROBABILISTIC ROUNDING ERROR
ANALYSIS∗

NICHOLAS J. HIGHAM† AND THEO MARY‡

Abstract. Traditional rounding error analysis in numerical linear algebra leads to backward
error bounds involving the constant γn = nu/(1 − nu), for a problem size n and unit roundoff
u. In the light of large-scale and possibly low-precision computations, such bounds can struggle to
provide any useful information. We develop a new probabilistic rounding error analysis that can be
applied to a wide range of algorithms. By using a concentration inequality and making probabilistic
assumptions about the rounding errors, we show that in several core linear algebra computations
γn can be replaced by a relaxed constant γ̃n proportional to

√
n lognu with a probability bounded

below by a quantity independent of n. The new constant γ̃n grows much more slowly with n than
γn. Our results have three key features: they are backward error bounds; they are exact, not first
order; and they are valid for any n, unlike results obtained by applying the central limit theorem,
which apply only as n → ∞. We provide numerical experiments that show that for both random
and real-life matrices the bounds can be much smaller than the standard deterministic bounds and
can have the correct asymptotic growth with n. We also identify two special situations in which
the assumptions underlying the analysis are not valid and the bounds do not hold. Our analysis
provides, for the first time, a rigorous foundation for the rule of thumb that “one can take the square
root of an error constant because of statistical effects in rounding error propagation”.
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1. Introduction. Modern rounding error analysis faces a double challenge with
the rise of large-scale, mixed-precision computations. On the one hand, increasingly
large problems are being solved. For example, the supercomputers currently at the
top of the TOP500 list1 are there by virtue of having solved, in record time, linear
systems Ax = b of dimensions of order 108 by LU factorization, and future exascale
systems will solve problems of even larger size. Traditional error analysis does not
guarantee small residuals for such large systems because the error constants are so
large—yet a small residual is obtained in practice.

On the other hand, low-precision floating-point arithmetic—in particular half
precision (fp16)—is becoming increasingly attractive due to both its higher speed
and its lower energy consumption [5], [9], [10]. For half precision arithmetic the
unit roundoff is so large that traditional bounds cannot guarantee an accurate inner
product even for relatively small problems (of dimensions in the thousands). Yet,
machine learning algorithms do successfully run in half, or even lower, precision.

This discrepancy between theory and practice stems from the fact that traditional
rounding error bounds are worst-case bounds and so are pessimistic on average. In
most practical cases, they do not provide good estimates of the size of the error, and
in particular they overestimate the error growth, that is, the asymptotic dependence
of the error on the problem size.
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Since the beginning of the digital computer era many researchers have modeled
rounding errors as random variables in an attempt to obtain better estimates of how
the error behaves on average. These include (in chronological order) von Neumann
and Goldstine [27], Henrici [11], [12], [13], Hull and Swenson [17], Tienari [26], Barlow
and Bareiss [1], Chatelin and Brunet [7], and Calvetti [4]. These treatments typically
linearize the forward error into a sum of the form e =

∑n
i=1 δiti, with |δi| ≤ u and

where u is the unit roundoff. The key intuition is that it is very unlikely that |e| will
attain its worst-case magnitude u

∑n
i=1 |ti|, which can happen only when each δi is

of maximal magnitude and the δiti have identical signs. In most of these references
the δi are assumed to be independent random variables with mean zero, and usually
also assumed to be from a uniform distribution or a normal distribution. The central
limit theorem (e.g., [2, sec. 27]) shows that as n → ∞ the probability distribution
of e/(

∑n
i=1 t

2
i )

1/2 tends towards a normal distribution of mean zero and standard
deviation σ ≤ u; therefore for sufficiently large n, the probability that |e| will not
exceed u(

∑n
i=1 t

2
i )

1/2 times a small constant λ is very high (e.g., by the “three-sigma
rule”, it is about 99.7% for λ = 3). Compared to the worst-case constant

∑n
i=1 |ti|,

(
∑n
i=1 t

2
i )

1/2 can be smaller by a factor up to
√
n.

This probabilistic approach to rounding error analysis has led to the well-known
rule of thumb, based on informal arguments and assumptions, that constants in round-
ing error bounds can be replaced by their square roots. For example, Wilkinson applies
this rule of thumb in [28, p. 318], [29, pp. 26, 52, 102, 151]. However, a rigorous result
along these lines for a wide class of algorithms has not previously been obtained, to
our knowledge.

The goal of this work is to obtain rigorous probabilistic rounding error bounds for
a wide range of linear algebra algorithms based on a minimal number of assumptions
and to test them experimentally.

Previous probabilistic rounding error analyses suffer from four important short-
comings. Our results, based on Theorem 2.4 in the next section, overcome these
shortcomings as follows.

Backward rather than forward bounds. Previous work has almost exclusively fo-
cused on forward error bounds. We choose instead to analyze backward errors. Back-
ward error bounds have the advantage that they bound perturbations to the data
and can be interpreted without the need for condition numbers. Moreover, forward
error bounds can be directly derived from backward ones as their product with the
condition number of the problem.

Bounds correct to all orders. Rounding error analysis of a sequence of operations
leads to products of terms 1+δi with |δi| ≤ u. When these products are linearized and
the central limit theorem is applied to the first order term, bounds containing (im-
plicitly or explicitly) a “+O(u2)” term are obtained. In the proof of Theorem 2.4 we
overcome this limitation by taking the logarithm of the product, thereby transforming
it to a sum. This transformation has the drawback of introducing nonlinearities, but
we are able to bound the expected value of a random variable of the form log(1 + δi)
using Taylor expansions.

Fewer assumptions for a more rigorous proof. Some assumptions made in pre-
vious probabilistic error analysis are unnecessary. Our analysis requires only two
assumptions beyond rounding errors being bounded in modulus by u (see Model 2.1
below): that the rounding errors have mean zero and that they are independent. In
particular, in contrast to much existing work we do not assume any specific probabil-
ity distribution for the rounding errors (e.g., uniform or normal). Such assumptions
are usually made so as to bound the standard deviation σ of the rounding errors.
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However, since rounding errors are bounded by u, σ is obviously also bounded by u.
Additional assumptions on σ are thus mostly unnecessary, as they would only slightly
improve the constants in the resulting bounds. Moreover, our assumptions even allow
the rounding errors not to be identically distributed, as long as they are independent.

Finally, the major assumption that we drop is the one on the problem size n. To
the best of our knowledge, all previous work is based on the crucial assumption that
n is “sufficiently large”, which is necessary to use the central limit theorem. However,
it is difficult to quantify the accuracy of the resulting approximation for a given n. In
Theorem 2.4, we overcome this issue by using a concentration inequality (specifically,
Hoeffding’s inequality [16]) instead of the central limit theorem, and this inequality
is valid for all n.

General framework applicable to a wide class of algorithms. Modern rounding
error analysis builds on a basic result (Lemma 2.2 below) that bounds the distance
from 1 of a product

∏n
i=1(1 + δi), where |δi| ≤ u, by

(1.1) γn =
nu

1− nu
for nu < 1. We provide in Theorem 2.4 a probabilistic analogue of this result with
bounds proportional to

√
nu and with no restriction on n. We also derive corre-

sponding bounds for an inner product combined with a subtraction and a division,
matrix–vector products, matrix–matrix products, the solution of triangular systems,
and LU and Cholesky factorizations. These are all key computational kernels and so
our analysis facilitates the probabilistic error analysis of a wide class of algorithms.

We note that recent work has shown how to relax the condition nu < 1 in some
traditional analysis, at the cost of stronger assumptions on the arithmetic than (1.2)
below and more complicated proofs [20], [25].

In the next section we obtain the main result of this paper: we show that under a
certain probabilistic model the constant (1.1) in the basic result described above can
be replaced by a constant γ̃n proportional to

√
nu with probability at least a certain

value. We apply this result in section 3 to a variety of numerical linear algebra
algorithms. In section 4, we perform an extensive set of numerical experiments on
both random and real-life matrices. We provide our concluding remarks in section 5.

Throughout the paper we denote the expectation and standard deviation of a
random variable x by E(x) and σ(x), respectively. We use the following classical
model for floating-point arithmetic [14, sec. 2.2]:

(1.2) f l(a op b) = (a op b)(1 + δ), |δ| ≤ u, op ∈ {+,−,×, /,√}.

This model holds for IEEE arithmetic [19]; indeed, the IEEE standard requires more:
that fl(a op b) is the correctly rounded (to nearest) value of a op b. We will refer to δ
as the rounding error in the operation, though the absolute error a op b− f l(a op b) is
perhaps more commonly so-described.

2. Probabilistic bound for product of rounding errors. To derive our
probabilistic error bounds we will use the following model of rounding errors in a
given computation.

Model 2.1 (probabilistic model of rounding errors). In the computation of in-
terest, the quantities δ in the model (1.2) associated with every pair of operands are
independent random variables of mean zero.

Note that this model does not require the rounding errors to be identically dis-
tributed.
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Model 2.1 is clearly not always realistic. For example, in some cases δ is neces-
sarily zero, such as when the operands are (not too large) integers in an addition,
subtraction, or multiplication; when the operands in a subtraction differ by at most
a factor two and so are subtracted exactly (by Sterbenz’s result [14, Thm. 2.5]); or
when one of the operands is a power of two in a multiplication or division. Or pairs of
operands might be repeated, so that different occurrences of δ are in the fact the same.
Indeed non-pathological examples can be found where rounding errors are strongly
correlated—notably a rational function example of Kahan [14, sec. 1.17]. More subtly,
if an operand comes from an earlier computation it will depend on an earlier δ and so
the new δ will depend on the previous one, violating the independence assumption.

We can hope, nevertheless, that conclusions drawn from Model 2.1 remain approx-
imately true. Indeed, as Kahan notes [21] “The fact that rounding errors are neither
random nor uncorrelated will not in itself preclude the possibility of modelling them
usefully by uncorrelated random variables.” In a similar vein, Hull and Swenson [17]
point out that “There is no claim that ordinary rounding and chopping are random
processes, or that successive errors are independent. The question to be decided is
whether or not these particular probabilistic models of the processes will adequately
describe what actually happens.”

In backward error analysis, products of terms of the form 1 + δi or its reciprocal,
where δi is a rounding error satisfying (1.2), are ubiquitous. These products are
typically simplified by means of the following result [14, Lem. 3.1], which employs the
constant γn = nu/(1− nu) in (1.1).

Lemma 2.2 (Deterministic error bound). If |δi| ≤ u and ρi = ±1 for i = 1: n,
and nu < 1, then

n∏
i=1

(1 + δi)
ρi = 1 + θn, |θn| ≤ γn.

We now derive a probabilistic version of this result containing a constant γ̃n that is
proportional to

√
n rather than n. Note that the new constant γ̃n does not require that

nu < 1. To do so, we need to use a concentration inequality, that is, an inequality that
bounds the probability that the sum of n independent random variables Xi deviates
from its expected value by a given quantity. Several such inequalities exist [3]; we
choose to use Hoeffding’s inequality [16, Thm. 2], which requires the variables Xi to
be bounded.

Lemma 2.3 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random
variables satisfying

|Xi| ≤ ci, i = 1: n.

Then the sum S =
∑n
i=1Xi satisfies

Pr
(
|S − E(S)| ≥ ξ

)
≤ 2 exp

(
− ξ2

2
∑n
i=1 c

2
i

)
.

We are now ready to state our main result. Define

(2.1) γ̃n(λ) = exp

(
λ
√
nu+

nu2

1− u

)
− 1.
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Theorem 2.4 (Probabilistic error bound). Let δ1, δ2, . . . , δn be independent ran-
dom variables of mean zero bounded in absolute value by the unit roundoff u, and let
ρi = ±1, i = 1: n. Then for any constant λ > 0 the relation

n∏
i=1

(1 + δi)
ρi = 1 + θ̃n

holds with |θ̃n| ≤ γ̃n(λ) with probability at least

(2.2) P (λ) = 1− 2 exp

(
−λ

2(1− u)2

2

)
.

Proof. Let φ =
∏n
i=1(1 + δi)

ρi . Then log φ =
∑n
i=1 ρi log(1 + δi) is a sum of n

independent random variables. Since |δi| ≤ u < 1 for all i we can use the Taylor
expansion

log(1 + δi) =

∞∑
k=1

(−1)k+1δki
k

to obtain the upper and lower bounds

log(1 + δi) ≤ δi +

∞∑
k=2

|δi|k = δi +
δ2i

1− |δi|
,

log(1 + δi) ≥ δi −
∞∑
k=2

|δi|k = δi −
δ2i

1− |δi|
.

We therefore have

(2.3) δi −
u2

1− u
≤ log(1 + δi) ≤ δi +

u2

1− u
,

and taking the absolute value we obtain

|ρi log(1 + δi)| = | log(1 + δi)| ≤ u+
u2

1− u
=

u

1− u
.

We can therefore apply Lemma 2.3 with Xi = ρi log(1 + δi) and ci = u/(1 − u). We
obtain the bound

Pr
(
| log φ− E(log φ)| ≥ ξ

)
≤ 2 exp

(
−ξ2(1− u)2

2nu2

)
.

Moreover, by taking the expected value in (2.3) and using E(δi) = 0, we obtain

(2.4)
∣∣E(log(1 + δi))

∣∣ ≤ u2

1− u
,

and therefore E(log φ) can be bounded by linearity of the expected value:

|E(log φ)| ≤ nu2

1− u
.

We then have

| log φ− E(log φ)| ≥ | log φ| − |E(log φ)| ≥ | log φ| − nu2

1− u
,
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which yields

Pr

(
| log φ| − nu2

1− u
≥ ξ

)
≤ Pr

(
| log φ− E(log φ)| ≥ ξ

)
≤ 2 exp

(
−ξ2(1− u)2

2nu2

)
.

Therefore, with probability at least 1 − 2 exp(−ξ2(1 − u)2/(2nu2)), log φ lies within
the interval with endpoints ±(ξ+nu2/(1−u)). To make this probability independent
of n, we set ξ = λ

√
nu, for some constant λ > 0 independent of n. Then the bound

−λ
√
nu− nu2/(1− u) ≤ log φ ≤ λ

√
nu+ nu2/(1− u)

holds with probability at least

P (λ) = 1− 2 exp

(
−λ

2(1− u)2

2

)
.

Taking the exponential, the bound

e−t ≤ φ ≤ et, t = λ
√
nu+

nu2

1− u

also holds with probability at least P (λ). Then

|φ− 1| ≤ max
(
|et − 1|, |e−t − 1|

)
= et − 1

holds with probability at least P (λ). The equality θ̃n = φ− 1 concludes the proof.

Since et ≤ 1 + t/(1− t) for 0 ≤ t < 1, the constant γ̃n(λ) in (2.1) satisfies

(2.5) γ̃n(λ) ≤
λ
√
nu+

nu2

1− u

1−

(
λ
√
nu+

nu2

1− u

) = λ
√
nu+O(u2), λ

√
nu+

nu2

1− u
< 1.

Note that γ̃n(λ) is defined for any n, though the bound (2.5) requires λ
√
nu+nu2/(1−

u) < 1.
The probability P (λ) in (2.2) is independent of n. Moreover, it rapidly approaches

1 as λ increases and is essentially independent of u, as shown in Table 2.1.
It is also important to note that the second order part of the argument of the

exponential in (2.1) is innocuous. The argument is λ(
√
nu) + (

√
nu)2/(1− u), so for

λ ≥ 1 (say) the second order term is smaller than the first order term unless the
latter is of order 1, in which case the error bound of Theorem 2.4 provides no useful
information.

Many rounding error analyses rely on Lemma 2.2 and can therefore potentially
yield probabilistic bounds if they are adapted to make use of Theorem 2.4. In the
next section we explore some examples from numerical linear algebra.

3. Application to numerical linear algebra. We now apply Theorem 2.4
within the error analysis of a variety of algorithms in numerical linear algebra. We
aim to derive probabilistic bounds that have the same form as the original ones but
with γn replaced by γ̃n(λ).
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Table 2.1: Values of P (λ) in (2.2) to four decimal places for half precision (fp16) and
double precision (fp64) arithmetic.

λ fp16 fp64
2 0.7288 0.7293
3 0.9777 0.9778
4 0.9993 0.9993
5 1.0000 1.0000

3.1. Inner products. We first apply Theorem 2.4 to the computation of the
inner product of two vectors. Recall that γ̃n(λ) and P (λ) are defined in (2.1) and
(2.2), respectively. We define

(3.1) Q(λ, n) = 1− n(1− P (λ)).

Note that Q can be negative, but Q(λ, n) ∈ [0, 1] for sufficiently large λ. Here,
and throughout, inequalities between matrices and vectors hold componentwise: thus
|A| ≤ |B| means that |aij | ≤ |bij | for all i and j.

Theorem 3.1 (inner products). Let y = aT b, where a, b ∈ Rn, be evaluated in
floating-point arithmetic. Under Model 2.1, no matter what the order of evaluation
the computed ŷ satisfies

ŷ = (a+∆a)T b, |∆a| ≤ γ̃n(λ)|a|,(3.2)

= aT (b+∆b), |∆b| ≤ γ̃n(λ)|b|,(3.3)

with probability at least Q(λ, n).

Proof. Assume, first, that the sum sn = a1b1 + · · · + anbn is evaluated from left
to right, i.e., with the recursive relation si = si−1 + aibi, starting with s0 = 0. The
computed intermediate quantities ŝi satisfy

(3.4) ŝi =
(
ŝi−1 + aibi(1 + εi)

)
(1 + δi), |εi|, |δi| ≤ u,

where εi and δi represent the rounding errors from the products and additions, re-
spectively, and δ1 = 0. We therefore have

(3.5) ŝn =

n∑
i=1

aibi(1 + εi)

n∏
j=max(i,2)

(1 + δj) =:

n∑
i=1

aibi(1 + ψi),

where by Theorem 2.4 |ψi| ≤ γ̃n−max(i,2)+2(λ) holds for any particular i with proba-
bility at least P (λ). For a given i, the latter bound fails to hold with probability at
most 1 − P (λ), therefore by the inclusion–exclusion principle [30, p. 39] the bound
fails to hold for at least one i with probability at most n(1 − P (λ)). It follows that
the probability that the bounds hold for all i is at least Q(λ, n). Clearly, |ψi| ≤ γ̃n(λ)
holds for all i with at least the same probability, and it is not hard to see that this
bound holds for any ordering.

From the backward error bound of Theorem 3.1 we immediately have the forward
error bound

(3.6)
|y − ŷ|
|y|

≤ γ̃n(λ)
|a|T |b|
|aT b|
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with the same probability bound.
Next we analyze an important kernel that appears in the solution of triangular

systems and in LU factorization.

Theorem 3.2. Let y =
(
c −

∑k−1
i=1 aibi

)
/bk be evaluated in floating-point arith-

metic. Under Model 2.1, no matter what the order of evaluation the computed ŷ
satisfies

(3.7) ŷbk
(
1 + µ0

)
= c−

k−1∑
i=1

aibi(1 + µi),

where |µi| ≤ γ̃k(λ) for all i, with probability at least Q(λ, k).

Proof. Assume for the moment that we first form the sum sk−1 = a1b1 + · · · +
ak−1bk−1 and then subtract the result from c and divide by bk. Then

ŷ =
(c− ŝk−1)

bk
(1 + δk)(1 + δk+1), |δk|, |δk+1| ≤ u,

and so by (3.5)

ŷbk(1 + δk)−1(1 + δk+1)−1 = c−
k−1∑
i=1

aibi(1 + εi)

k−1∏
j=max(i,2)

(1 + δj).

Applying Theorem 2.4 to each of the rounding error terms gives

(3.8) ŷbk(1 + ψ0) = c−
k−1∑
i=1

aibi(1 + ψi),

where |ψ0| ≤ γ̃2(λ) holds with probability at least P (λ) and |ψi| ≤ γ̃k−max(i,2)+1(λ)

holds for any particular i with probability at least P (λ). By the same reasoning as
in the proof of Theorem 3.1, these inequalities on |ψi| hold for i = 0: k − 1 with
probability at least Q(λ, k).

Different orderings of the evaluation will give different expressions of the form
(3.8) with different numbers of (1 + δi)

±1 terms corresponding to each 1 + ψi, but
there can never be more than k such terms. The worst case, which leads to γ̃k(λ), is
when the subtraction with c is done first—see [14, Lem. 8.2]. The theorem as stated
therefore holds for any ordering.

Note that Theorem 3.2 is a backward error result showing that the computed ŷ
is the exact result for a perturbed set of bi. Alternatively, the result can be recast to
perturb the ai and c instead of the bi.

3.2. Matrix–vector and matrix–matrix products. Building on the error
analysis for inner products we can obtain results for matrix–vector and matrix–matrix
products.

Theorem 3.3 (Matrix–vector products). Let A ∈ Rm×n, x ∈ Rn, and y = Ax.
Under Model 2.1, the computed result ŷ satisfies

(3.9) ŷ = (A+∆A)x, |∆A| ≤ γ̃n(λ)|A|

with probability at least Q(λ,mn).
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Proof. The vector y is obtained via m inner products yi = aTi x, where ai is the
ith row of A. By Theorem 3.1, we know that

(3.10) ŷi = (ai +∆ai)
Tx, |∆ai| ≤ γ̃n(λ)|ai|

holds with probability at least Q(λ, n). Combining the m instances of (3.10) for
i = 1: m, we have that (3.9) holds with probability at least 1 − m(1 − Q(λ, n)) =
Q(λ,mn).

Theorem 3.4 (Matrix–matrix products). Let C = AB with A ∈ Rm×n and

B ∈ Rn×p. Under Model 2.1, the jth column of the computed Ĉ satisfies

(3.11) ĉj = (A+∆Aj)bj , |∆Aj | ≤ γ̃n(λ)|A|, j = 1: n,

with probability at least Q(λ,mn), and hence

(3.12) |C − Ĉ| ≤ γ̃n(λ)|A||B|

with probability at least Q(λ,mnp).

Proof. Equation (3.11) is simply an application of Theorem 3.3. The bound
(3.12) follows by combining the p instances of (3.11) and from the fact that 1− p(1−
Q(λ,mn)) = Q(λ,mnp).

The two loops used to evaluate a matrix–vector product can be ordered in an “ij”
form based on inner products or a “ji” form based on vector operations. While the
proof of Theorem 3.3 assumes the use of inner products, the error bound is nevertheless
applicable to both orderings. As for standard error analysis [14, sec. 3.5], different
orderings result in the same operations being performed in a different order, so the
same rounding errors are generated but in a different order and the same error bounds
are satisfied. The same is true for Theorem 3.4, with the six possible orderings of the
three nested loops underlying a matrix product. In the rest of this paper we will
implicitly use this equivalence of different orderings.

3.3. LU factorization and linear systems. In the following three theorems
we give probabilistic backward error bounds for triangular systems, LU factorization,
and general linear systems.

Theorem 3.5 (Solution of triangular systems). Let the triangular system Tx =
b, where T ∈ Rn×n is nonsingular, be solved by substitution. Under Model 2.1, the
computed solution x̂ satisfies

(3.13) (T +∆T )x̂ = b, |∆T | ≤ γ̃n(λ)|T |,

with probability at least Q(λ, n(n+ 1)/2).

Proof. Assuming, without loss of generality, that T is lower triangular, we have
xi =

(
bi −

∑i−1
j=1 tijxj

)
/tii, i = 1: n. By Theorem 3.2, for any i we have

(3.14) tiix̂i(1 + µi) = bi −
i−1∑
j=1

tij x̂j(1 + µj), |µj | ≤ γ̃i(λ), j = 1: i

with probability at least Q(λ, i). The probability of (3.14) holding for all i is therefore
at least

1−
n∑
i=1

(1−Q(λ, i)) = 1−
n∑
i=1

i(1− P (λ)) = Q(λ, n(n+ 1)/2).

The result follows by weakening the bounds on |µj | to γ̃n(λ).
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Theorem 3.6 (LU factorization). If Gaussian elimination applied to A ∈ Rn×n

runs to completion then under Model 2.1 the computed LU factors L̂ and Û satisfy

(3.15) A+∆A = L̂Û , |∆A| ≤ γ̃n(λ)|L̂||Û |

with probability at least Q(λ, n3/3 + n2/2 + n/6).

Proof. The Doolittle form of Gaussian elimination [14, secs. 2.2, 2.3] gives the
following recurrences for the LU factors:

ukj = akj −
k−1∑
i=1

lkiuij , j = k : n

lik =

(
aik −

k−1∑
j=1

lijujk

)/
ukk, i = k + 1: n


k = 1: n.

We apply Theorem 3.2 to each of these n2 equations. This readily gives (3.15) with
probability at least

1−
n∑
k=1

[
(n− k + 1)(1−Q(λ, k)) + (n− k)(1−Q(λ, k))

]
= 1−

n∑
k=1

[
(2n+ 1− 2k)(1−Q(λ, k))

]
= 1−

n∑
k=1

[
(2n+ 1)k − 2k2

]
(1− P (λ))

= 1−
[
(2n+ 1)n(n+ 1)/2− 2n(n+ 1)(2n+ 1)/6

]
(1− P (λ))

= Q(λ, n3/3 + n2/2 + n/6).

Theorem 3.7 (Linear system). Let A ∈ Rn×n and suppose Gaussian elimination
produces a computed solution x̂ to Ax = b. Under Model 2.1,

(3.16) (A+∆A)x̂ = b, |∆A| ≤
(
3γ̃n(λ) + γ̃n(λ)2

)
|L̂||Û |,

holds with probability at least Q(λ, n3/3 + 3n2/2 + 7n/6).

Proof. From Theorem 3.6, L̂Û = A + ∆A1, where |∆A1| ≤ γ̃n(λ)|L̂||Û | with
probability at least Q(λ, n3/3 + n2/2 + n/6). By Theorem 3.5, the triangular solves
produce ŷ and x̂ satisfying

(L̂+∆L)ŷ = b, |∆L| ≤ γ̃n(λ)|L̂|,

(Û +∆U)x̂ = ŷ, |∆U | ≤ γ̃n(λ)|Û |,

each inequality holding with probability at least Q(λ, n(n+ 1)/2). Thus

b = (L̂+∆L)(Û +∆U)x̂

= (A+∆A1 + L̂∆U +∆LÛ +∆L∆U)x̂

= (A+∆A)x̂,

where
|∆A| ≤

(
3γ̃n(λ) + γ̃n(λ)2

)
|L̂||Û |

10



holds with probability at least one minus the probability that one of the bounds for
∆A1, ∆L, and ∆U is violated, namely

1− (1−Q(λ, n3/3 + n2/2 + n/6))− 2(1−Q(λ, n(n+ 1)/2)),

which yields the result.

3.4. Cholesky factorization. We also give a result for Cholesky factorization,
because symmetry brings an improvement in the probability compared with LU fac-
torization.

Theorem 3.8. If Cholesky factorization applied to the symmetric positive definite
matrix A ∈ Rn×n runs to completion then the computed factor R̂ satisfies

(3.17) R̂TR̂ = A+∆A, |∆A| ≤ γ̃n+1(λ)|R̂T ||R̂|

with probability at least Q(λ, n3/6 + n2/2 + n/3).

Proof. The recurrences for R can be written

rij =

(
aij −

i−1∑
k=1

rkirkj

)/
rii, i = 1: j − 1

rjj =

(
ajj −

j−1∑
k=1

r2kj

)1/2


j = 1: n.

We apply Theorem 3.2 to each of the n(n− 1)/2 equations for the rij with i < j. For
rjj we need an analogue of Theorem 3.2 in which a square root replaces the division
(cf. [14, Prob. 10.4]): the constant is γ̃k+1(λ) and the probability remains Q(λ, k).
We readily find that (3.17) holds with probability at least

1−
n∑
j=1

[(
j−1∑
i=1

1−Q(λ, i)

)
+ 1−Q(λ, j)

]

= 1−
n∑
j=1

(j2/2 + j/2)(1− P (λ))

= 1−
(
n(n+ 1)(2n+ 1)/12 + n(n+ 1)/4

)
(1− P (λ))

= Q(λ, n3/6 + n2/2 + n/3).

The interesting feature of Theorem 3.8 is that the argument f(n) in the probability
Q(λ, f(n)) for Cholesky factorization is about half that for LU factorization. The
reason is that there are half as many invocations of Theorem 3.2, which is essentially
because there are half as many flops, and hence half as many probabilistic events that
need to hold. In fact, for all the algorithms analyzed in this section, the argument f(n)
in the probability is approximately half the flop count, that is, the bounds hold with
probability approximately Q(λ,flops/2); this is a direct consequence of Theorem 3.1:
an inner product requires 2n − 1 flops and the error bound holds with probability
Q(λ, n).

3.5. Assessment of constant and probabilities. Two features of Theorems 3.1–
3.8 deserve comment. First, the constant γ̃n(λ) passes through essentially unchanged
from Theorem 2.4, maintaining the

√
nu proportionality of the bounds. By compari-

son, the corresponding standard deterministic bounds are proportional to nu [14].
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Table 3.1: Values of Q(λ, n3/3) for several n and λ, for single precision arithmetic.
The results are shown to 5 significant figures.

λ 106 107 108 109 1010

10.0 9.9987e−01 8.7142e−01 −1.2758e+02 −1.2858e+05 −1.2858e+08
10.5 1.0000e+00 9.9924e−01 2.3542e−01 −7.6358e+02 −7.6458e+05
11.0 1.0000e+00 1.0000e+00 9.9646e−01 −2.5407e+00 −3.5397e+03
11.5 1.0000e+00 1.0000e+00 9.9999e−01 9.8723e−01 −1.1770e+01
12.0 1.0000e+00 1.0000e+00 1.0000e+00 9.9996e−01 9.6413e−01
12.5 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 9.9992e−01
13.0 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00

The second important feature is that the overall probability Q(λ, f(n)) depends
on the problem dimensions, where f(n) is as large as n3/3 + 3n2/2 + 7n/6 for the
solution of Ax = b by LU factorization. An important question is thus how fast λ
must increase in order that Q(λ, cn3), where c is a constant as in our bounds, stays
independent of n. Write P (λ) as P (λ) = 1 − ε, where ε = 2 exp(−λ2(1 − u)2/2).
Then, recalling the definition (3.1), we have Q(λ, cn3) = 1− cn3ε. Thus ε = O(1/n3)
is enough to ensure that Q(λ, cn3) is bounded below independent of n. From the
expression of ε, it is easy to check that λ must therefore increase proportionally
to
√

log n, which represents an extremely slow increase. The dependence on n of
Q(λ, f(n)) therefore does not cause any serious deterioration in the probabilities as
long as we increase λ a little.

Table 3.1 shows values of Q(λ, n3/3) for double precision arithmetic, a range of
n up to 1010, and λ = 10: 13. In order to avoid cancellation affecting the results
the values are computed at 100-digit precision using the Multiprecision Computing
Toolbox [23] and then rounded to the accuracy shown. For λ = 13, we have a
probability of 1.0000 for n ≤ 1010 (the same is true for half precision, which is not
shown in the table); this value of λ therefore suffices for the largest dense linear
systems that will be solved on exascale computers. Furthermore, as we show in the
next section, the probability Q(λ, f(n)) is actually very pessimistic and in practice
the bounds hold with much smaller values of λ.

4. Numerical experiments. We now present a set of numerical experiments
designed to give insight into our probabilistic bounds. The experiments have three
main aims: to test the sharpness of the bounds and the probabilities; to compare the
rate of growth of the error with n with that of the probabilistic (γn(λ) ≈

√
nu) and

deterministic (γn ≈ nu) bounds; and to check whether the probabilistic bounds are
applicable at all, since they were derived under Model 2.1.

These experiments are carried out with MATLAB R2018b. Computations are
performed in single precision, except in section 4.1.2, where half (fp16) and quarter
(fp8) precisions are used, and section 4.5, where double precision is used. Half preci-
sion (corresponding to the IEEE standard) and quarter precision (not standard, and
as suggested in [22]) are simulated with the rounding function chop.m from [15]. The
“exact” quantities appearing in the backward error formulas for inner products and
matrix-vector products are computed in double precision.

In sections 4.1–4.4 we use randomly generated matrices and vectors. We compare
different types of distributions, in particular

• random uniform [0, 1]: rand(m,n);
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• random uniform [−1, 1]: (rand(m,n)-0.5)*2;
• random constant: rand*ones(m,n).

In order to make the experiments reproducible, we use rng(1) to seed the random
number generator at the beginning of each script generating a figure of this section.
We have made these scripts available online2. For each size of problem n, we run
the same experiment Ntest times and plot the maximum and mean backward errors,
denoted by εmax

bwd and εmean
bwd , respectively. We have set Ntest = 100 for Figures 4.1,

4.2, and 4.4a, and Ntest = 10 for Figures 4.6 and 4.7. We compare these backward
errors with their deterministic and probabilistic bounds γn and γ̃n(λ). Throughout
this section, the probabilistic bounds are plotted taking λ = 1. In Section 4.5 we
report numerical results on a large set of real-life matrices coming from a variety of
applications, taken from the SuiteSparse collection [8].

The inner product and matrix–vector product computations were implemented
in MATLAB using loops such as, for x = aT b,
x = 0;

for i=1:n

x = x + a(i)*b(i);

end

This code corresponds to our analysis, where every floating-point operation involves a
rounding, so that the model (1.2) of floating-point arithmetic is applicable throughout.
If we compute the inner product as x = a’*b then, depending on the details of how
the underlying BLAS operation is coded and optimized, the sum could be accumulated
using fan-in (a binary tree) or with extra precision for intermediate quantities, both
of which can make the constants in our analysis and the traditional deterministic
bounds pessimistic by a factor up to n [6].

4.1. Inner products. We first report numerical experiments with inner prod-
ucts y = aT b. We record the backward error of the computed ŷ,

(4.1) εbwd = min
{
ε ≥ 0 : ŷ = (a+∆a)T b, |∆a| ≤ ε|a|

}
=
|ŷ − y|
|a|T |b|

,

the latter equality being a special case of (4.3) below. We compare the backward error
with our probabilistic bound γ̃n(λ) from Theorem 3.1 and the deterministic bound
γn [14, Eq. (3.4)].

4.1.1. Random uniform vectors. We consider the case where the vectors a
and b have random entries from the uniform [0, 1] or uniform [−1, 1] distributions. The
results, plotted in Figure 4.1, show that the probabilistic bound, plotted with λ = 1,
is in much better agreement with the actual backward error than the deterministic
one and is sharp for the [0, 1] data. In theory, the probabilistic bound can only be
guaranteed to hold with high probability for λ & 6. Nevertheless, out of 5000 runs
(50 different problem sizes times Ntest = 100), the bound holds with λ = 1 in all cases
except one (which would require a slightly higher value λ = 1.02) in Figure 4.1a and
in all cases in Figure 4.1b. Therefore, the probability Q(λ, n) is extremely pessimistic.

However, and perhaps most importantly, in the case of vectors with entries on [0, 1]
(Figure 4.1a) the probabilistic bound successfully captures the asymptotic behavior
of the error growth, which follows

√
n rather than n. Interestingly, this is not the case

for vectors with entries on [−1, 1] (Figure 4.1b). Since our theory does not assume
the data to follow any specific random distribution, and since the probabilistic bound

2https://gitlab.com/theo.andreas.mary/proberranalysis
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(a) Random uniform [0, 1] vectors.
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(b) Random uniform [−1, 1] vectors.

Fig. 4.1: Backward error and its bounds for the computation in single precision of
the inner product y = aT b, for vectors a and b with random uniform entries. Here,
Ntest = 100 and λ = 1.

is sharp for the [0, 1] data, we conclude that it cannot be further improved without
additional assumptions.

4.1.2. Lower precision arithmetics. Now we repeat the experiment from sec-
tion 4.1.1 with uniform [0, 1] vectors a and b but using precisions lower than single to
compute the inner product y = aT b. We report the results using fp16 (u = 2−11) and
fp8 (u = 2−4) arithmetics in Figures 4.2a and 4.2b, respectively. The results lead to
the same conclusions as when using single precision. Importantly, the deterministic
bound is unable to guarantee even a single digit of accuracy when n ≥ 103 in fp16,
and yet the error is only of order 10−2. Our probabilistic bound is able to successfully
explain and predict this behavior. This effect is even clearer with fp8 arithmetic.

4.2. Two cases where Model 2.1 is invalid. In this section, we present two
cases where Model 2.1 is invalid and the probabilistic bound does not hold. In the
first case the rounding errors have nonzero mean and in the second case they are
dependent.

4.2.1. Very large nonnegative vectors: rounding errors have nonzero
mean. We consider the inner product of two vectors a and b of very large size n =
108. Their entries are sampled from the uniform [0, 1] distribution and are thus
nonnegative. In Figure 4.3a, we plot the backward error and its bounds at each step
i of the algorithm. As expected and previously analyzed (see Figure 4.1a), the error
is in good agreement with the probabilistic bound (here, with λ = 1) for moderate
values of i. However, for large values of i (starting at around 106), the error starts
increasing rapidly and violates the probabilistic bound. Increasing λ is not sufficient
in this case, because for i ≥ 106 the error increases at a faster rate than the bound.
Model 2.1 is thus clearly invalid in this case.

The explanation is that for large nonnegative vectors the value of the inner prod-
uct y = aT b is large, whereas each increment aibi is (potentially much) smaller and

certainly bounded by 1. Let yi be the partial sum
∑i−1
k=1 akbk, so that yi+1 = yi+aibi.
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(b) fp8 (quarter precision) arithmetic.

Fig. 4.2: Backward error and its bounds for the computation of the inner product aT b
for random uniform [0, 1] vectors in lower precision arithmetic. Here, Ntest = 100 and
λ = 1. γn and γ̃n are plotted as 1 when their value exceeds 1.

The computed ŷi+1 satisfies, by (1.2),

(4.2) ŷi+1 = fl(ŷi + fl(aibi)) = (ŷi + fl(aibi))(1 + δi).

If n is very large, then at some point yi will become so large that incrementing it
by fl(aibi) will not change its computed value, that is, ŷi+1 = ŷi. Specifically, let
q be the integer such that 2q−1 ≤ yi < 2q; the spacing between each floating point
number in this interval is 2qu. Therefore, if f l(aibi) < 2q−1u, we have ŷi+1 = ŷi and
so by (4.2) ŷiδi + fl(aibi)(1 + δi) = 0, that is, δi = − f l(aibi)/(ŷi + fl(aibi)) < 0. As i
and thus ŷi and q increase, the probability that f l(aibi) < 2q−1u also increases. It is
thus clear that as i increases the mean of the errors δi will deviate from zero, which
violates the assumption made by Model 2.1. This is illustrated in Figure 4.3b, which
shows a histogram of the values of δi. For i ≤ 106 the δi have a distribution of mean
approximately zero, but for 106 ≤ i ≤ 108 the mean is significantly smaller than zero.

We note that in half precision this issue arises as soon as n ≈ 104 (cf. Figure 4.2a).

4.2.2. Constant vectors: rounding errors not independent. We now per-
form the same experiment as in section 4.1.1 but with vectors a and b for which
ai = α, bi = β, i = 1: n, where α and β are from the uniform [0, 1] distribution.
This experiment leads to a very different result. Indeed, as shown in Figure 4.4a, the
probabilistic bound does not bound the error. Indeed the probabilistic bound has a
slower asymptotic growth than the error, which is unaffected by increasing λ (which
has only a constant effect on a logarithmic scale), so clearly Model 2.1 is not valid for
this constant data.

The explanation is that, in this case, the δi in the proof of Theorem 3.1 are
not independent and thus Model 2.1 is violated. In fact, all computed quantities
ŝi that lie between the same consecutive powers of two produce the same rounding
error. As illustrated in Figure 4.5, since the spacing between floating-point numbers
is constant between consecutive powers of two, and since the increments aibi = αβ
are also constant, the errors in the sums ŝi = fl(ŝi−1 + fl(αβ)) must be constant as
well.
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(a) Backward error and its bounds at step i. (b) Distribution of δi for i = 1 : 106 (top) and i =
106 : 108 (bottom).

Fig. 4.3: Computation of the inner product of two vectors a and b of size n = 108

from the uniform [0, 1] distribution. Here, λ = 1 and γi is plotted as 1 when iu > 1.

This phenomenon is illustrated in Figure 4.4b, for n = 104. Each time ŝi crosses a
power of two, the rounding error being accumulated changes. If it remains of the same
sign, the overall error keeps increasing (this is what happens, e.g., around i ≈ 850
and i ≈ 3400), whereas if it switches sign, the overall error first decreases until it
crosses the exact result and starts increasing again (this is what happens, e.g., around
i ≈ 1700 and i ≈ 6800).

We mention that the phenomenon of successive rounding errors reinforcing rather
than cancelling was observed and analyzed by Huskey and Hartree [18] in the numer-
ical solution of differential equations on the ENIAC .

4.3. Matrix–vector products. Next, we consider matrix–vector products y =
Ax, where A ∈ Rn×n. We compute the backward error

εbwd = min{ ε ≥ 0 : ŷ = (A+∆A)x, |∆A| ≤ ε|A| } = max
i

|ŷ − y|i
(|A||x|)i

,(4.3)

where the latter formula follows from the Oettli–Prager theorem [14, Thm. 7.3], [24].
In Figure 4.6 we compare the backward error with the probabilistic bound given

by Theorem 3.3, with constant γ̃n(λ) and the deterministic bound with constant γn
[14, sec. 3.5]. Similarly to the case for inner products, the probabilistic bound can be
guaranteed to hold with high probability only for λ & 7, yet λ = 1 leads to only 63
cases out of 500 violating the bound and for λ = 1.24 the bound holds in every case.
Even though the probability is pessimistic, the bound γ̃n(λ) itself is quite sharp in
the [0, 1] case and successfully predicts the error growing proportionally to

√
n.

4.4. Linear systems. We now consider the solution of linear systems Ax = b
via LU factorization. We compute the backward error

εbwd = min{ ε ≥ 0 : (A+∆A)x̂ = b+∆b, |∆A| ≤ ε|L̂||Û | }

= max
i

|Ax̂− b|i
(|L̂||Û ||x̂|)i

,(4.4)
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Fig. 4.4: (a): backward error and its bounds for the inner product sn = aT b of two
random vectors a and b with constant entries from the uniform [0, 1] distribution.
Here, Ntest = 100 and λ = 1. (b): Backward error at step i of the computation of
sn with n = 104. Vertical dashed lines indicate the values of i for which ŝi crosses a
power of two.
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Fig. 4.5: Illustration of the fact that the error θi = si+incr− ŝi+1 is constant between
consecutive powers of two when the increment fl(aibi) = incr is constant (here, ŝi is
the first instance of the sum in the interval [2q−1, 2q]).
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Fig. 4.6: Backward error and its bounds for the matrix–vector product y = Ax, with
a matrix A and vector x with random uniform entries. Here, Ntest = 10 and λ = 1.
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(b) Random uniform A and x from [0, 1].

Fig. 4.7: Backward error and its bounds for the solution of linear systems Ax = b,
where A and x have with random uniform entries. Here, Ntest = 10 and λ = 1.

where the latter formula is obtained from the Oettli–Prager theorem [14, Thm. 7.3],

[24]. Here we are measuring the backward error relative to |L̂||Û | instead of |A|,
consistently with Theorem 3.7, but also in order to avoid any instability (necessarily
corresponding to large element growth) affecting the interpretation of the results.

In Figure 4.7 we compare the backward error with its bound from Theorem 3.7.
The case of linear systems is quite different from the other kernels analyzed in the
previous sections because the LU factors of a nonnegative matrix may have entries of
both positive and negative signs, and thus even if A and b have [0, 1] entries x usually
does not. For this reason, for A and b randomly generated with uniform entries,
the error is similar regardless of whether the entries are in [0, 1] (see Figure 4.7a) or
[−1, 1] (not shown), and does not grow with n. In this case, the probabilistic bound
is pessimistic, albeit substantially smaller than the deterministic bound.

If instead we generate the solution vector x to have random uniform entries in
[0, 1], then the error grows much more rapidly and the probabilistic bound becomes
almost sharp (see Figure 4.7b). Therefore, even for linear systems, there exists some
data sets for which the probabilistic bound is almost sharp under the assumptions of
Model 2.1.

4.5. Numerical experiments on real-life matrices. In real-life applications
matrices are not usually randomly generated. It is therefore important to check
whether the probabilistic bounds that we have shown in the previous subsections
can give good predictions for random matrices can also do so for matrices coming
from various applications. In this section we perform numerical experiments with
linear systems with matrices A from the SuiteSparse collection [8]. We selected all
the square matrices in the collection with 10 ≤ n ≤ 104; this corresponds to a set of
1164 matrices. The right-hand side b is also provided for 309 of these matrices; for
the remaining cases, we generate it randomly with [0, 1] uniform entries. Since many
of these matrices are ill conditioned we perform computations in double rather than
single precision, so as to minimize the number of matrices that are singular to the
working precision.
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Fig. 4.8: Backward error and its bounds for LU factorization and the solution of a
linear system Ax = b for a set of matrices from the SuiteSparse collection sorted by
size. Here, λ = 1.

We first compute the LU factorization of A and measure the backward error

εbwd = max
i

|A− L̂Û |i
(|L̂||Û |)i

.

For 25 of these real-life matrices, the backward error violates the deterministic, worst-
case bound γn due to a large amount of underflow, which is not included in our stan-
dard floating-point model (1.2). We filter these matrices out and plot the backward
errors for the LU factorization for the remaining 1139 matrices in Figure 4.8a. Then
we use the computed LU factors to solve the system Ax = b. For an additional 195
matrices, we are unable to compute a solution because the U factor is singular. We
are left with 944 matrices, for which we plot the linear system backward errors in
Figure 4.8b.

The probabilistic bound holds with λ = 1 for all but two matrices for LU factor-
ization and one matrix for the solution of Ax = b. Increasing λ to 2.26 makes it hold
for every matrix. The probabilistic bound often exceeds the actual error by still a few
orders of magnitude but is closer to the actual backward error than the deterministic
bound by several orders of magnitude.

4.6. Discussion. From the numerical experiments presented in this section, we
can draw the following overall conclusions.

• The values of Q(λ, f(n)) that provide a lower bound on the probability of our
bounds holding are extremely pessimistic. The probabilistic bounds hold in
all cases with a value of λ smaller than 2.26. While our analysis in section 3.5
suggests that λ should increase asymptotically like

√
log n, in order to keep

the probability bound independent of n, we have not detected any such effect
in our experiments.

• The constant γ̃n(λ) in the probabilistic bounds can be sharp, both in the
sense of yielding sharp bounds (as in Figure 4.6a) and, more importantly, in
correctly predicting that the error grows like

√
n. Therefore without any as-
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sumption on the matrices and vectors, or further assumptions on the rounding
errors, the probabilistic bounds cannot be improved upon.

• Overall, the experiments show that our probabilistic Model 2.1 can give useful
predictions of the backward error for both random matrices and matrices
from real-life applications. The examples in sections 4.2.1 and 4.2.2, however,
reveal two situations in which the assumptions in the model do not hold and
the probabilistic bound can then be violated.

• For matrices and vectors with elements from the uniform [−1, 1] distribution
we have observed the backward errors to be much smaller than for the uniform
[0, 1] case, and to grow little, or not at all, with n. Even the probabilistic
bounds are pessimistic in this case. Explaining the difference between the
[0, 1] and [−1, 1] cases is an interesting question for future research.

5. Conclusions. We have shown that under the assumption that rounding errors
are independent and of zero mean, probabilistic backward error bounds for several
key matrix and vector operations can be obtained that have exactly the same form
as classic deterministic bounds, but are of order λ

√
nu instead of nu, for a constant

λ. Strictly, λ should be proportional to
√

log n in order to keep the probabilities
from decaying with n, but this term is less than 5 for dense linear systems that can
currently be solved, that is, for n ≤ 108.

The new bounds hold with a probability bounded below by a quantity Q(λ, f(n)),
and λ = 12 suffices to give a probability within 10−7 of 1 for n ≤ 108 for matrix
factorizations. Even this value is pessimistic, as throughout our tests the probabilistic
bounds held with λ = 2.26, except in two tests where the model is not applicable.

Our analysis therefore provides the first rigorous justification of the rule of thumb
that one can take the square root of the constant in a deterministic error bound to
obtain a more realistic bound that takes account of statistical effects in rounding error
propagation. Moreover, our results apply for any n, not just for sufficiently large n,
as would be the case for results based on the central limit theorem.

A key question underlying any probabilistic analysis is whether the results it
produces are useful for error estimation and for predicting the asymptotic rate of
error growth with problem dimension. Our experiments show that the probabilistic
bounds are indeed useful for both random matrices and real-life matrices from the
SuiteSparse collection. However, we identified two situations involving inner products
in which the underlying assumptions are not valid and the bounds do not apply: large
nonnegative vectors, for which the rounding errors eventually have nonzero mean, and
constant vectors for which the rounding errors are dependent. Clearly, care is required
in applying and interpreting the probabilistic error bounds.

In future work we will explore further applications of our probabilistic analysis.
We will also modify our analysis to allow for inner products and matrix–vector and
matrix-matrix multiplications being implemented in optimized forms that use extra
precision internally, as is often the case in modern processors.
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