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Abstract

This works concerns the propagation of waves in periodic media, whose microstruc-
ture is optimized to obtain specific dynamical properties (typically, to maximize the
dispersion in given directions). The present study, focusing on scalar waves in two
dimensions, e.g. antiplane shear waves, aims at setting a generic optimization frame-
work. The proposed optimization procedure relies on a number of mathematical and
numerical tools. First, the two-scale asymptotic homogenization method is deployed
up to second-order to provide an effective dispersive model. Simple dispersion indi-
cators and cost functionals are then considered on the basis of this model. Then, the
minimization of these functionals is performed thanks to an algorithm that relies on
the concept of topological derivative to iteratively perform phase changes in the unit
cell characterizing the material. Finally, FFT-accelerated solvers are extensively used
to solve the cell problems underlying the homogenized model. To illustrate the pro-
posed approach, the resulting procedure is applied to the design of anisotropic media
with maximal dispersion in specific directions, and to the reconstruction of unknown
microstructures from effective phase velocity data.
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1 INTRODUCTION

The interest for sonic and phononic crystals1, i.e. (most often) periodically microstructured composites supporting acoustic or
elastic wave propagation, has been growing in the past years. These structures, also often calledmetameterials2,3, present excep-
tional dispersive properties. In particular, for specific range of frequencies (the so-called band-gaps), only exponentially decaying
waves can propagate through the structure, due to inner resonances4,5,6 or Bragg effects. These properties make them ideal
candidates for a wide range of applications3, from sound insulators7 to directional wave propagation8 and seismic protections5.
To determine good candidates of microstructure that exhibit these phenomena or to tune their characteristics, many opti-

mization strategies were developed. For metamaterials realized from selected geometric designs, e.g. laminated composites or
arrays of specific resonators4,5, one aims at optimizing the physical or geometric parameters of these designs. For situations
where only the constitutive materials of the sought composite are imposed, topological optimization procedures, determining
the distribution of these materials, are deployed.
Many of these optimization strategies (see e.g. the works4,9,8) lean on the Floquet-Bloch theory that describes standing waves

in periodic composites10,1. This approach covers all frequencies but requires the (possibly costly) computation of eigenfrequen-
cies and eigenmodes of the Bloch problems. If one is interested only in a specific band of frequencies (e.g. the low-frequency
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regime, or near one of the Bloch frequency), an alternative way is to rely instead on an effective description of the material,
given by an homogenization process10,11, and the cost functional to be minimized can be written in terms of the coefficients of
the considered effective model. In particular, the two-scale asymptotic homogenization10 is a convenient choice, as the effec-
tive coefficients are determined from the solutions of cell problems posed on the periodicity cell. Standard PDE-constraint
optimization algorithms can then be used on the basis of these cell problems. This approach is commonly used in static to opti-
mize the stiffness properties of elastic composites e.g.12,13,14. It was recently extended to the optimization of the low-frequency
dynamics of regular15 and highly-contrasted composites6, and also to higher-frequency regimes16 (in this latter case, both Bloch
eigenvalue problems and asymptotic homogenization are needed to describe the wave motion17,18).
In the present paper, as in15, we focus on the low-frequency dispersive effects of periodic materials, using the effective descrip-

tion provided by the second-order asymptotic homogenization19,20 to set the optimization problem. The effective wave equation
is then enriched with additional micro-stiffness and micro-inertia terms featuring higher-order derivatives of the wavefield, sim-
ilarly to the so-called gradient elasticity models21,22. The dispersive effects are described by the tensor-valued coefficients that
characterize these additional terms (e.g. the so-called fourth-order Burnett tensor 20). The microstructures corresponding to the
bounds of these tensors (i.e. to minimal or maximal amplitudes of dispersive effects) are known analytically only in simplified
1D cases23 or for specific classes of microstructures24. Efficient topological optimization procedures are therefore needed to pro-
vide optimal microstructures in more general settings, and the present paper aims at providing a simple and efficient approach.
It differs from15 as (i) it permits non-constant density (ii) it uses an optimization algorithm25,26 based on the topological deriva-
tives of the effective coefficients27 rather than their shape derivatives, and (iii) it takes advantage of a FFT-accelerated method
to solve cell problems, instead of finite element methods.
Precising point (iii), the FFT-accelerated method was initially proposed by Moulinec and Suquet28 to solve the first cell (or

corrector) problem that appears in leading-order homogenization, in the context of linear and nonlinear elastostatics. Although
well-known in the mechanical engineering litterature, the method was applied only recently to the additional cell problems stem-
ming from higher-order homogenization29,30. At our knowledge, it was never used in a microstructure optimization procedure
to enhance dynamic properties.
The article is organized as follows. In the Section 2, we precise the considered optimization problem and provide the necessary

theoretical framework, including second-order homogenization of the wave equation and topological derivatives of effective
coefficients. Section 3 is dedicated to the algorithmic features of the proposed method, namely the FFT-accelerated solver
for cell problems and the material update steps in the optimization process. Section 4 presents two examples of applications:
(i) optimization of two-phase composites to maximize the effective dispersion in given directions (including comparison with
known analytical results for bilaminates), and (ii) identification of a periodic structure from phase velocity data gathered for
several frequencies and propagation direction. In example (i), we also compute and discuss the first Floquet-Bloch eigenvalues
of the obtained optimal unit cell. We finally summarize the results and discuss possible extensions in Section 5. Mathematical
notations are gathered in Appendix.

2 PROBLEM SETTING AND TOPOLOGICAL OPTIMIZATION

We consider a two-dimensional periodic composite material that is composed of cells Yl = lY , whose geometry is defined
relatively to a unit cell Y owing to a reference lengthscale l. Moreover, one assumes that the medium is characterized by a set of
two Y-periodic fields m = (�, �) so that the constitutive property fields x → � (x∕l) and x → � (x∕l) are Yl-periodic. In other
words, the material distribution of the microstructure are characterized by fluctuations at a scale associated with the variable
y
def
= x∕l.
We consider time-hamonic waves in such a medium with dependency on the circular frequency!. Accordingly, the amplitude

ul of these waves obeys the equation:

div
(

�
(x
l

)

(ul(x)
)

+ �
(x
l

)

!2ul(x) = 0. (1)

Expressed in terms of a generic scalar field ul(x), the time-harmonic wave equation (1) is relevant to a number of physical con-
figurations, such as acoustics where ul is the pressure field, or antiplane elasticity –retained hereafter as in previous works19,27–
for which the latter stands for the out-of-plane displacement field, whereas � and � are the density and shear modulus of the
constitutive material(s) of the microstructure, respectively. Reference can be made to, e.g. ,11,31 for other relevant models.
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FIGURE 1 Time-harmonic wave in a 2D periodic medium with unit cell Y .

2.1 Second-order homogenized model
The two-scales asymptotic homogenization procedure, introduced in the seventies10,32, is applied to the field equation (1) to
obtain an effective model with homogeneous coefficients. In this section, we recall the main results obtained through an asymp-
totic expansion of the solution at the second-order. We refer to33,19,20,27 and the references therein for details and justifications
of these results.

Two-scale asymptotic expansion
The asymptotic analysis relies on two main assumptions: (i) We place ourselves in the low-frequency and low-wavenumber
regime, and therefore assume that there exists a macroscopic wavelength � associated with ul (to be defined more precisely
later on, see Remark 3), which is large enough for the scale separation assumption l ≪ � to hold. (ii) Considering the small
parameter " = l∕�, we assume that the constitutive material properties � and � do not depend on ". Under these assumptions,
(i) looking for a solution as a function of both the “slow” and “fast” variables x and x∕l, i.e. ul(x) = u(x,x∕l), (ii) expanding
this unknown function u in terms of " and (iii) performing an asymptotic analysis of the equation (1) when ul is replaced by this
expansion results in the following formal expansion for ul:

ul(x) = U (x) + lP 1
(x
l

)

⋅ (U (x) + l2P 2
(x
l

)

∶ (2U (x) + l3P 3
(x
l

)

∶⋅(3U (x) + o("3), (2)

with the notations of Appendix A.1. In Equation (2) U is a macroscopic field that depends only on the “slow” variable x and
embeds the leading-order slow variations of ul , while P j for j ∈ {1, 2, 3} is a cell function, Y -periodic and mean-free, which
depends on the “fast” variable y defined above and describes oscillations around U due to the microstructure. As seen, the
amplitude of these perturbations depend linearly on the successive gradients of U : the cell functions, also called localization
tensors29, reflect the response of the microstructure to the slope (U , curvature (2U and higher-order derivatives of the mean
field.

Cell functions and effective properties
The cell functions P j with j ∈ {1, 2, 3} appear in the asymptotic procedure and in expansions such as (2) as factors of the
successive gradients of mean fields (in the sense of the inner product between tensors). Therefore, P j is defined as a completely
symmetric tensor of order j, i.e. a tensor that is invariant by any permutation of its indices19, so that it has (j + 1) independent
components in ℝ2. These functions are found to be the solutions of static periodic problems formulated in the reference unit
cell Y , whose unit outward normal is denoted as n, and for a generic tensor-valued cell function P , by:

⎧

⎪

⎨

⎪

⎩

(i) ⟨P ⟩ = 0, P periodic on )Y ,
(ii) S(y) = �(y) [E(y) + (P (y)] ,
(iii) divS(y) + f (y) = 0,

(3)
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where ⟨⋅⟩ denotes the averaging operator over the unit cell Y , i.e.

⟨f⟩ = 1
|Y | ∫

Y

f (y) dy.

and we introduced an auxiliary fieldS, referred to as cell stress hereinafter, for short-hand notations. The loadings of the problem
(3) are the prestrain E and the body force f that must be mean-free, i.e. ⟨f⟩ = 0, for the problem to be well-posed10.

Cell function P Prestrain E Body force f

P 1 E1 = I f 1 = 0
P 2 E2 = [I ⊗ P 1]psym f 2 = �[I + (P 1]sym − (�∕%0)�0
P 3 E3 = [I ⊗ P 2]psym f 3 = �[I ⊗ P 1 + (P 2]sym − (�∕%0)[�0 ⊗ P 1]sym

TABLE 1 Notations and values of the prestrain and body force for the direct cell problems.

For j ∈ {1, 2, 3} the cell functions P j are determined recursively as the solutions to (3) with the terms E and f being given
in Table 1, where I is the second-order identity tensor while ⋅psym and ⋅sym denote respectively partial and complete tensor
symmetrization, see Appendix A.1. Table 1 also features the constant parameters %0 and �0, which are effective properties
corresponding to the zero-th order homogenization, respectively a scalar and a symmetric second-order tensor. These effective
properties together with their high-order counterparts are defined as

%0 = ⟨�⟩, %2 =
⟨

�P 2
⟩

, �0 =
⟨

�
[

I + (P 1
]sym⟩ and �2 =

⟨

�
[

I ⊗ P 2 + (P 3
]sym⟩, (4)

where the second-order effective properties %2 and �2 are respectively a symmetric second-order tensor and a completely
symmetric fourth-order tensor.

Remark 1. Each of the problems (3) can be interpreted as a compact tensorial writing of the uncoupled scalar problems that are
satisfied by each component of P . Practical methods to solve these scalar problems will be returned to in Section 3.1.

Second-order effective wave equation
The expansion (2)must be completed by a governing equation for themean fieldU . At the second-order, the two-scale asymptotic
analysis leads to the following enriched wave equation

(

�0 + l2�2 ∶ (2
)

∶ (2U + !2
(

%0 + l2%2 ∶ (2
)

U = 0, (5)

and in terms of the set of effective properties meff = (%0,�0,%2,�2) and the second and fourth-order gradient operators, and
with (�2 ∶ (2) ∶ (2U = �2 ∶∶ (4U . As this equation can be associated with a volumic energy (U ) given by

(U ) = 1
2 ∫
Ω

{

(U ⋅ �0 ⋅ (U + l2(2U ∶ �2 ∶ (2U + !2
(

%0U
2 + l2(U ⋅ %2 ⋅ (U

)}

dx,

i.e. of the type (U ) = 1
2
∫Ω{((U,(2U ) +(U,(U )} dx with the strain energy density and the kinetic energy density

being quadratic forms, it is typical of the so-called second-gradient materials, see e.g.21,22.

Remark 2. The first-order coefficients %1 = ⟨�P 1⟩ and �1 = ⟨�[I⊗P 1+(P 2]sym⟩ also appear in the two-scale homogenization
procedure, but their contributions to the cell problems (3) and to the wave equation (5) vanish for scalar waves, see27.

To conclude, the homogeneous parameters in (4) constitute a set of effectivematerial propertiesmeff that is entirely determined
by the couple (m, Y ) of constitutive properties and geometry of the reference cell that characterizes the considered composite
material.

2.2 Effective dispersive effects
The second-order effective wave equation (5) accounts for anisotropic macroscopic dispersive effects due to the microstructure.
Indeed, taking U as a time-harmonic plane wave U (x) = eik⋅x, with wavevector k = k�, where k ∈ ℝ+ and the unit vector �
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will be referred to as the wavenumber and direction of the wave hereinafter, one obtains the dispersion relation:

!2(k,�) = k2
�0 ∶ �⊗2 − l2k2�2 ∶∶ �⊗4

%0 − l2k2%2 ∶ �⊗2
, (6)

where the notation �⊗p denotes p-th power of � owing to the tensorial product, see Appendix A.1.

Remark 3. From (6), the macroscopic wavelengthmentioned above is straightforwardly defined as � = 2�∕k, and the asymptotic
parameter that controls the relevance of the second-order approximation is indeed kl = 2�l∕� = 2�", i.e. the period-to-
wavelength ratio (up to a constant factor). This justifies our choice to use the lengthscale l rather than " in the formal asymptotic
expansion (2) for simplicity. Owing to this choice, the cell problems are defined directly on the unit cell Y rather than on e.g.
“reference cells” Y" = (l∕")Y . Other normalization choices are possible19 but they do not impact the effective model (5), see
also the related remark of34.

The phase velocity c(k,�) = !(k,�)∕k can accordingly be expanded as:

c(k,�) = c0(�) +
1
2
d(�)
c0(�)

(kl)2 + O((kl)4) (7)

In this expansion, c0 is the low-frequency limit velocity that, owing to (6), satisfies

c0(�) =
√�0
%0
∶ �⊗2, (8)

while the indicator d(�), associated with the second-order dispersion term, is:

d(�) =

[

%2 ⊗ �0 − %0�2
%20

]sym

∶∶ �⊗4. (9)

Similarly, the group velocity cg(k,�) = )!(k,�)∕)k can be expanded as:

cg(k,�) = c0(�) +
3
2
d(�)
c0(�)

(kl)2 + O((kl)4), (10)

where the same coefficients c0 and d∕c0 intervene.
In this study, the limit velocity c0(�) and the ratio d(�)∕c0(�) are therefore chosen as characteristic indicators of the effective

low-frequency dynamics of the second-order homogenized model (6) for waves propagating in direction �.

Remark 4. The squared limit velocity c20(�) and the dispersion indicator d(�) are respectively defined by (8) and (9) as quadratic
and quartic functions of the coordinates (�1, �2) = (cos �, sin �), in terms of completely symmetric tensors. Consequently, the
representation of c20(�) in polar coordinates is an ellipse, i.e. c20(�) has at most one maximum and one minimum for � ∈ [0, �],
separated by Δ� = �∕2. Similarly, d(�) has at most two local maxima and two local minima for � ∈ [0, �], separated by
Δ� = �∕4.

Remark 5. The ability of the second-order homogenized model to predict the effective dispersion due to the microstructure
is supported by the comparison with the Bloch-wave homogenization method in the case � = 1, see e.g.23,20,15. It is notably
proven that the second-order expansion (7) coincides with the one obtained when (!, k) are the eigenfrequency and wavenumber
associated with the first Bloch mode of the unit cell.
To our knowledge, these results have not been extended yet to the general case � ≠ 1 which is considered here. However, in

this case, the accuracy of the effective dispersion given by the second-order model is supported by (i) numerical computations
of the exact and effective dispersion curves for particular microstructures19,27,18 and (ii) comparison with other methods e.g.
Willis’ homogenization method35.

2.3 Optimization of the effective dynamics of waves
Objectives
On the basis of the second-order effective wave equation (5), we aim at generating numerically the spatial distribution of constitu-
tive properties that characterize themicrostructure of a composite in order to optimize its macroscopic dynamical properties c0(�)
and d(�) in (8-9) for a given wave propagation direction � or a set thereof. Therefore, we consider a cost functional J

(

c0, d ;�
)

to be minimized, a functional that can be formally expressed in terms of the effective parameters as J
(

c0, d ;�
)

≡ J
(

meff ;�
)

.
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As the set meff = (%0,�0,%2,�2) itself depends on the constitutive properties m = (�, �) at the microscopic level and on the
geometry of the unit cell Y , we consider the following optimization problem:

Compute mopt = argminm  (m, Y ) where  (m, Y ) = J (meff ;�). (11)

Note that the computation of the set mopt = (�opt , �opt) of some optimal material property distributions within Y that achieve
the sought objective can possibly be performed under some relevant constrains or material admissibility conditions. These
contraints may also reduce the search perimeter and help avoiding some of the local minima of the (most often) non-convex cost
functionals. Specific examples of cost functionals are investigated in Section 4.

Topological optimization

b

Ba(z) = z+aB

a

m+∆m

1
ℓ

Unit cell Ya Inclusion

z

ma = (ρa, µa)

FIGURE 2 Perturbed periodic medium and unit cell Ya, and inhomogeneity Ba.

To tackle the optimization problem (11), we allow topological perturbations of the microstructure. Such a perturbation is
depicted in Figure 2: an inhomogeneity Ba = z + a of shape  and size a is placed at point z ∈ Y . It supports a constant
material perturbation Δm = (Δ�,Δ�), so that the constitutive properties that characterize the perturbed composite are

ma = (�a, �a) =
(

� + Δ� �Ba , � + Δ� �Ba
)

,

where �Ba denotes the characteristic function of the nucleating inhomogeneity Ba. In this context the cost functional  is said
to admit a topological derivative (or gradient) denoted as  36,25,27 if, in the limit of an infinitesimal topological perturbation
of the microstructure, i.e. when a→ 0, the following expansion of the perturbed cost functional  (ma, Y ) holds:

 (ma, Y ) =a→0  (m, Y ) +
a2

|Y |
 (m, Y ; z,,Δm) + o(a2). (12)

The topological derivative provides information on the influence of a given perturbation on the unit cell, e.g. for fixed shape
 and material perturbation Δm, the most negative (resp. positive) values of the map z →  (m, Y ; z,,Δm) indicate the
locations where the localized perturbation Δm would effectively decrease (resp. increase) the cost functional.

Remark 6. The choice of the scaling coefficient a2∕|Y | in (12) is made for convenience in the present context (remind that
|Y | = 1 for square cells and |Y | = O(1) otherwise). Other choices of scaling are possible, e.g. just a2 or the surface fraction
|Ba|∕|Y | = a2||∕|Y |. The forthcoming topological derivatives to be discussed hereafter must be modified accordingly.

Since the cost functional J is formulated in terms of the setmeff = (%0,�0,%2,�2) of effective parameters, if J is differentiable
with respect to these parameters, then the topological derivative of  is computed with the classical chain rule as:

 = )J
)%0

%0 +
)J
)�0

∶ �0 +
)J
)%2

∶ %2 +
)J
)�2

∶∶ �2, (13)

where the topological derivatives (%0,�0,%2,�2) of the effective parameters, which appear at the right-hand side of the
above identity, are defined as in (12).
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Remark 7. Hereinafter, only the dependence of the topological derivatives on the perturbation location z is kept for brevity,
i.e.  (z) =  (m, Y ; z,,Δm). The choice of the perturbation shape  and contrast Δm will be specified explicitly when
needed.

Topological derivatives of effective parameters
The computation the topological derivative (13) involves these of the homogenized coefficients. The latter were computed in27,
under the assumption that � and � are smooth at the nucleation point z (in particular, z should lie away of any material interface
within Y ). Their expressions are discussed below for the reader’s convenience. At the zero-th order one has:

%0(z) = ||Δ�, �0(z) =
1

�(z)2
S0(z)T ⋅A(z) ⋅ S0(z), (14)

where the cell stresses Sj are defined as Sj(y) = �(y)
[

Ej+1(y) + (P j+1(y)
]

for all j ∈ {0, 1, 2} based on Equation (3) and
Table 1. In the above formula, A is the polarization tensor 37 of the inclusion, that depends on the reference shape , on the
background shear modulus �(z) at the nucleation point and on the modulus perturbation Δ�. It is known analytically for simple
shapes, while for arbitrary shapes it can be computed by solving a free-space transmission problem, e.g. using integral equations
and boundary elements. To be used later on, we recall the following expressions when  is the unit disc, see37:

|disc
| = � and Adisc(z) = 2��(z) Δ�

2�(z) + Δ�
I . (15)

Moreover, for the second-order parameter %2 it holds

%2(z) =
%0
�(z)

{

−
(

�0I + (�1
)

⋅A ⋅ S0 + (�0 ⋅A ⋅ S1
}sym

(z)

+
{

%0
(

P 2 + �0�0
)

+ ⟨��0⟩
(

�0 −
%0
%0

�0
)

}sym
(z). (16)

In this formula, %2 is expressed thanks to two additional adjoint cell functions �0 and �1, which are respectively a scalar and
a vector field defined as the solutions to (3) for the prestrains E and body forces f given in Table 2

Cell function P Prestrain E Body force f

�0 0 1 − (�∕%0)
�1 �0I �(�0

TABLE 2 Notations and values of the prestrain and body force for the adjoint cell problems.

Remark 8. From Table 2, the definitions of �0 and �1 have been slightly modified compared to their counterparts denoted � and
X[�] in a previous work27: one has �0 = −�∕%0 and �1 = X[�]∕%0. The expression (16) of the topological derivative%2 was
modified accordingly.

Lastly, the topological derivative of the fourth-order tensor �2 is given by:

�2(z) =
1

�(z)2
{

2ST0 ⋅A ⋅ S2 − S
T
1 ⋅A ⋅ S1

}sym
(z)

+ 1
%0

{

[

%2 +%0
(

P⊗2
1 − 2P 2

)]

⊗ �0 +
(⟨

�P⊗2
1

⟩

− %2
)

⊗
(

�0 −
%0
%0

�0
)

}sym
(z). (17)

3 A FAST TOPOLOGICAL OPTIMIZATION APPROACH

The aim of an optimization algorithm is to compute an optimal composite material is the sense of (11). To achieve this numer-
ically, the set of material properties and the geometry of the cell are both discretized using suitable bases. This question will be
returned to hereafter and the quantities that are involved in the formal algorithm below are to be understood as discrete ones.
For a given cost functional J (meff ;�), a topological derivative-based iterative algorithm is given by Algorithm 1 below.
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Algorithm 1 Topological derivative-based algorithm to optimize the composite effective dynamics

I. Initialization:

1. Define the unit cell geometry Y and the initial constitutive properties m(0) = (�(0), �(0)).

2. Define the admissible topological and material perturbations  and Δm = (Δ�,Δ�).

3. Define a stopping criterion.

II. Then: iterate until convergence

1. Compute the cell functions (P (n)1 ,P
(n)
2 ,P

(n)
3 , �

(n)
0 , �

(n)
1 ) for the unit cell characterized by (m

(n), Y ).

2. Compute the topological derivatives of the effective properties m(n)ef f , i.e. %
(n)
0 ,�

(n)
0 ,%

(n)
2 ,�

(n)
2 , and the cost

functional topological derivative  (n).

3. Update the material properties to m(n+1) =
(

�(n+1), �(n+1)
)

based on the information provided by the map
z →  (n)(z), see Algorithm 2.

The step II.1 requires to solve five cell problems given the current material configuration m(n) of the composite. To do so, an
efficient numerical method is required and this issue is discussed in detail in Section 3.1 below. The updating step II.3 is crucial
to the efficiency of the whole method. Moreover, it is possibly constrained by the choice of the overall numerical approach
adopted, and in particular on the discretization considered. For the case of two-phase materials, some possibilities are discussed
in Section 3.2.

3.1 FFT-based computations of cell functions
The direct cell functions {P j}j=1,2,3 and their adjoint counterparts �0, �1 are all expressed as the solutions of the generic cell
problem (3) for the specific source terms that are reported in the tables 1 and 2 respectively. Owing to (3.ii) and the definitions
of Appendix A.1, the equilibrium equation (3.iii) is a tensor-valued local equation that can be expanded as:

div (�(y)E(y)) +
2
∑

i=1

)
yi

(

�(y)
)P (y)
)yi

)

+ f (y) = 0.

Therefore, each component of that equation involves the partial derivatives of only the corresponding component of the unknown
tensor P . As a consequence, the cell problem (3) can be solved independently for each of the components of the direct and adjoint
cell functions. Note that the second-order tensor P 2 and the third-order tensor P 3 being symmetric, one only has to determine
their independent components (P2)11, (P2)12, (P2)22 and (P3)111, (P3)112, (P3)122, (P3)222 for the 2D setting considered .
Based on the above argument, one focuses in this section on a computational approach to solve the generic cell problem (3)

in the case where the unknown is a scalar-valued function P (and so is the body force f ). Solving this problem numerically
may be done in several ways: one of them is the Finite Elements Method (FEM), in which case the equivalent weak form of the
problem (3) is needed, see e.g.27. Here, we make use of the method introduced in28 for the computational homogenization of
periodic composites. The specificity of the latter is to employ a Fourier-based formulation to solve (3) and to seek numerical
efficiency through an intensive use of the Fast Fourier Transform (FFT). We describe this approach below.
Considering a reference comparison medium characterized by the constant modulus �∗, then S in (3.ii) is rewritten as

S(y) = �∗(P (y) + T (y) with T (y) = �(y)E(y) + ��(y)(P (y), (18)

where ��(y) = �(y)−�∗. Considering an auxiliary problem of the form (3) with (3.ii) being replaced by (18), i.e. with T defined
above serving as the source term in addition to the body force f , then making use of the Fourier transform (see Appendix A.2)
leads to the following identities in the Fourier space

⎧

⎪

⎨

⎪

⎩

P̂ (0) = 0,

P̂ (�) = 1
�∗|�|2

(

f̂ (�) + i� ⋅ T̂ (�)
)

∀� ∈ ∗ ⧵ {0}.
(19)
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Substituting the expression for T back into (19) yields the following equation for the field P :

P (y) = ∗
[

f + div
(

�E + ��(P
)]

(y). (20)

where ∗ is the periodic differential operator formally defined as ∗ = −(�∗Δ)−1, in terms of the Laplace operator, which is
such that for all (ℎ, g) ∈ L2per(Y ) ×L

2
per(Y ) it holds

∗ℎ(y) = ℱ −1 [(�∗|�|2)−1ℱ [ℎ]
]

(y) and ∗ div g(y) = ℱ −1 [(�∗|�|2)−1 i� ⋅ ℱ [g]
]

(y). (21)

The equation (20) is then solved by the following fixed-point scheme:
⎧

⎪

⎨

⎪

⎩

P (0)(y) = 0,

P (n+1)(y) = ∗
[

f + div
(

�E + ��(P (n)
)]

(y).
(22)

In the scheme (22), the action of the featured differential operators is computed locally in the Fourier space, i.e. algebraically
for each frequency � ∈ ∗ ⧵ {0} based on the identities (21). Moreover, multiplication by the material property � or by the
contrast �� is performed locally in the physical space. Therefore, in the above algorithm one alternates back and forth between
the physical space and the Fourier space while taking full advantage of the FFT to do so for computational efficiency. The above
fixed-point iterations are conditionally convergent and convergence is expected when the reference medium �∗ is appropriately
chosen. By extending the arguments of28 to the present formulation one sets �∗ = (maxY � + minY �)∕2.
The stopping criterion adopted in this work is:

‖P (n+1)j − P (n)j ‖L2(Y )

‖P (n)j ‖L2(Y )

< "FP, (23)

i.e. the fixed-point algorithm is applied simultaneously on each component of P j and the relative residual of the full cell function
(or adjoint cell function) is compared to a user-defined tolerance "FP. Other choices are possible, see38 and the references therein.
The Fourier-based approach adopted to solve the cell problems is limited by the convergence rate of the fixed-point iterations,

which is proportional to the normalized contrast ��∕�∗. Moreover, unlike in the FEM, local refinement is not permitted, which
could lead to imperfect geometrical discretizations of interfaces. Despite these limits, this method is relatively easy to implement.
It is a meshless method, by opposition to the FEM, in that it uses a discretization of the period cell of the composite considered
into a set of pixels. It can be easily generalized to 3D configurations while the use of the FFT makes it numerically efficient in
any dimension. Note that alternative algorithms exist for highly-contrasted composites39,40 and that nonlinear material behaviors
can also be handled with this approach28.

3.2 Material updating step for two-phase composites
From now on, we restrain ourselves to two-phase composites: the unit cell is composed of twomaterials filling the phase domains
YA and YB such that

Y = YA ∪ YB with YA ∩ YB = ∅,
and characterized by the material parameters mA = (�A, �A) and mB = (�B , �B), respectively. Upon defining the contrast
between phases as ΔmAB = mB − mA = (�B − �A, �B − �A), which is a pair of uniform fields, then the set of constitutive
properties reduces to:

m = mA + �BΔmAB =
(

�A + �BΔ�AB , �A + �BΔ�AB
)

, �B = �YB .
Moreover, the only material modification allowed in the optimization process is a phase conversion. Accordingly, the material
perturbation Δm featured in the topological derivative (12) is chosen as:

Δm = ΔmAB in YA and Δm = −ΔmAB in YB . (24)

Lastly, the unit cell Y is discretized into a uniform grid ofN ×N pixels in order to make use of the FFT-based solver presented
in Section 3.1 for the computation of the cell problems. In this setting, three updating strategies are discussed hereafter but
without making an explicit use of such a discretization.
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3.2.1 Pixel-by-pixel update of the unit cell
At a given iteration n, one considers the subset Y − ⊂ Y of the unit cell where the topological derivative map z →  (n)(z) is
negative, i.e.

Y − =
{

z ∈ Y ∶  (n)(z) < 0
}

.

Doing so, the simplest update one may think of is the following: a phase conversion is applied to the point (i.e. pixel) zp where
 (n) is the most negative, i.e.

zp = argmin
z∈Y −

 (n)(z).

Alternatively, if the phase ratio is initially fixed in the optimization problem, one may “exchange” the materials at two points
zpA and zpB that respectively belongs to the phase YA and YB . To do so, one introduces the two-phase subset Y −AB ⊂ YA × YB as

Y −AB =
{

(zA, zB) ∈ YA × YB ∶
(

 (n)(zA) + (n)(zB)
)

< 0
}

.

and exchange the materials at the pair of points (zpA, zpB) ∈ YA × YB such that

(zpA, zpB) = argmin
(zA,zB)∈Y −AB

(

 (n)(zA) + (n)(zB)
)

.

For these pixel-by-pixel updating strategies, the corresponding stopping criteria are defined as:
⎧

⎪

⎨

⎪

⎩

min
Y

 (n) ≥ 0 i.e. Y − = ∅ for the one-pixel phase permutation,

min
YA

 (n) + min
YB

 (n) ≥ 0 i.e. Y −AB = ∅ for the two-pixel exchange.
(25)

A similar procedure is proposed by12 that uses finite elements instead of pixels to discretize the cell. As it will be illustrated
by the upcoming numerical examples, this technique is very simple to implement, and is observed on these examples to be
efficient at reducing the value of the cost functional  at each iteration. However, this method has two major drawbacks, namely
(i) there is no theoretical guarantee that the cost functional will monotonically decrease, and (ii) the whole process may be very
slow if the initalization is far from the optimal microstructure, and especially when a fine discretization is required (e.g. when
one expects a complex optimal microstructure). It is why we also use another level-set based algorithm presented now.

3.2.2 Level-set representation and projection onto the topological derivative
A common way to characterize a two-phase material distribution is to use a level-set function, i.e. a function  satisfying:

{

 (z) > 0 in YA
 (z) < 0 in YB

and ‖ ‖L2(Y ) = 1. (26)

Accordingly, for the two-phase composite described in the preamble of this section, a level-set function  entirely determine the
material distributionm. Then, updating  may be achieved by several ways. A widely used update method relies on a Hamilton-
Jacobi equation that allows the interface between phases, which corresponds to the level-set  (z) = 0, to evolve based on the
knowledge of the shape derivative of the cost functional  with respect to a perturbation of this interface, see e.g.41,15. Since
we consider here only topological perturbation, we use instead the projection algorithm proposed by42, theoretically analyzed
in26 and that has been used since then in ensuing studies e.g.13,43,14.
Let us first defines the signed normalized topological derivative  (n) at a given iteration n as:

 (n)(z)
def
=

{

 (n)(z) ∕ ‖ (n)
‖L2(Y ) in YA

− (n)(z) ∕ ‖ (n)
‖L2(Y ) in YB

so that ‖ (n)
‖L2(Y ) = 1. (27)

A sufficient optimality condition for a topological gradient-based minimization scheme is then obtained when  (n) satisfies
the sign conditions (26). Indeed, in this case, the definition (27) entails that  (n)(z) > 0 in the whole cell Y , i.e. the value of
the cost functional  (or rather its leading-order approximation (12)) cannot be decreased anymore by an infinitesimal phase
change. This optimality condition therefore ensure that the material configuration corresponds to a local minimum of  .
The level-set update proposed in42 aims at fulfilling this optimality condition: at each iteration, the new level-set function

 (n+1) is defined as the following linear combination of its previous value  (n) and of the signed topological derivative  (n):

 (n+1)(z) = 1
sin

(

Θ(n)
)

[

sin
((

1 − �(n)
)

Θ(n)
)

 (n)(z) + sin
(

�(n)Θ(n)
)

 (n)(z)
]

, (28)
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where �(n) ∈ [0, 1] while Θ(n) is an angle computed using the standard scalar product on L2(Y ) as:

Θ(n)
def
= cos−1

(

 (n),  (n)
)

L2(Y ). (29)

According to (28), the level set function is updated using a partial projection of  (n) onto  (n), weighted by the parame-
ter �(n). This parameter ensures that the cost functional  decreases at each iteration. In practice, it is determined within an
inner optimization loop: it is initialized to �(n) = min(1, 2�(n−1)), where �(n) = 1 means that the next level-set function is set
to  (n+1)(z) =  (n)(z), and then �(n) is reduced towards a minimum value �min if the resulting value of the cost-functional

(

m(n+1), Y
)

increases.
The overall stopping criterion associated with the updating process (28) for the level-set function is chosen as:

|Θ(n)| < "LS, (30)

where "LS is a user-defined tolerance.

3.2.3 Mixed algorithm
We observed on some examples that the level-set algorithm fails at decreasing the cost functional value with �(n) > �min, while
a pixel conversion would still decrease this value. To leave both options open, we therefore keep both tools and propose a simple
two-step algorithm. First, we use the level-set projection until (i) the criterion (30) is satisfied or (ii) the value of  cannot be
decreased by the update (28) for any �(n) > �min. In the case (i), a local minimum is reached and we stop the procedure. In
the case (ii), we try to further improve the resulting miscrostructure by applying the pixel-by-pixel update until the stopping
criterion (25) is satisfied. The pixel-by-pixel update is also stopped when a phase change is applied twice to the same pixel, i.e.
when |

(

m(n+1), Y
)

−
(

m(n−1), Y
)

| < "pixel with "pixel a tolerance close to the machine precision. This mixed algorithm, which
constitute the material updating step II.3 of the overall topological optimization algorithm 1 is summarized below.

Algorithm 2Material updating step II.3 of Algorithm 1

II.3.1 Initialization:

(a) The material distribution m(n) with its level-set representation  (n) are available at step II

(b) The topological derivative  (n)(z) is available from step II.2

(c) Choose the tolerances "LS and "pixel and the minimum value �min

II.3.2 Then: Level-set update to compute globally the distribution m(n+1) using the function  (n+1)

(a) Compute the normalized signed topological derivative  (n)(z) from (27)

(b) Compute the projection angle Θ(n) from (29)

(c) If |Θ(n)| < "LS then  (n+1)(z) =  (n)(z) and step II.3 is ended
else set �(n) = min(1, 2�(n−1)) and compute  (n+1)(z) from (28)

(d) While 
(

m(n+1), Y
)

> 
(

m(n), Y
)

do:

– set �(n) ← �(n)∕2
– if �(n) < �min then go to II.3.3 as  cannot be decreased by the level-set projection
else recompute  (n+1)(z) from (28)

II.3.3 Pixel-by-pixel update to modify locally the distribution m(n+1) obtained from II.3.2(d)

(a) Compute the topological derivative  (n+1)

(b) While stopping criterion (25) is not met and |
(

m(n+1), Y
)

− 
(

m(n−1), Y
)

| > "pixel do:

– apply a pixel-by-pixel update to m(n+1)
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4 NUMERICAL EXAMPLES

In this section, we discuss a number of numerical examples of microstructure optimizations. Each example is associated with
a specific cost functional to be minimized and the results obtained by applying the topological gradient-based algorithm of the
previous section are then presented. Note that, in the examples discussed hereafter, the topological derivatives are defined at the
continuous level for a material perturbation Δm given by (24) and an infinitesimal circular perturbation Ba, so that expression
(15) of the polarization tensor A is employed in the formulas (14), (16) and (17). The numerical values of the parameters
associated with the algorithms presented in the previous section are provided in Table 3.

"FP �min "LS "pixel
10−8 10−3 10−3 10−10

TABLE 3 Parameters of the fixed-point and topological optimisation algorithms used in the numerical examples.

4.1 Maximizing the dispersion in given directions
As a first example, we aim at maximizing or minimizing the effective dispersion in N� directions of interest �j =
(cos �j , sin �j)j=1..N�

. To this end, on the basis of the second-order dispersive terms in the expansions of the phase and group
velocities (7) and (10), which are both driven by the ratio d∕c0, we introduce the quadratic cost functional:

J (�1,�2,… ,�N�
) = 1

2

N�
∑

j=1
wj

( d(�j)
c0(�j)

)2bj
, (31)

where the dependency of J on meff (through c0 and d) is again dropped for brevity, the exponents bj are chosen as:
{

bj = 1 to minimize the dispersion in direction �j ,
bj = −1 to maximize the dispersion in direction �j ,

(32)

and the user-defined weights wj are used to balance the contribution of each term.

Remark 9. As underlined in15, due to the scaling of the dispersion terms, trying to only minimize the dispersion without
constraints is an ill-posed problem (that results in a refinement of the microstructure at the smallest scale allowed by the dis-
cretization). Hereinafter, our primary goal is always to maximize the dispersion in given directions, the “minimization” terms in
(31) (for which bj = 1) being added to ensure anisotropic dispersion. Moreover, following Remark 4, we know that d can only
admit maxima in orthogonal directions. Therefore, we use at motN� = 4 directions (looking for two maxima and two minima).

From (8) and (9), and using the chain rule, the topological derivatives of c0 and d are given by:

c0(�) =
1

2c0(�)
(%0�0 −%0�0) ∶ �⊗2

%20

d(�) = 2
(%2 ⊗ �0 + %2 ⊗�0 −%0�2 − %0�2) ∶∶ �⊗4

%20
− 2

%0
%0

d(�),
(33)

the topological derivative of their ratio is computed as:

(d∕c0)(�) =
c0(�)d(�) −c0(�)d(�)

c20(�)
, (34)

and the topological derivative of the cost-functional J defined by (31) is computed using the chain rule.

4.1.1 Retrieving optimal bilaminates that maximize the dispersion in one direction
Our first examples address the maximization of the dispersion indicator for one direction only i.e. N� = 1 in (31), in material
configurations for which the optimal structures are bilaminates normal to the chosen direction23, and whose characteristics may
be determined analytically from a 1D analysis23,19.
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FIGURE 3Maximization of the dispersion in the horizontal direction, for homogeneous wavespeed. Cost functional values and
initial, intermediate and final microstructures discretized on 32×32 grids, obtained using (a) a random unbalanced initalization
(32 white pixels) and one-pixel permutations (474 iterations) and (b) a balanced random initialization (as many black than white
pixels) and two-pixels exchanges (241 iterations).

Thereafter, we note � = |YA|∕|Y | the proportion of the first phase, 
� = �B∕�A the stiffness ratio and 
� = �B∕�A the density
ratio of the two-phase materials. Two configurations of two-phase materials are studied: (i) when the wavespeed is the same in
the two phases (i.e. 
� = 
�), and (ii) when the density is the same in the two phases (i.e. 
� = 1).
For both configurations, we aim at maximizing the dispersion in the horizontal direction using the cost functional (31) with

N� = 1, �1 = e1, w1 = 1 and b1 = −1.

Homogeneous wavespeed
This preliminary example is meant to illustrate the speed improvement brought by the level-set-based optimization compared
to pixel-by-pixel updates. The contrasts are set to 
� = 
� = 2. The one-pixel permutation and two-pixels exchange algorithms
are applied to two random initializations of 32 × 32 pixels, with respectively 32 and 512 pixels of material A. In both cases,
a smooth monotonic decrease of the cost functional is observed, and the expected bilaminate is obtained in resp. 474 and 241
iterations, as plotted in Figure 3. In the other hand, using the level-set algorithm and starting with the same initializations, only
few iterations (here, 2 and 3) are needed to reach the same final cells, see Figure 4. In both cases, �(n) = 1 for all iterations (the
internal loop (d) in step II.3.2 is not activated), i.e. the signed topological derivative becomes the new level set at each iteration.

Homogeneous density
When the two phases have the same density, i.e. �A = �B , optimal bounds of the dispersive coefficient for two-phase materials
are known analytically23. In particular, the maximal dispersion is obtained for bilaminates, and in this case the homogenized
coefficient’s expressions are:

c0(e1) =

√


�
1 − � + �
�

√

�A
�A
, d(e1) = −

�2(1 − �)2
�(
� − 1)2

12(1 − � + �
�)3
�A
�A
. (35)

The optimal proportion �opt(
�) that maximises the dispersion for a given stiffness contrast 
� can therefore be computed as:

�opt(
�) = arg max�∈[0,1]

|

|

|

|

d(e1)
c0(e1)

|

|

|

|

=

⎧

⎪

⎨

⎪

⎩

√

1 + 62
� + 
2� − (7 + 
�)

3(
� − 1)
for 
� > 1,

1 − �opt(1∕
�) for 
� < 1.

(36)

Remark that in the case 
� < 1 , the roles of the two phases is switched compared to the case 
� > 1. The normalized dispersion
indicator |d∕c0| is plotted in Figure 5 versus 
� and �, along with the optimal proportion �opt .
To test the efficiency of our optimization algorithm, we attempt to retrieve these results numerically, for several stiffness

contrasts. The unit cell is discretized using a 100×100 pixel grid, and initialized with bilaminates with phase ratio �init = 0.1 and



14 CORNAGGIA ET AL

0.0 0.5 1.0
0.0

0.5

1.0
Unit Cell, it. 0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0
0.0

0.5

1.0
J, it. 0

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.0 0.5 1.0
0.0

0.5

1.0
Unit Cell, it. 1

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0
0.0

0.5

1.0
J, it. 1

0.05

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.0 0.5 1.0
0.0

0.5

1.0
Unit Cell, it. 2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0
0.0

0.5

1.0
J, it. 2

0.05

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.0 0.5 1.0
0.0

0.5

1.0
Unit Cell, it. 2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0
0.0

0.5

1.0
J, it. 2

0.05

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

(a)

0.0 0.5 1.0
0.0

0.5

1.0
Unit Cell, it. 0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0
0.0

0.5

1.0
J, it. 0

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.0 0.5 1.0
0.0

0.5

1.0
Unit Cell, it. 1

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0
0.0

0.5

1.0
J, it. 1

0.04

0.02

0.00

0.02

0.0 0.5 1.0
0.0

0.5

1.0
Unit Cell, it. 2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0
0.0

0.5

1.0
J, it. 2

0.05

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.0 0.5 1.0
0.0

0.5

1.0
Unit Cell, it. 3

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0
0.0

0.5

1.0
J, it. 3

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

(b)

FIGURE 4 Maximization of the dispersion in the horizontal direction, for homogeneous wavespeed. Initial, intermediate and
final cells obtained using the level-set algorithm for (a) unbalanced and (b) balanced initial configurations, and corresponding
signed topological derivative maps z → J (z).

�init = 0.5 (i.e. some upper and lower bounds of the optimal phase ratio in the considered interval); and with a square inclusion
made of material B in a matrix made of material A, with �init = 0.5, as summarized in Table 4. In each tested configuration,
the resulting optimal unit cell corresponds indeed to a bilaminate with phase proportion �f inal close to the theoretical optimal
one. It is also seen that using initializations closer to the solution (here, bilaminates) enable to reduce significantly the number
of iterations compared to other initializations (here, a squared inclusion). In particular, for one of the computations that used a
square as initialization (third line of Table 4), the second part of Algorithm 2 (pixel-by-pixel update) was activated to reach the
optimal result.

4.1.2 Multi-directional optimization
We now apply the optimization algorithm to obtain microstructures that maximize the dispersion in two orthogonal directions.
The material contrasts are fixed as 
� = 6 and 
� = �B∕�A = 1.5.
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FIGURE 5 Normalized second-order dispersion indicator |d∕c0| for bilaminates in 1D, versus phase proportion
� = |YA|∕|Y | ∈ [0, 1] and stiffness contrast 
� = �B∕�A ∈ [1, 10], and with no density contrast (�B = �A). The white curve
indicates the optimal phase proportion �opt(
�) given by (36), that maximises the dispersion for a given contrast 
�.


� �opt Initialization �init Iterations �f inal

2 ≈ 0.39 Laminate 0.1 2 0.38
0.5 3 0.40

Square 0.5 108 (8+100) (⋆) 0.39

4 ≈ 0.29 Laminate 0.1 2 0.30
0.5 4 0.30

Square 0.5 25 0.30

9 ≈ 0.19 Laminate 0.1 2 0.20
0.5 4 0.20

Square 0.5 22 0.20

TABLE 4 Maximization of the dispersion in the horizontal direction, for homogeneous density (�B = �A) and various siffness
contrast 
� = �B∕�A. When the second step of Algorithm 2 (pixel-by-pixel optimization) is activated (⋆), the total number of
iterations is decomposed between the two steps.

Maximizing the dispersion in horizontal and vertical directions.
The first example we consider is the maximization of the dispersion indicator |d∕c0| in the horizontal and vertical directions
(i.e. along the periodicity axis). As it was empirically found to slightly improve the stability of the results, we also minimze the
dispersion in the diagonal directions, i.e. take N� = 4 in (31). The four angles and coefficients (�j , wj , bj) that define the cost
functional (31) are given in Table 5.

Angle �j 0 �∕4 �∕2 3�∕4
Weight wj 1 10 1 10
Exponent bj −1 1 −1 1

TABLE 5 Angles and coefficients used for the dispersion maximization in horizontal and vertical directions.

The optimization is performed on a grid of 64 × 64 pixels, and a number of initial configurations are considered; the cor-
responding results are summarized in Table 6. In Figure 6 are represented the three initializations leading to the same result,
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assumed to the optimal. One can see from the first line (Figure 6(a)) that the optimization procedure slightly improves the disper-
sive properties of a classical array of circular inclusions, by proposing instead “rounded squares” inclusions. This result can also
been obtained by initializing randomly the unit cell, with or without imposing the expecting final 8-fold symmetry (Figure 6(b-
c)). We also represented on Figures 7 and 8 the first iterations for these random initializations, along with the signed topological
derivative maps.
For completeness, Figure 9 represents initializations leading to sub-optimal results. Curiously, initializing with a squared

inclusion (Figure 9 (a)) leads to a qualitatively similar but slightly worse result than the optimal one in terms of the final value of
J , as can be seen in Table 6. It is also seen that initializing with another symmetrized randommicrostructure (Figure 9 (b)) leads
to a local minimum featuring a strongly anisotropic coefficient |d∕c0| as desired, but far away from the optimum in terms of the
final value of the cost functional J (see Table 6). Finally, initializing with a chessboard-like unit cell (Figure 9 (c)), for which
the dispersion is minimal in the horizontal and vertical direction, lead to a local minimum corresponding to a nearly-isotropic
configuration.

Initialization Iterations Final value of J Final proportion �

Disk 6 5.49 × 102 0.414
Symmetrized random (1) 15 (12+3) (⋆) 5.49 × 102 0.414

Random 16 (13+3) (⋆) 5.49 × 102 0.414

Square 7 5.56 × 102 0.432
Symmetrized random (2) 6 8.10 × 102 0.47

Chessboard 48 (5+43) (⋆) 9.18 × 103 0.36

TABLE 6 Maximization of the dispersion in the horizontal and vertical directions, for six different initializations. When the
second step of algorithm 2 (pixel-by-pixel optimization) is activated (⋆), the total number of iterations is decomposed between
the two steps. The first three configurations are represented in Figure 6, and the others in Figure 9.

Maximizing the dispersion in diagonal directions.

As a second example, we maximize the dispersion in the diagonal directions, while minimizing it in the horizontal and vertical
direction (N� = 4 in (31)). The four angles and coefficients (�j , wj , bj) that define the cost functional (31) are given in Table 7.

Angle �j 0 �∕4 �∕2 3�∕4
Weight wj 10 1 10 1
Exponent bj 1 −1 1 −1

TABLE 7 Angles and coefficients used for the dispersion maximization in diagonal directions.

The same discretization and initializations than in the previous paragraph are used, and the results are summarized in Table 8.
Once again, we obtain the same result, assumed to be the optimal one, with three different initialization, as represented in
Figure 10. In particular, the chessboard-like initialization is the most efficient to obtain rapidly this optimal result (Figure 10(a)).
On the other hand, circular and square inclusions correspond to configurations too far away from the desired properties for the
algorithm to reach the optimal result (Figures 12(b-c)). For completeness, the microstructures given by the first iterations from
a random initialization (leading to the optimal result), and corresponding signed TD maps are plotted in Figure 11.
As expected, the optimal microstructure corresponds to the rotation of �∕4 and scaling by l → l∕

√

2 of the microstructure
obtained in the previous example (maximization of the dispersion in the vertical and horizontal directions). Indeed, we used
the same cost functional, except for the angles, that were rotated by �∕4, but the periodicity axes were unchanged, “forcing”
the inclusions to align along the diagonals rather than the horizontal and vertical axes. Accordingly, the maximal dispersion
indicator |d∕c0| is divided by 2 (compare the polar plots of Figures 6(a) and 10(a)).
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FIGURE 6Maximization of the dispersion in the horizontal and vertical directions, for three initializations leading to the same
result, assumed to be the optimal one: (a) circular inclusion, (b) symmetrized random distribution ofmaterials, and (c) completely
random distribution of material. From left to right: initial and final unit cells, and polar plot of the dispersion indicator |d∕c0|
for these two cells.

Initialization Iterations Final value of J Final proportion �

Chessboard 5 2.2 × 103 0.42
Symmetrized random (1) 7 2.2 × 103 0.42

Random 11 2.2 × 103 0.42

Symmetrized random (2) 222 (31+191) (⋆) 2.51 × 103 0.41
Square 18 (6+12) (⋆) 2.33 × 103 0.39
Disk 118 (5+113) (⋆) 2.4 × 103 0.36

TABLE 8Maximisation of dispersion in diagonal directions, for six initializations. When the second step of algorithm 2 (pixel-
by-pixel optimization) is activated (⋆), the total number of iterations is decomposed between the two steps. The first three
configurations are represented in Figure 10, and the others in Figure 12.



18 CORNAGGIA ET AL

0.0 0.5 1.0
0.0

0.5

1.0
Unit Cell, it. 0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0
0.0

0.5

1.0
J, it. 0

0.04

0.02

0.00

0.02

0.04

0.0 0.5 1.0
0.0

0.5

1.0
Unit Cell, it. 1

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0
0.0

0.5

1.0
J, it. 1

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.0 0.5 1.0
0.0

0.5

1.0
Unit Cell, it. 2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0
0.0

0.5

1.0
J, it. 2

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.0 0.5 1.0
0.0

0.5

1.0
Unit Cell, it. 15

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0
0.0

0.5

1.0
J, it. 15

0.02

0.01

0.00

0.01

0.02

FIGURE 7Maximization of the dispersion in the horizontal and vertical directions: iterations of the microstructure and signed
topological derivative maps, for a symmetrical random initialization (Figure 6(b)).
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FIGURE 8Maximization of the dispersion in the horizontal and vertical directions: iterations of the microstructure and signed
topological derivative maps, for a completely random initialization (Figure 6(c)).
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FIGURE 9 Maximization of the dispersion in the horizontal and vertical directions, for three initializations leading to sub-
optimal results: (a) square inclusion, (b) symmetrized random distribution of materials, and (c) chessboard-like unit cell. From
left to right: initial and final unit cells, and polar plot of the dispersion indicator |d∕c0| for these two cells.
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FIGURE 10 Maximisation of dispersion in diagonal directions, for three initializations leading to the same value of the cost
functional, assumed to be the optimal one: (a) chessboard-like unit cell, (b) symmetrized random distribution of materials, and
(c) completely random distribution of materials. From left to right: initial and final unit cells, and polar plot of the dispersion
indicator |d∕c0| for these two cells.
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FIGURE11Maximisation of dispersion in diagonal directions: iterations of themicrostructure and signed topological derivative
maps, for the symmetrical random initialization (Figure 10(b)).
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FIGURE 12Maximisation of dispersion in diagonal directions, for three initializations leading to sub-optimal results: (a) sym-
metrized random distribution of materials, (b) square inclusion, and (c) circular inclusion. From left to right: initial and final
unit cells, and polar plot of the dispersion indicator |d∕c0| for these two cells.
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4.1.3 Bloch-Floquet analysis of the designed microstructure
To complete the results of this section, we analyse in more details the structure obtained while maximizing the dispersion in
horizontal and vertical directions, see Figure 6. To facilitate this analysis, the boundary of the “rounded-corners square” inclusion
obtained on a 64 × 64 pixel grid is first fitted by a quartic curve with equation:

y41 + y
4
2 +

y21y
2
2

4
− R4 = 0, with R = 0.405, (37)

as plotted in Figure 13. This approximated model is then used to perform a computation of the dispersion curves given by the
Floquet-Bloch eigenfrequencies of the unit cell when the wavevector k spans the edges of the reduced Brillouin zone, see Figure
14. To do so, we adapted the routines provided on Vincent Laude’s webpage1 as supplementary material of his monograph1,
implemented in the finite element platform FREEFEM++ 44. For comparison purposes, we also computed the dispersion curves
associated to the “almost optimal” disk used as initialization, see Figure 6(a).
From the results in Figure 14, one can see that the anisotropic dispersive properties of the considered cells extend beyond the

low-frequency regime covered by the homogenized model, as the onset of the first band-gap appears at higher frequencies for
� = �∕4 (section Γ-M) than for � = 0 (section Γ-X). Moreover, as expected from the polar plot of |d∕c0| in Figure 6(a), the
acoustic branches, corresponding to the first Bloch mode, are nearly superimposed for the two cells. The optimization process,
acting on the slope c0 and third derivative (proportional to d∕c0) of the curves k → !(k,�) at origin k = 0, seems to have
mainly increased slightly the limit velocity c0 by “converting” the circular inclusion to the quartic inclusion. On the contrary, the
discrepancy between the first optical branches, corresponding to the second Bloch mode, is much larger. This strong sensitivity
of dispersive effects to moderate topology changes, at higher frequencies, is a strong motivation to combine our methodology
with models that describe the wave motion at these frequencies16,18, in a future work.

FIGURE 13 Left: optimized cell on a 64 × 64 pixel grid, fitting quartic curve (37) (blue), and boundary of the disk used as
initialization (red). Right: mesh of the cell and quartic inclusion used in the Floquet-Bloch computations.

1 http://members.femto-st.fr/vincent-laude/freefem-scripts-numerical-simulation-phononic-crystals

http://members.femto-st.fr/vincent-laude/freefem-scripts-numerical-simulation-phononic-crystals
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FIGURE 14 Left: reciprocal unit cell, and reduced Brillouin zone (grey triangle). Right: acoustic and first optical branches (cor-
responding to the first and second Floquet-Bloch eigenfrequencies), for the circular inclusion (red) and the quartic approximation
of the optimal inclusion (blue), see Figure 13. The reduced wavevector’s tip follows the edges of the reduced Brillouin zone.
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4.2 Reconstructing a microstructure from phase velocity data
As a last example, we apply the optimization algorithm to an identification problem already partially addressed in27: we aim
at reconstructing an unknown microstructure from measurements of its effective dynamical properties. More precisely, we
suppose that the collected measurements are the phase velocities cobs(kp,�j) for various wavenumbers kp, p = 1,… , Nk and
in various directions of propagation �j = (cos �j , sin �j), j = 1,… , N� . These data are to be compared to the phase velocity
c(k,�) = !(k,�)∕k obtained by second-order homogenization of the trial periodic structures, i.e. with !(k,�) given by (6).

Cost functional and topological derivative
We first define the classical least-square cost functional Jc evaluating the misfit between measured and homogenized velocities,
for a given couple of wavenumber and direction (k,�):

Jc(k,�) =
1
2
[

c(k,�) − cobs(k,�)
]2 , (38)

The dependency of Jc on the effective propertiesmeff , dropped for simplicity, is embedded in the definition of c. We also define
the dynamic cost functional JΔc , extracting the effects of dispersion, as

JΔc(k,�) =
1
2
[

Δc(k,�) − Δcobs(k,�)
]2 , Δc(k,�) = c(k,�) − c(kmin,�), (39)

where kmin is the smallest wavenumber for which measurements are available; we assume that kminl ≪ 1 so that c(kmin,�) is
close to the low-frequency limit phase velocity c0(�). The topological sensitivities of these two misfit functionals are:

Jc(k,�; z) =
[

c(k,�) − cobs(k,�)
]

c(k,�; z),

JΔc(k,�; z) =
[

Δc(k,�) − Δcobs(k,�)
]

(

c(k,�; z) −c(kmin,�; z)
)

,
(40)

where the topological derivative c of the phase velocity is:

c(k,�; z) =
[

�0 ∶ �⊗2 − l2k2�2 ∶∶ �⊗4 − (c(k,�))
2 (%0 − l2k2%2 ∶ �⊗2

) ]

(z)

2
(

%0 − l2k2%2 ∶ �⊗2
)

. (41)

In this setting, we finally define the aggregate cost functionals as

J tot
c =

N�
∑

j=1
Jc(kmin,�j) and J tot

Δc =
N�
∑

j=1

Nk
∑

p=1
JΔc(kp,�j), (42)

that measure respectively the misfits of quasitatic velocities and dispersion for all measurements, and whose sensitivities J tot
c

and J tot
Δc are computed by way of (40-41).

In27, these sensitivities were computed once on a reference chessboard-like unit cell, to localize a damaged quarter-cell in the
unit cell of a defective material. It was observed that J tot

c was useful to determine the nature of the defect (softer or stiffer) but
had no localization capabilities, whereas J tot

Δc was able to distinguish between intact and defective quarter-cells, i.e. was more
sensitive to geometric alterations. In order to apply the optimization algorithm 1 to reconstruct a given unit cell from similar
data, we employ a weighted combination of the two cost functionals above:

Jw = wJ tot
c + J tot

Δc . (43)

Data and constraints
To avoid the so-called inverse crime, we use values of cobs resulting from Floquet-Bloch analysis (instead of homogenization) of
a two-phases chessboard-like unit cell, whose material ratios are �B∕�A = 7 and �B∕�A = 1.2 (as already done in27). The plane-
wave probing grid hasN� = 7 incident directions with �j = (j−3)�∕8, j = 1,… , N� , andNk = 10wavenumbers kp = 2p�∕30,
p = 1,… , Nk. With such hypotheses, the shortest wavelength used to probe the periodic structure is �min = 2�∕kNk

= 3 = 3l
(since we work on the unit cell data without normalization, l = 1).
To facilitate the computation, the following constraints are set in the optimization algorithm:

• The phase properties are set identical to those of the chessboard (�B∕�A = 7 and �B∕�A = 1.2).

• The volume fraction of each phase is constrained: |YA| = |YB| = 1∕2 as in the chessboard. In practice, this is done by
rescaling the level-set at each iteration.
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In other words, the only missing information to reconstruct the chessboard cell is the geometrical distribution of the phases into
the cell.

Results
The weighting parameter w is fixed to three different values: w ∈ {0, 0.1, 0.2}. Using the completely random initialization
displayed in Figures 6(c) and 10(c), we obtain the results displayed in Figure 15. For w = 0, i.e. when taking only the dipersion
data into account, a very good agreement is observed between the (homogenized) dispersion of the obtained structure and the
(Floquet-Bloch) target dispersion, whereas the limit velocities differ. As expected, a better fit of the limit velocity c0 is then
obtained for larger values of the weighting parameter w, but at the price of a larger misfit with the dispersion measurements
Δc(kp,�j), and more “blurred” interfaces between the two material phases. In all cases, a chessboard-like structure is recovered,
illustrating the capabilities of the algorithm to recover –at least qualitatively– the microstructural distribution of a periodic
material from macroscopic data.

5 SUMMARY AND PERSPECTIVES

In this work, we presented a topological optimization procedure, relying on robust and simply implemented analytical and
numerical tools: second-order asymptotic homogenization, topological derivatives, FFT-accelerated cell problem solver. Exam-
ples assert the capabilities of this procedure to (i) recover known analytical results on optimal bilaminates for unidimensional
wave propagation, (ii) provide optimal microstructures that realize an objective anisotropic effective dispersion, and (iii) identify
microstructures from effective phase velocity data. The effects of varying the initalizations (which can enable a faster conver-
gence towards a better optimum of the cost functional) and changing the relative weights of the quasistatic and dispersive data
were qualitatively studied. Moreover, this study sets a framework that can easily be extended to other geometrical and physical
configurations or objectives.
First of these extensions, a work in progress concerns the application of the optimization algorithm to rows of inclusions that

span only a strip in the plane, and whose homogenization results in equivalent transmission condition rather than an enrichement
of the wave equation45; the optimization process will aim at tuning these transmission conditions to obtain various anisotropic
effects, e.g. incidence direction-dependent transmission or reflection coefficients. The extension to in-plane and 3D elasticity
is then envisaged, using the second-order homogenization results existing for elastic composites46, that lead to the so-called
strain gradient models29,22. Leaning on the much richer physics of elastic waves captured by these models, one could design
structures combining exotic static properties (e.g. auxetic structures13) with wave-related properties such as mode conversion
and dispersion. We also aim at extending the procedure to resonant metamaterials, see e.g.6 for bulk homogenization and47 for
resonant interfaces. Finally, it is worth mentioning that the present work paves the way towards an extension to higher-frequency
homogenization regimes. Indeed, building on the high-frequency homogenization framework introduced by17, the second-order
asymptotic framework employed here is also able to describe the effective behavior of periodic materials about the apexes of
the Brillouin zone18. Computing the latter would necessitate the development of a FFT-based and matrix-free Bloch-Floquet
solver in order to build a consistent extension of our methodology. This would also lead to an extension of recent topological
optimization works16 that use leading-order high-frequency homogenization.
Another improvement direction, that should be combinedwith the propositions above, concerns the efficiency of the numerical

components of the procedure. A first idea is to develop a “pixel sensitivity” that could replace the topological sensitivity to better
account for the chosen discretization of the unit cell, i.e. to consider the sensitivity to a pixel change at the discrete level rather
than to an infinitesimal phase change at the continuous level, similarly to the discrete shape sensitivity used in15 instead of the
formula derived from continuous analysis. Then, the optimization algorithm could be modified to handle multi-phase materials
following the recent proposal of48. Finally, the “basic scheme” of the FFT-accelerated method initially proposed in28, that we
used for simplicity, could be replaced by one of the many refined methods that were developed since then, see e.g.38,49 and the
references therein, especially to deal with more expansive cell problems stemming from the elasticity system.
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FIGURE 15 Result of the chessboard recovering process for (a)w = 0 (i.e. Jw = J tot
Δc ), (b)w = 0.1, and (c)w = 0.2. From left

to right: (i) initial, target and final phases velocities, in three directions: � = 0 (dotted), � = �∕8 (dashed) and � = �∕4 (solid);
(ii) initial, target and final dispersions, in the same directions; and (iii) final microstructures (3 × 3 unit cells).
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APPENDIX

A MATHEMATICAL DEFINITIONS

A.1 Tensorial notations
In equations such as (2) the gradient operator ( and its powers, which satisfy (p = (((p−1), and the divergence operator are
defined for any tensor field T (x) as

(T (x) = ei ⊗
)
)zi
T (x) and divT (x) = ei ⋅

)
)xi

T (x)

where (ei)i denotes the canonical basis in ℝ2.
The notations ⋅psym and ⋅sym denote respectively partial symmetrization on all indices except the first one and complete

symmetrization by permutation of all the indices, e.g. for any third-order tensor T = (Tijk) it holds

(T psym)ijk =
1
2
(

Tijk + Tikj
)

and (T sym)ijk =
1
6
(

Tijk + Tikj + Tjik + Tjki + Tkij + Tkji
)

.

Moreover, the term T⊗p denotes p-th power of T owing to the standard tensorial product, e.g.

T⊗2 = T ⊗ T and T⊗4 = T ⊗ T ⊗ T ⊗ T .

A.2 Periodic fields and Fourier transforms
Consider a unit-cell Y allowing to fill the space ℝ2 by translation along the vectors Y 1, Y 2. The lattice  generated by these
vectors is defined as

 =
{

Y , Y = n1Y 1 + n2Y 2, nj ∈ ℤ
}

.

Define spaces of periodic scalar functions as:
L2per(Y ) =

{

f ∈ L2loc(ℝ
2), f (y + Y ) = f (y), a.e. y ∈ ℝ2, ∀Y ∈ 

}

,

H1
per(Y ) =

{

f ∈ H1
loc(ℝ

2), f ∈ L2per(Y ) , )yjf ∈ L
2
per(Y ) , j = 1, 2

}

.

Likewise, we denote as L2per(Y ) the space of periodic tensors fields (of any order) whose components are functions belonging
to L2per(Y ).
The Fourier transform f̂ of f is defined as:

f̂ (�) = ℱ [f ](�) = 1
|Y | ∫

Y

f (y)e−i�⋅y dy, where i =
√

−1.

Let∗ denote the reciprocal lattice of generated by the vectors

Y ∗1 = −
2�
|Y |

RY 2 and Y ∗2 =
2�
|Y |

RY 1

where R is the �∕2 rotation matrix. Then, according to Plancherel’s theorem:
1
|Y | ∫

Y

|

|

|

f (y)||
|

2
dy =

∑

�∈∗

|

|

|

f̂ (�)||
|

2
,

and therefore
f ∈ L2per(Y ) ⇔

∑

�∈∗

|

|

|

f̂ (�)||
|

2
< +∞.

The original periodic function f in L2per(Y ) can be reconstructed from its Fourier transform by

f (y) = ℱ −1[f ](y) =
∑

�∈∗

f̂ (�)ei�⋅y .
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