
HAL Id: hal-02310882
https://hal.science/hal-02310882

Submitted on 10 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Efficient Verification of Systems with Dynamic
Process Creation

Hanna Klaudel, Maciej Koutny, Elisabeth Pelz, Franck Pommereau

To cite this version:
Hanna Klaudel, Maciej Koutny, Elisabeth Pelz, Franck Pommereau. Towards Efficient Verification
of Systems with Dynamic Process Creation. Theoretical Aspects of Computing - ICTAC 2008, 5160,
Springer Berlin Heidelberg, pp.186-200, 2008, Lecture Notes in Computer Science, �10.1007/978-3-
540-85762-4_13�. �hal-02310882�

https://hal.science/hal-02310882
https://hal.archives-ouvertes.fr

Towards Efficient Verification of Systems with
Dynamic Process Creation

Hanna Klaudel1, Maciej Koutny2, Elisabeth Pelz3, and Franck Pommereau3

1 IBISC, University of Evry, bd F. Mitterrand, 91025 Evry, France
hanna.klaudel@ibisc.fr

2 SCS, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
maciej.koutny@newcastle.ac.uk

3 LACL, University of Paris Est, 61 av. du général de Gaulle, 94010 Créteil, France
{pelz,pommereau}@univ-paris12.fr

Abstract. Modelling and analysis of dynamic multi-threaded state sys-
tems often encounters obstacles when one wants to use automated ver-
ification methods, such as model checking. Our aim in this paper is to
develop a technical device for coping with one such obstacle, namely that
caused by dynamic process creation.
We first introduce a general class of coloured Petri nets—not tied to any
particular syntax or approach—allowing one to capture systems with
dynamic (and concurrent) process creation as well as capable of manipu-
lating data. Following this, we introduce the central notion of our method
which is a marking equivalence that can be efficiently computed and then
used, for instance, to aggregate markings in a reachability graph. In some
situations, such an aggregation may produce a finite representation of an
infinite state system which still allows one to establish the relevant be-
havioural properties. We show feasibility of the method on an example
and provide initial experimental results.
Keywords: Petri nets, multi-threaded systems, marking symmetries,
state-space generation.

1 Introduction

Multi-threading is a programming feature with an ever increasing presence due
to its central role in a broad range of application areas, including web services,
business computing, virtual reality, pervasive systems, and networks-on-a-chip.
Given this and the widely acknowledged complexity of multi-threaded designs,
there is a growing demand to provide methods supporting the highest possi-
ble confidence in their correctness. In a multi-threaded (or multi-process) pro-
gramming paradigm, sequential code can be executed repeatedly in concurrent
threads interacting through shared data and/or rendezvous communication. In
this paper, we consider a Petri net model that captures such a scheme in a gen-
eral fashion: programs are represented by Petri nets, and the active threads are
identified by differently coloured tokens which use, in particular, thread iden-
tifiers. Such programs and their corresponding representation in coloured Petri

nets may be obtained compositionally from algebras of Petri nets (e.g., [19])
which ensures that several behavioural properties of the resulting nets may be
validated automatically and/or syntactically (i.e., by construction). The corre-
sponding class of nets may also be characterised using a suitable combination of
structural properties. The latter approach is used in this paper in order to avoid
dealing with a concrete net algebra.

The presence of thread identifiers in net markings has the potential of ac-
celerating the state space explosion, and so poses an additional threat for the
efficiency of verification. However, thread identifiers are arbitrary (anonymous)
symbols whose sole role is to ensure a consistent (i.e., private or local) execution
of each thread. The exact identity of an identifier is basically irrelevant, and
what matters are the relationships between such identifiers, e.g., being a thread
created by another thread. As a result, (sets of) identifiers may often be swapped
with other (sets of) identifiers without changing the resulting execution in any
essential way. Moreover, an infinite state system can sometimes be reduced to
a finite representation which in turn allows one to model check the relevant be-
havioural properties (e.g., mutual exclusion or deadlock freeness). This leads to
the problem of identifying symmetric executions, which must be addressed by
any reasonable verification and/or simulation approach to multi-threaded pro-
gramming schemes.

In this paper, we propose a method that contributes towards an efficient ver-
ification approach for multi-threaded systems modelled using a class of coloured
Petri nets. At its core lies a marking equivalence that identifies global states
which have essentially isomorphic future behaviour up to renaming of thread
identifiers. The equivalence can be computed efficiently and then it may be used
to aggregate nodes in a marking graph, or to find cut-offs during the unfolding of
a Petri net [14]. The proposed method is complemented with a generation scheme
for concrete values of thread identifiers that is both distributed and concurrent.

An important feature of the method is that it is parameterised by a set of
operations that can be applied to thread identifiers. For instance, it may or may
not be allowed to test whether one thread is a direct descendant of another
thread, and the proposed method takes this into account.

Context and related works. The difficulty of reasoning about the behaviour
of multiple threads operating on shared data has motivated the development of a
variety of formalisms and methods for the modelling and detecting various kinds
of errors, e.g., data races, deadlocks and violations of data invariants.

In proof based methods, such as the recent approaches in [11,23], the model
is described by means of axioms, and properties are theorems to be verified using
a theorem prover. These techniques have the advantage of being applicable to
infinite state systems, but the use of theorem provers can be a deeply technical
task which is hard to automate.

As an alternative approach, model checking techniques (see [5]) allow one
to achieve a high degree of confidence in system correctness in an essentially
automatic way. This is done by exhaustively checking a finite system model for

violations of a correctness requirement specified formally as, e.g., a temporal
logic formula [16]. However, this makes model checking sensitive to the state
explosion problem, and so it may not be well suited to tackle real-life systems. A
variety of methods (see, e.g., [18] for a recent survey) address the state explosion
problem by exploiting, for instance, symmetries in the system model, in order to
avoid searching parts of the state space which are equivalent to those that have
already been explored. Several techniques have been implemented in widely used
verification tools, such as [3,13,17], and proved to be successful in the analysis
of complex communication protocols and distributed systems.

When dealing with multi-threaded systems, model checking typically involves
manual definition of models using low-level modelling means, such as pseudo pro-
gramming languages, Petri nets or process algebras. Some recent methodologies
(e.g. [24,6,1]) allow one to verify (Java or C) program invariants by combining
model checking and abstract interpretation [8], while others (e.g. [9]) propose
dedicated high-level input languages (a combination of multiset rewriting and
constraints) allowing one to use verification techniques employing symbolic repre-
sentations of infinite state spaces. In the domain of coloured Petri nets, extensive
work has been conducted to make model checking efficient through the use of
symbolic reachability graph constructions [4,25], and by exploiting various kinds
of partial order reductions [10,14].

Being general purpose techniques rather than designed specifically for multi-
threaded systems, the above approaches do not exploit explicitly symmetries
related to thread identifiers. An example of work which addresses expressivity
and decidability aspects of various extensions of P/T Petri nets allowing, in
particular, fresh name generation and process replication is [22]. However, it
only allows equality tests on process identifiers, and does not deal with aspects
related to the efficiency of verification.

Outline of the paper. After introducing basic concepts concerning thread
identifiers, we present a class of Petri nets used to model multi-threaded systems
and establish some relevant properties of their reachable markings. We then de-
fine an equivalence relation on markings abstracting from the identities of thread
identifiers and discuss its main features. The paper ends with a procedure for
checking the equivalence, supported by an example and some initial experimental
results. All proofs and auxiliary results are provided in the technical report [15].

2 Process identifiers

We denote by D the set of data values which, in particular, contains all integers.
We then denote by V the set of variables such that V ∩ D = ∅. The set P,
disjoint with D ∪ V, is the set of process identifiers, (or pids) that allow one to
distinguish different concurrent threads during an execution. We assume that
there is a set I ⊂ P of initial pids, i.e., threads active at the system startup.
To keep the formal treatment simpler, we assume throughout this paper that at
the beginning there is just one active thread, and so |I| = 1. This is a harmless

restriction since any non-trivial initial marking (with several active threads) can
be created from a restricted one by firing an initialisation transition.

Operations on process identifiers. It is possible to check whether two pids
are equal or not since different threads must be distinguished. Other operations
may also be applied to thread identifiers, in particular:

– π ^1 π
′ checks whether π is the parent of π′ (i.e., thread π spawned thread

π′ at some point of its execution).
– π ^ π′ checks whether π is an ancestor of π′ (i.e., ^ is ^+

1).
– π t1 π

′ checks whether π is a sibling of π′ and π was spawned immediately
before π′ (i.e., after spawning π, the parent of π and π′ did not spawn any
other thread before spawning π′).

– π t π′ checks whether π is an elder sibling of π′ (i.e., t is t+
1).

Throughout the paper, we will denote by Ωpid the set of the four relations
introduced above, as yet informally, together with the equality. In particular,
only the operators in Ωpid can be used to compare pids in the annotations used
in Petri nets. Crucially, it is not allowed to decompose a pid (to extract, for
example, the parent pid of a given pid) which is considered as an atomic value
(or black box), and no literals nor concrete pid values are allowed in Petri net
annotations (i.e., in guards and arc labels) involving the pids.

The resulting formalism is rich while still being decidable. Indeed, it can be
shown that the monadic second order theory of P equipped with ^1 and t1 can
be reduced to the theory of binary trees equipped with the left-child and right-
child relation which, in turn, has been shown to be exactly as expressive as the
tree automata [21]. Having said that, many simple extensions of the formalism
based on pids (de)composition are undecidable.

Thread implementation. We assume that there exists a function ν generating
the i-th child of the thread identified by a pid π, and that there is no other way
to generate a new pid. In order to avoid creating the same pid twice, each thread
is assumed to maintain a count of the threads it has already spawned.

A possible way of implementing dynamic pids creation—adopted in this
paper—is to consider them as finite strings of positive integers written down
as dot-separated sequences. Then we take I df= {1} and, for all π and i, we set
ν(π, i− 1) df= π.i (i.e., the i-th pid generated from π is π.i, and i− 1 is the num-
ber of pids generated so far from π). With such a representation, the relations
in Ωpid other than equality are given by:

– π ^1 π
′ iff (∃i ∈ N+) π.i = π′

– π ^ π′ iff (∃n ≥ 1) (∃i1, . . . , in ∈ N+) π.i1. · · · .in = π′

– π t1 π
′ iff (∃π′′ ∈ P) (∃i ∈ N+) π = π′′.i ∧ π′ = π′′.(i+ 1)

– π t π′ iff (∃π′′ ∈ P) (∃i < j ∈ N+) π = π′′.i ∧ π′ = π′′.j

Such a scheme has several advantages: (i) it is deterministic and allows for dis-
tributed generation of pids; (ii) it is simple and easy to implement without

re-using the pids; and (iii) it may be bounded by restricting, e.g., the length of
the pids, or the maximum number of children spawned by each thread.

3 Coloured Petri nets

We start with a general definition of coloured Petri nets and their dynamic be-
haviour. More details about this particular formalism and, in particular, variable
bindings and operations on multisets, can be found in [2].

Definition 1 (Petri net graph). A Petri net graph is a tuple (S, T, `) where
S is a finite set of places, T is a finite set of transitions (disjoint from S), and
` is a labelling of places, transitions and arcs (in (S × T) ∪ (T × S)) such that:

– For each place s ∈ S, `(s) is a Cartesian product of subsets of pids and data,
called the type of s.

– For each transition t, `(t) is a computable Boolean expression, called the
guard of t.

– For each arc α, `(α) is a finite set of tuples of values and/or variables. 3

Since we allow tuples as token values, it is possible to represent complex data
structures in a flattened form (as Cartesian products). In what follows, the set
of all finite tuples beginning with a value or variable x will be denoted by Tx.

Definition 2 (Petri net and its behaviour). A marking M of a Petri net
graph (S, T, `) is a mapping that associates with each s ∈ S a finite multiset of
values in `(s). A Petri net is then defined as N df= (S, T, `,M0), where M0 is the
initial marking.

A transition t ∈ T is enabled at a marking M if there exists a binding
σ : V→ D such that σ(`(t)) evaluates to true and, for all s ∈ S, σ(`(s, t)) ≤M(s)
and σ(`(t, s)) is a multiset over `(s). (In other words, there are enough tokens
in the input places, and the types of the output places are being respected.)

An enabled t may fire producing the marking M ′, defined for all s ∈ S by
M ′(s) df= M(s)− σ(`(s, t)) + σ(`(t, s)). We denote this by M [t, σ〉M ′.

We also denote M0 →∗ M if M is produced from M0 through the firing of a
finite sequence of transitions, i.e., if the marking M is reachable (from M0). 3

We will use a specific family of Petri nets respecting structural restrictions
detailed below. Throughout the rest of this section, N is as in definition 2.

Assumption 1 (places) The set of places is partitioned into a unique genera-
tor place sgen , a possibly empty set of data places Sdata , and a nonempty set of
control-flow places Sflow , i.e., S df= {sgen}] Sdata] Sflow . It is assumed that:

1. The generator place sgen has the type P× N.
2. Each control-flow or data place s has the type P×Pks×Ds where Ds ⊆ Dms ,

for some ks,ms ≥ 0. 3

The typing discipline for places ensures that we can talk about each token
〈π, · · ·〉 being owned by a thread, the pid π of which is the first component of
the token. A pid is active at a marking if it owns a token in the generator place.

Data places store, for different threads, tuples of data and/or pids owned by
currently and previously active threads.

Control-flow places indicate where the control of active threads resides. When
a control-flow place s is such that ks + ms ≥ 1, the information following the
pid of the owner provides the status of the execution; for instance, allowing one
to find out whether an exception has been raised (like in [19]).

The generator place sgen is needed by the underlying scheme for the dynamic
creation of fresh pids. For each active thread π, it stores a generator token 〈π, i〉
where i is the number of threads already spawned by π. Thus the next thread
to be created by π will receive the pid π.(i+ 1).

Assumption 2 (initial marking) The initial marking is such that:

1. All data places are empty.
2. The generator place contains exactly one token, 〈1, 0〉.
3. There is exactly one control-flow place that is non-empty, its type is P and

it contains exactly one token, 〈1〉. 3

Firing a transition t captures a progression of one or several threads which
meet at a rendezvous. Below, the threads entering the rendezvous belong to a
finite non-empty set E ⊂ V. Some of them (in the set X ⊆ E) may exit the
rendezvous, others may terminate (in E \ X), and new ones may be created (in
the set N). Each of the created threads is spawned by one of the threads entering
the rendezvous. Without lost of generality, if all the entering threads terminate,
we assume that at least one is created (in order to ensure that each transition
has at least one output arc to a control-flow place).

Each thread e entering the rendezvous creates ke ≥ 0 children. Their pids are
generated using the generator place sgen that holds a counter g ∈ N for e (as for
all active pids). This counter for e stored in sgen is incremented by ke when the
transition fires, and the pids of the generated threads are e.(g+1), . . . , e.(g+ke).

At the same time, e may access data using the get operation, which consumes
a token from a data place, or the put operation, which produces a token and
inserts it into a data place. If the tokens involved are owned by e, this corresponds
to data management for e. For example, getting and putting the same value into
the same data place corresponds to reading, while getting one value and putting
another one into the same data place corresponds to an update (the computation
of the new value may be expressed through the guard of t). If the tokens involved
are not owned by e, this corresponds to asynchronous communication through
shared variables. In such a case, the put operation corresponds to the sending
of a message, while the get corresponds to the receiving of a value deposited by
another thread.

The purely syntactic restrictions on arcs and guards given below ensure that
pids are not treated as (transformable) data. Markings are not involved, and so
each thread will be identified by the variable bound to an actual pid at firing

t
∧
e∈E

goute = gine + ke

new threads: N
〈n1, 0〉 〈n|N |, 0〉. . .

terminated threads (τ df= |E \ X |)
. . .〈f1, g

inf1 〉 〈fτ , ginfτ 〉

. . .

〈e, gine〉

〈e, goute〉
generator updates
(for all e such that ke > 0)

...

...

(a)

t
∧
e∈E

1≤je≤ke

ne
je

= e.(gine + je)

entering threads: E
〈e1, · · ·〉 〈e|E|, · · ·〉. . .

exiting threads: X ⊆ E
〈x1, · · ·〉 〈x|X |, · · ·〉. . .

new threads: N
(for e ∈ E)

〈ne
1, · · ·〉

〈ne
ke

, · · ·〉

...

...

(b)

tget operations

〈a′
1, · · ·〉

〈a′
g, · · ·〉

... put operations

〈a1, · · ·〉

〈ap, · · ·〉

...

(c)

Fig. 1. Parts of the guard and the shape of arcs for assumption 3. In (a) the arcs are
connected to the generator place, in (b) to control-flow places, and in (c) to data places.
The ai’s and a′

j ’s are variables.

time. This will not cause any confusion as each active pid will always appear
only once in exactly one control-flow place.

Assumption 3 (transitions, arcs and guards) For each transition t ∈ T ,
the following specifies all the arcs, arc annotations and guard components.

1. The sets of threads E, X and N are defined as:

E df= {e | s ∈ Sflow ∧ `(s, t) ∩ Te 6= ∅} ,
X df= {x | s ∈ Sflow ∧ `(t, s) ∩ Tx 6= ∅} ∩ E ,
N df= {n | s ∈ Sflow ∧ `(t, s) ∩ Tn 6= ∅} \ E =

⊎
e∈E{ne

1, . . . , n
e
ke
} .

It is assumed that E, X and N are subsets of V and E 6= ∅ 6= X ∪N .
2. t is connected to the control-flow places as shown in figure 1(b), where:

– For each e ∈ E, there exists exactly one control-flow place s such that
`(s, t) ∩ Te 6= ∅. Moreover, |`(s, t) ∩ Te| = 1.

– For each x ∈ X , there exists exactly one control-flow place s such that
`(t, s) ∩ Tx 6= ∅. Moreover, |`(t, s) ∩ Tx| = 1.

– For each n ∈ N , there exists exactly one control-flow place s such that
`(t, s) ∩ Tn 6= ∅. Moreover, |`(t, s) ∩ Tn| = 1.

3. t is connected to the generator place sgen as shown in figure 1(a), where:
– For each f ∈ E \ X , `(sgen , t) ∩ Tf = {〈f, ginf 〉} where ginf ∈ V.
– For each n ∈ N , `(t, sgen) ∩ Tn = {〈n, 0〉}.
– For each e ∈ E with ke > 0, `(sgen , t) ∩ Te = {〈e, gine〉} and `(t, sgen) ∩

Te = {〈e, goute〉} where gine , goute ∈ V.
– For each e ∈ E with ke = 0, `(sgen , t) ∩ Te = `(t, sgen) ∩ Te = ∅.

4. There is no restriction on how t is connected to the data places. As illustrated
in figure 1(c), each put operation corresponds to a tuple in the label of an arc
from t to a data place while each get operation corresponds to a tuple in the
label of an arc from a data place to t.

5. The variables occurring in the annotations of the arcs adjacent to t can
be partitioned into pid variables and data variables, as follows: for each
place s ∈ S which has the type P × Pks × D1 × · · · × Dms

, for each tu-
ple 〈x0, x1, . . . , xks , y1, . . . ,yms〉 ∈ `(s, t) ∪ `(t, s), the xi’s are pid variables
and the yj’s are data variables. In other words, locally to each transition, a
variable cannot be used simultaneously for pids and data.

6. The guard of t is a conjunction of the formulas corresponding to:
– The creation of the new pids:

∧
e∈E,1≤je≤ke

ne
je

= e.(gine + je).

– The updating of counters of spawned threads:
∧
e∈E

goute = gine + ke.

– A Boolean formula expressing a particular firing condition and data ma-
nipulation, where only the operations from Ωpid are allowed on pid vari-
ables. 3

Finally, any N obeying the above assumptions is a thread Petri net (or t-net).

4 Properties of reachable markings

We want to capture some useful properties of t-net behaviours. First, we intro-
duce control safeness and consistent thread configurations which will be used to
characterise pids occurring in reachable t-net markings.

Definition 3 (control safe markings). A t-net marking M is control safe if,
for each pid π ∈ P, one of the following holds:

– There is exactly one token owned by π in the generator place and exactly
one token owned by π in exactly one of the control-flow places (note that this
unique place may contain tokens not owned by π).

– Tokens owned by π (if any) appear only in the data places. 3

Control safeness ensures that each thread is sequential, and that there is no
duplication of control-flow tokens.

Definition 4 (ct-configuration). A consistent thread configuration (or ct-
configuration) is a pair ctc df= (G,H), where G ⊂ P × N and H ⊂ P are finite
sets. Assuming that pidG

df= {π | 〈π, i〉 ∈ G} and pidctc
df= pidG∪H, the following

are satisfied, for all 〈π, i〉 ∈ G and π′ ∈ pidctc:

1. 〈π, j〉 /∈ G, for every j 6= i.
2. If π ^ π′ then there is j ≤ i such that π.j = π′ or π.j ^ π′.

We also denote nextpidctc
df= {π.(i+ 1) | 〈π, i〉 ∈ G}. 3

Intuitively, G represents tokens held in the generator place, pidG comprises
pids of active threads, and H keeps record of all the pids that might occur in
the data tokens of some reachable t-net marking.

Definition 5 (ctc of a marking). Given a reachable t-net marking M , we
define ctc(M) df= (M(sgen), H), where H is the set of all the pids occurring in
the tokens held in the data and control-flow places at M . 3

We can now characterise reachable markings of t-nets.

Theorem 1. Let M be a reachable t-net marking.

1. M is control safe.
2. ctc(M) is a ct-configuration. 3

Knowing that all reachable t-net markings are control safe will allow us to
identify those which admit essentially the same future behaviour. We start with
an auxiliary definition at the level of ct-configurations (see [15] for its soundness).

Definition 6 (isomorphic ct-configurations). Two ct-configurations, ctc =
(G,H) and ctc′ = (G′, H ′), are h-isomorphic, denoted by ctc ∼h ctc′, if there is
a bijection h : (pidctc ∪ nextpidctc)→ (pidctc′ ∪ nextpidctc′) such that:

1. h(pidG) = pidG′ .
2. For all 〈π, i〉 ∈ G and 〈h(π), j〉 ∈ G′, h(π.(i+ 1)) = h(π).(j + 1).
3. For ≺ in {^1,^} and π, π′ ∈ pidctc: π ≺ π′ iff h(π) ≺ h(π′).
4. For f in {t1,t} and π, π′ ∈ pidctc ∪ nextpidctc: π f π′ iff h(π) f h(π′). 3

We now can introduce the central notion of this paper.

Definition 7 (marking equivalence). Let M and M ′ be reachable markings
of a t-net such that ctc(M) ∼h ctc(M ′). Then M and M ′ are h-isomorphic if:

– For each control-flow or data place s, M ′(s) can be obtained from M(s) by
replacing each pid π occurring in the tuples of M(s) by h(π).

– h({π | 〈π, i〉 ∈M(sgen)}) = {π′ | 〈π′, i′〉 ∈M ′(sgen)}.
We denote this by M ∼h M

′ or simply by M ∼M ′. 3

The equivalence M ∼h M
′ means that pids are related through h, and data in

tokens in control-flow and data places remain unchanged. As far as the generator
tokens are concerned, the only requirement is that they involve h-corresponding
pids.

As shown in [15], ∼ is an equivalence relation. It follows from the next result
that it captures a truly strong notion of marking similarity.

Theorem 2. Let M and M ′ be h-isomorphic reachable markings of a t-net, and
t be a transition such that M [t, σ〉M̃ . Then M ′[t, h ◦ σ〉M̃ ′, where M̃ ′ is a mark-
ing such that M̃ ∼eh M̃ ′ for a bijection h̃ coinciding with h on the intersection
of their domains. 3

Moreover, the above result still holds if Ωpid is restricted to any of its subsets
that includes pid equality.

5 Checking marking equivalence

We check marking equivalence in two steps. First, markings are mapped to three-
layered labelled directed graphs, and then the graphs are checked for isomor-
phism.

The three-layered graphs are constructed as follows. Layer-I nodes are la-
belled by places, layer-II by (abstracted) tokens and layer-III by (abstracted)
pids. The arcs are of two kinds: those going from the container object toward
the contained object (places contain tokens which in turn contain pids), and
those between the vertices of layer-III reflecting the relationship between the
corresponding pids through the comparisons in Ωpid other than equality, de-
noted below as /j (see figure 4).

Definition 8 (graph representation of markings). Let M be a reachable
marking of a t-net N . The corresponding graph representation

R(M) df= (V ;A,A/1 , . . . , A/`
;λ) ,

where V is the set of vertices, A, A/1 , . . . , A/`
are sets of arcs and λ is a labelling

of vertices and arcs, is defined as follows:

1. Layer-I: for each control-flow or data place s in N such that M(s) 6= ∅, s is
a vertex in V labelled by s.

2. Layer-II: for each control-flow or data place s, and for each token v ∈M(s),
v is a vertex in V labelled by bvc (which is v with all pids replaced by
epsilon’s) and there is an unlabelled arc s −−−−−−−−→ v in A.
Note: separate copies of node v are created for different occurrences of v in
case M(s)(v) > 1.

3. Layer-III:
– for each vertex v added at layer-II, for each pid π in v at the position n

(in the tuple), π is an ε-labelled vertex in V and v n−−−−−−−−→ π an arc in A.

– for each token 〈π, i〉 ∈M(sgen), π.(i+1) (that is, the potential next child
of π) is a vertex in V labelled by ε.

– for all vertices π, π′ added at layer-III, for all 1 ≤ j ≤ `, there is an arc
π

/j−−−−−−−−→ π′ in A/j
iff π /j π

′ (that is, A/j
defines the graph of the relation

/j on V ∩ P).

4. There is no other vertex nor arc in R(M). 3

To gain efficiency, R(M) may be optimised by removing some vertices and
arcs, e.g., each subgraph 〈π〉 0−−−−−−−−→ π can be replaced by π.

Theorem 3. Let M1 and M2 be two reachable markings of a t-net. R(M1) and
R(M2) are isomorphic iff M1 ∼M2. 3

5.1 Example

In order to illustrate the proposed approach, we consider a simple server system
with a bunch of threads waiting for connections from clients (not modelled).
Whenever a new connection is made, a handler is spawned to process it. The
handler performs some unspecified computation and then calls an auxiliary func-
tion. Terminated handlers are awaited for by the thread that spawned them.
The example illustrates two typical ways of calling a subprogram: either asyn-
chronously by spawning a thread, or synchronously by calling a function. In our
setting, both ways result in creating a new thread, the only difference is that
a function call is modelled by spawning a thread and immediately waiting for
it. In order to simplify the presentation, data is not being modelled, only the
control-flow. Moreover, for this particular example, we can take Ωpid without
the relations ^ and t.

The whole system is modelled by the Petri net depicted in figure 2. The main
process corresponds to the transitions init, spawn and wait :

– Upon firing init, the initial thread 1 terminates and creates k children that
carry out the actual spawning/waiting for handler threads. The place s1
holds pairs (pid, counter) in order to allow each thread to remember the
number of handlers it has spawned.

– spawn creates one handler child and increments the counter. The maximum
number of active children is bound by m due to the guard c < m.

– wait terminates one of the children (this is verified by the guard) and decre-
ments the counter.

A handler process corresponds to the transitions comp, call and ret : comp models
the computation performed by the handler; call creates one child in order to
start an instance of the function; immediately after that wait awaits for its
termination. The function itself is modelled by a single transition fun. The net
is parameterised by two constants k and m, and so we denote it by Nk,m.

〈1〉 s0

init

s1

wait π ∢1 π′

spawnc < m 〈1, 0〉
sgen

s2

comp

s3

call

s4

retπ ∢1 π′

s5

s6

fun

s7

π

P

〈π, g〉/P

〈π, c〉/〈π, c − 1〉

π′

π

π

π

π

π.(g + 1)

π

π

π

π
π′

〈π, g〉

〈π, g + 1〉

〈π, g〉

〈π, g + 1〉

〈π, c + 1〉

〈π, c〉

π.(g + 1)

Fig. 2. The example Petri net, where P
df
= {〈π.(g + 1), 0〉, . . . , 〈π.(g + k), 0〉}. An arc

with an arrow at both sides and labelled by a/b denotes that a is consumed and b
is produced. All places but sgen are control-flow ones. Places sgen and s1 have type
P× N and all the other places have type P. The angle brackets around singletons and
true guards are omitted. Finally, we may write an expression E on an output arc as a
shorthand for a fresh variable y instead of E, together with the condition y = E in the
guard of the adjacent transition.

Bounding the executions. Our approach allows to find a finite state space of
the system by detecting loops in the behaviour, i.e., parts of the execution that
are repeated with new pids. This can be illustrated using N1,1: its state space
is infinite if we use the standard Petri net transition rule. But if we identify
markings that are equivalent, it only has 7 states, as shown in figure 3.

The overall behaviour is clearly looping but, without using marking equiva-
lence, there is no cycle in the state space. Indeed, the execution of wait produces
the marking {s1 : 〈1.1, 0〉; sgen : 〈1.1, 1〉} instead of 〈1.1, 0〉 in sgen that was cre-
ated by the firing of init. From here, a second execution of spawn would produce
a new pid 1.1.2 instead of 1.1.1 that was used in the first loop. By incorporating
the proposed marking equivalence, the exact values of pids are abstracted as well
as the marking of the generator place, which allows to detect a state which is
basically the same and thus to stop the computation.

s0 : 〈1〉 s1 : 〈1.1, 0〉 s1 : 〈1.1, 1〉
s2 : 〈1.1.1〉

s1 : 〈1.1, 1〉
s3 : 〈1.1.1〉

s1 : 〈1.1, 1〉
s4 : 〈1.1.1〉

s6 : 〈1.1.1.1〉

s1 : 〈1.1, 1〉
s4 : 〈1.1.1〉

s7 : 〈1.1.1.1〉
s1 : 〈1.1, 1〉
s5 : 〈1.1.1〉

init spawn comp

call

funret

wait

Fig. 3. The state graph of N1,1 where the marking of sgen has not been represented.

Handling symmetries. Another advantage of our approach can be illustrated
using N2,1: two main threads are started and each can have at most one active
handler child. This system exhibits symmetric executions since the behaviour of
both threads is concurrent but is interleaved in the marking graph. For instance,
the state space has a diamond when the two threads spawn concurrently one child
each. The markings corresponding to the intermediate states of the diamond are
depicted in figure 4. Because the relation t1 has been taken into account, the two
markings are clearly not equivalent. But, when this relation is not considered,
the markings become equivalent, as shown on the right of figure 4. In the state
spaces such diamonds are removed and only one interleaving preserved.

5.2 Experimental results

We have implemented a prototype of the proposed method using SNAKES [20]
and NetworkX [12], for the Petri net and graph part, respectively. The latter
implements VF2 [7] that is considered to be one of the fastest algorithms for
checking graph isomorphism. We have generated several state spaces, using var-
ious values of k and m and considering various Ωpid ’s. The global execution
times are not relevant since our implementation is not yet optimised. However,
we measured the time spent on computing the graph isomorphism (this part is
implemented efficiently) with respect to the size of the graphs representing t-net
markings (measured as the product of the number a of arcs and the number
v of vertices in the union of the graphs being compared). The result shows a
progression that appears to be linear (see figure 6 in [15]). This suggests that
the heuristics in VF2 are efficient for the kind of graphs involved in the checking
of marking equivalence. Considering that a ≤ v2, the experimentally observed
performance appears to be at worst v3 or, equivalently, a3/2.

6 Conclusions

Working within the context of coloured Petri nets, we proposed a technical de-
vice for coping with dynamic and concurrent creation of processes capable of
manipulating data encountered, e.g., in multi-threaded systems. The method
introduced in this paper defines and efficiently exploits an equivalence relation
on markings with essentially isomorphic future behaviours. It can be used, in

pid:1.2

pid:1.1

<b

pid:1.2.2

<c

pid:1.2.1

<c

pid:1.1.2

<c<b

pid:1.2.1.1

<c

(pid:1.2, 1)

0

s1

(pid:1.1, 0)

0

s2

pid:1.2

pid:1.1

<b

pid:1.2.2

<c

pid:1.1.2

<c

pid:1.1.1

<c

(pid:1.2, 0)

0

s1

(pid:1.1, 1)

0

pid:1.1.1.1

<b

<c

s2 pid:1.2

pid:1.2.2

<c

pid:1.2.1

<c

pid:1.2.1.1

<c

(pid:1.2, 1)

0

s1

(pid:1.1, 0)

pid:1.1

0

pid:1.1.2

<c

s2

Fig. 4. Graph representations of states of N2,1. On the right, the same states reduce to
isomorphic ones when t1 is not taken into account (and so only one is depicted). The
circle, square and diamond vertices depict respectively layer-I, layer-II and layer-III
vertices. Gray vertices are those added on the basis of sgen . ^1 is depicted by <c and
t1 by <b.

particular, to aggregate nodes in a state graph. As demonstrated by the initial
experiments, this may produce efficiently a finite representation of an infinite
state systems that is reduced with respect to symmetric executions.

Acknowledgements. We would like to thank Alexis Bes, Patrick Cegielski,
Christian Laforest and Victor Khomenko for their comments on the earlier ver-
sions of this paper. This research was supported by Nsfc Grant 60433010.

References

1. T.Ball, S.Chaki and S.K.Rajamani: Parameterized Verification of Multithreaded
Software Libraries. Proc. TACAS’01, Lecture Notes in Computer Science 2031,
Springer (2001) 158–173

2. E.Best et. al: M-Nets: An Algebra of High-Level Petri Nets, with an Application to
the Semantics of Concurrent Programming Languages. Acta Informatica 35 (1998)
813–857

3. D.Bosnacki, D.Dams and L.Holenderski: Symmetric Spin. International Journal on
Software Tools for Technology Transfer 4 (2002) 92–106

4. G.Chiola, C.Dutheillet, G.Franceschinis and S.Haddad: A Symbolic Reachability
Graph for Coloured Petri Nets. Theoretical Computer Science 176 (1997) 39–65

5. E.Clarke, O.Grumberg and D.Peled: Model Checking. MIT Press (2000)
6. J.C.Corbett et. al: Bandera: Extracting Finite-state Models from Java Source Code.

Proc. ICSE’00, ACM (2000) 439–448
7. L.P.Cordella, P.Foggia, C.Sansone and M.Vento: A (Sub)Graph Isomorphism Al-

gorithm for Matching Large Graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence 26 (2004) 1367–1372

8. P.Cousot and R.Cousot: Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints.
Proc. POPL’77, ACM (1977) 238–252

9. G.Delzanno: Constraint-based Automatic Verification of Abstract Models of Multi-
threaded Programs. Journal of Theory and Practice of Logic Programming 7 (2007)

10. S.Evangelista: High Level Petri Nets Analysis with Helena. Proc. ICATPN’05, Lec-
ture Notes in Computer Science 3536, Springer (2005) 455–464

11. C.Flanagan, S.N.Freund, S.Qadeer and S.A.Seshia: Modular Verification of Multi-
threaded Programs. Theoretical Computer Science 338 (2005) 153–183

12. A.Hagberg, D.Schult and P.Swart: NetworkX, High Productivity Software for Com-
plex Networks. http://networkx.lanl.gov

13. M.Hendriks et.al: Adding Symmetry Reduction to Uppaal. Proc. FORMATS’03,
Lecture Notes in Computer Science 2791, Springer (2003) 46–59

14. V.Khomenko: Model Checking Based on Prefixes of Petri Net Unfoldings. PhD
Thesis, School of Computing Science, University of Newcastle (2003)

15. H.Klaudel, M.Koutny, E.Pelz and F.Pommereau: Towards Efficient Verification
of Systems with Dynamic Process Creation. LACL Technical Report (2008)
http://lacl.univ-paris12.fr

16. Z.Manna and A.Pnueli: The Temporal Logic of Reactive and Concurrent Systems
Specification. Springer (1991)

17. K.McMillan: Symbolic Model Checking. Kluwer Academic (1993)
18. A.Miller, A.Donaldson and M.Calder: Symmetry in Temporal Logic Model Check-

ing. ACM Comput. Surv. 38 (2006)
19. F.Pommereau: Versatile Boxes, a Multi-Purpose Algebra of High-Level Petri Nets.

Proc. DADS/SCSC’07, SCS/ACM (2007)
20. F.Pommereau: Quickly Prototyping Petri Net Tools with Snakes. Proc. PNTAP’08,

ACM Digital Library (2008)
21. M.O.Rabin: Decidability of Second-order Theories and Automata on Infinite Trees.

Transactions of the American Mathematical Society 141 (1969)
22. F.Rosa-Velardo and D.de Frutos-Escrig: Name Creation vs. Replication in Petri

Net Systems. Proc. ICATPN’07, Lecture Notes in Computer Science 4546, Springer
(2007) 402–422

23. R.F.Stärk: Formal Specification and Verification of the C# Thread Model. Theo-
retical Computer Science 343 (2005) 482–508

24. S.D.Stoller: Model-Checking Multi-threaded Distributed Java Programs.
Proc. SPIN’00, Lecture Notes in Computer Science 1885, Springer (2000)
224–244

25. Y.Thierry-Mieg, C.Dutheillet and I.Mounier. Automatic Symmetry Detection in
Well-Formed Nets. Proc. ICATPN’03, Lecture Notes in Computer Science 2679,
Springer (2003) 82–101

