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Abstract

This paper focuses on a dual approach in order to study the data completion problem. A classical
method to solve this problem is to minimize the so-called regularized Kohn-Vogelius functional. How-
ever this method needs to choose an appropriate parameter of regularization to ensure its efficiency in
the numerical reconstruction. To avoid this difficulty, we propose to study the inverse problem through
a dual problem.

Using some well-chosen functional spaces and establishing theoretical results in a abstract setting,
we prove the well-posedness of the dual minimization problem and the convergence of our regularized
solution to the exact solution when the amount of noise on the data goes to 0. Moreover we prove that
the regularized solution satisfies the well-known Morozov discrepancy principle. Then we establish
that the minimization of the dual functional permits not only to stably obtain a good reconstruction
of the missing data of the Cauchy problem but also to determine the value of a suitable parameter of
regularization in the Kohn-Vogelius strategy. We finally present numerical results, in two and three
dimensions, to underline the efficiency of the proposed method.

1 Introduction

Data completion problem. We are interested in the regularization of the data completion prob-
lem, also known as Cauchy problem, for Laplace’s equation. More precisely, let Ω be a connected
bounded open domain of Rd, where d = 2 or d = 3 is the dimension, with a Lipschitz boundary ∂Ω.
We assume ∂Ω to be divided in two open sets Γ and Γc = ∂Ω/Γ of strictly positive Lebesgue measure.
Let ν be the unit exterior normal vector to Ω. For a Cauchy data (gD, gN) ∈ H1/2(Γ) ×H−1/2(Γ)1, our
problem of interest reads: find u ∈ H1(Ω) such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆u = 0 in Ω,
u = gD on Γ,

∂νu = gN on Γ,
(1.1)

where ∂νu is the normal derivative of u.

∗CNRS/Univ. Pau & Pays Adour/E2S UPPA, Laboratoire de Mathématiques et de leurs Applications de Pau-IPRA,
UMR 5142, 64000 Pau, France (fabien.caubet@univ-pau.fr)

†Institut de Mathématiques de Toulouse UMR5219, Université de Toulouse, CNRS, UPS, F-31062 Toulouse Cedex 9,
France (Jeremi.Darde@math.univ-toulouse.fr)

1The functional setting is specified in Appendix A.
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It is well known that such problem is severely ill-posed: it admits at most one solution, but fails to
have one for a subset of Cauchy data dense in H1/2(Γ)×H−1/2(Γ), and presents exponential instabilities
with respect to noise (see, e.g., [8, 9, 32]).

From a reconstruction point of view, these instabilities are the main issue: in particular, for
any ε > 0 and for any data (gD, gN) for which Problem (1.1) admits a solution u, there exists an-
other data (g̃D, g̃N) for which Problem (1.1) also admits a solution ũ, so that at the same time (see,
among others, [25, Section 2])

∥gD − g̃D∥H1/2(Γ) + ∥gN − g̃N∥H−1/2(Γ) ⩽ ε and ∥u − ũ∥H1(Ω) ⩾
1

ε
.

As, from a practical point of view, one should always expect noise on real-life data, it is not only
necessary to propose a regularization method that reconstruct a good approximation of the searched
solution when exact data are at hand, but it is mandatory to provide a strategy to deal with the noise.

The best stability one can expect for this problem is a logarithmic conditional stability as underlined
in the following result (see [3, Theorem 1.9]):

Theorem 1.1. Let M > 0 and δ > 0. There exist C > 0 and µ ∈ (0,1) such that for all Cauchy
data (gD, gN) ∈ H1/2(Γ) ×H−1/2(Γ) verifying

∥gD∥H1/2(Γ) + ∥gN∥H−1/2(Γ) ⩽ δ,

for all u ∈ H1(Ω) solution of (1.1) with an a-priori bound on the H1-norm

∥u∥H1(Ω) ⩽M,

one has

∥u∥L2(Ω) ⩽ (M + δ)ω ( δ

M + δ
) ,

where ω ∶ R+ → R+ satisfies

ω(t) ⩽ C

ln ( 1
t
)µ
, ∀t ∈ (0,1).

In other word, one may restore a very weak stability assuming that the solutions we are looking
for are a priori bounded by some constant.

Remark 1.2. In the present article, we focus on Laplace’s equation for simplicity. But everything we
present easily adapts to a general elliptic data completion problem, with Laplace’s equation replaced by
a general elliptic equation in divergence form

div (σ∇u) = 0,

where σ ∈ W1,∞(Ω) satisfies the usual ellipticity condition σ ⩾ c > 0 a.e. in Ω, and where the normal
derivative is modified accordingly.

Several regularization techniques has been proposed to tackle Problem (1.1). Without being ex-
haustive, we may mention methods based on surface integral equations [12, 23], Lavrentiev regulariza-
tion [10, 11], stabilized finite elements methods [15–17], quasi-reversibility method [13, 18, 26, 35, 36],
fading regularization method [24, 27], etc.
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A dual optimization strategy. In our present work, we focus on an optimization strategy
which is closely related to the so-called Kohn-Vogelius strategy. More precisely, and in a sense we
will make more accurate in the next section, the proposed strategy is dual to the Kohn-Vogelius
optimization problem used in [21] to deal with problem (1.1). This dual strategy is closely related to
the one developed in [14], in the context of inverse problems and quasi-reversibility method, but with
somehow a reverse point of view. It is also closely related to the works [28, 31] in the context of control
theory.

Let (gD, gN) ∈ H1/2(Γ)×H−1/2(Γ) be the exact boundary data, in the sense that they correspond to an
exact solution uex ∈ H1(Ω) to Problem (1.1) that we seek to reconstruct. From a data completion point
of view, we aim to reconstruct the missing data (ϕex, ψex) = (∂νuex∣Γc

, uex∣Γc
) ∈ H−1/2(Γc) ×H1/2(Γc)

from the knowledge of (gD, gN).
We define

F = ∇uN −∇uD ∈ L2(Ω),
where uN and uD belong to H1(Ω) and satisfy2 respectively

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆uN = 0 in Ω,
∂νuN = gN on Γ,
uN = 0 on Γc,

and

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆uD = 0 in Ω,
uD = gD on Γ,

∂νuD = 0 on Γc.
(1.2)

We suppose that we have at our disposal a noisy version (gδD, gδN) ∈ H1/2(Γ) ×H−1/2(Γ) of the data
such that

∥gδD − gD∥H1/2(Γ) + ∥gδN − gN∥H−1/2(Γ) ⩽ δ.

We define uδD, uδN and F δ as uD, uN and F , simply replacing gD and gN by their noisy counterparts gδD
and gδN in (1.2). It is not difficult to see that there exists a constant c > 0, independent of δ, gD and gN,
such that

∥F δ −F ∥L2(Ω) ⩽ c δ. (1.3)

We also make the classical assumption that c δ < ∥F δ∥L2(Ω), that is we suppose that the ratio infor-
mation versus noise is sufficient so that we may hope to reconstruct something.

Remark 1.3. To apply the method we will introduce below, we need to know the constant c, or at least
to obtain a good numerical approximation of it. We come back on that matter in Section 5.

We define
H
−1/2
◇ (∂Ω) = {θ ∈ H−1/2(∂Ω), ⟨θ,1⟩ = 0} ,

and

F ∶ θ ∈ H
−1/2
◇ (∂Ω) z→ 1

2
∫

Ω
(∣∇v1(θ)∣2 + ∣∇v2(θ)∣2)dx + c δ (∫

Ω
∣∇w(θ)∣2 dx)

1
2

− ∫
Ω
F δ ⋅ ∇w(θ)dx,

where w(θ) ∈ H1(Ω) verifies ∫
Γc

w(θ)ds = 0 and

{ ∆w(θ) = 0 in Ω,
∂νw(θ) = θ on ∂Ω,

(1.4)

and v1(θ) and v2(θ) belong to H1(Ω) and verify respectively

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆v1(θ) = 0 in Ω,
v1(θ) = 0 on Γ,

∂νv1(θ) = θ on Γc,
and

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆v2(θ) = 0 in Ω,
∂νv2(θ) = 0 on Γ,
v2(θ) = w(θ) on Γc.

(1.5)

We will prove the following result (see Section 4).

2For the well-posedness of all the Laplace’s problems considered in the study, we refer to Appendix A.
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Theorem 1.4. The problem of minimizing F over H
−1/2
◇ (∂Ω) is a well-posed problem: there exists a

unique θo ∈ H
−1/2
◇ (∂Ω) such that

F (θo) = min
θ∈H

−1/2
◇
(∂Ω)

F (θ).

Obviously, this optimal θo depends on δ, but in the following we forget the dependency in order to
simplify notations. We define

ϕo = ∂νw(θo)∣Γc
and ψo = w(θo)∣Γc

,

where w(θo) is defined by (1.4), and uo ∈ H1(Ω) verifies

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆uo = 0 in Ω,
uo = gδD on Γ,

∂νuo = ϕo on Γc.
(1.6)

Notice that ϕo, ψo and uo depend again on δ, but we also forget this dependency for simplicity. We
will prove the following two results (see Section 4).

Theorem 1.5. For all δ > 0 and F δ ∈ L2(Ω) satisfying (1.3), we have

∥∇v1(θo) − ∇v2(θo) −F δ∥L2(Ω) = c δ.

Theorem 1.6. The triplet (ϕo, ψo, uo) converges to (ϕex, ψex, uex) as δ converges to zero, strongly
in H−1/2(Γc) × H̃1/2(Γc) ×H1(Ω), where H̃1/2(Γc) is the quotient space H1/2(Γc)/R.

Because of these two results, we consider the triplet (ϕo, ψo, uo) as our regularized solution to
Problem (1.1), uo being an approximation of the exact solution uex in Ω. Actually, Theorem 1.5 implies
that the couple (ϕo, ψo) satisfies the well-known Morozov discrepancy principle, while Theorem 1.6
ensure the convergence of the approximated solution to the exact one as the amplitude of noise goes
to zero.

Hence, to obtain our regularized solution, we only need to minimize the functional F over the

space H
−1/2
◇ (∂Ω), which is an unconstrained minimization problem easy to solve numerically. Note

also that this is a method without regularization parameter, which automatically construct a solution
satisfying the Morozov discrepancy principle with respect to the noisy data. These are the two main
advantages and novelties of our method.

Link with the Kohn-Vogelius strategy. We now link the minimization problem of The-
orem 1.4, with the well-known Kohn-Vogelius strategy, which is a regularization method for Prob-
lem (1.1) based on the minimization of a Kohn-Vogelius functional. Introduced in [5] to stabilize
Problem (1.1), it has since been widely used in the context of inverse problems (see, among others,
[1, 2, 4, 7, 19–22, 38] and the references therein).

There are several variations of the Kohn-Vogelius strategy to handle Problem (1.1), depending on
the choices of limit conditions in the auxiliary volumic problems. In the present paper, we focus on
the one used in [21] to deal with inverse obstacle problem for Laplace’s equation. More precisely,

for ϕ ∈ H−1/2(Γc) and ψ ∈ H
1/2
◇ (Γc), where

H
1/2
◇ (Γc) = {g ∈ H1/2(Γc), ∫

Γc

g ds = 0} ,

we denote vϕ and vψ the two elements of H1(Ω) verifying respectively

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆vϕ = 0 in Ω,
vϕ = 0 on Γ,

∂νvϕ = ϕ on Γc,
and

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆vψ = 0 in Ω,
∂νvψ = 0 on Γ,
vψ = ψ on Γc.

(1.7)
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Then the regularized Kohn-Vogelius functional writes, for ε > 0 and for all (ϕ,ψ) ∈ H−1/2(Γc)×H
1/2
◇ (Γc),

as

K V (ϕ,ψ) = 1

2
∫

Ω
∣∇vϕ −∇vψ −F δ ∣

2
dx + ε

2
∫

Ω
(∣∇vϕ∣2 + ∣∇vψ ∣2) dx.

In this form, it clearly appears to be a Tikhonov functional, and indeed it always has a unique minimizer
(see [21, Proposition 2.5]):

Proposition 1.7. For all ε > 0, the functional K V admits a unique minimizer (ϕε, ψε) over the

space H−1/2(Γc) ×H
1/2
◇ (Γc).

Remark 1.8. Notice that the above Kohn-Vogelius functional can be written equivalently in the more
classical form

K V (ϕ,ψ) = 1

2
∫

Ω
∣∇(vϕ + uδD) − ∇(vψ + uδN)∣

2
dx + ε

2
∫

Ω
(∣∇vϕ∣2 + ∣∇vψ ∣2) dx.

As usual in inverse problems, one of the main question is then to set the parameter of regularization
with respect to the a priori known amplitude of noise. We have the following result, basically saying
that the Morozov discrepancy principle is a viable method to do so (see [21, Proposition 2.8]):

Theorem 1.9. There exists a unique ε = ε(δ) > 0 so that the corresponding minimizer (ϕε(δ), ψε(δ))
of K V , which belongs to H−1/2(Γc) ×H

1/2
◇ (Γc), satisfies the Morozov discrepancy principle

∥∇vϕε(δ) −∇vψε(δ) −F
δ∥L2(Ω) = c δ.

Furthermore, (ϕε(δ), ψε(δ)) converges to (ϕex, ψex) strongly in H−1/2(Γc) × H̃1/2(Γc) when δ goes to
zero.

It turns out that (ϕo, ψo) is precisely the minimizer of K V corresponding to ε(δ) (see the proof
of the following result in Section 4):

Theorem 1.10. We have

ε(δ) = c δ
√
∫

Ω
(∣∇vϕo ∣2 + ∣∇vψo ∣2) dx

and (ϕo, ψo) = (ϕε(δ), ψε(δ)).

Hence, minimizing the functional F is not only a method to stably obtain a good reconstruction of
the missing data in Problem (1.1), but also a method to find the minimizer of K V and to determine
the value of the parameter of regularization in the Kohn-Vogelius strategy satisfying the Morozov
discrepancy principle. This represents the last main result of our work.

Outline. The paper is organized as follows. In Section 2, we study an operator used in the fol-
lowing sections. In Section 3, we prove all the main results in an abstract setting, that we apply in
Section 4 to our problem of interest, proving in particular Theorem 1.4, Theorem 1.5, Theorem 1.6 and
Theorem 1.10. Section 5 is dedicated to numerical exemples in two-dimensional and three-dimensional
settings, showing the feasibility and efficiency of the proposed method. In Section 6, we present some
final comments, in particular on the rate of convergence of the method, and on how to impose exactly a
finite number of constraints on the solution. Finally, in Appendix A, we precise the different functional
settings used in the study.

Aknowledgements. We are grateful to Sylvain Ervedoza for sharing previous versions of his
work [31], which inspires us the Section 6.2. We also express our gratitude to Sophie Jan, for enriching
conversations on optimization in infinite dimensional spaces.
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2 On an operator from the boundary to the volume

The operator

A ∶ (ϕ,ψ) ∈ H−1/2(Γc) ×H
1/2
◇ (Γc) z→ ∇vϕ −∇vψ ∈ H(Ω),

where vϕ and vψ are defined by (1.7), and where

H(Ω) = {∇w, w ∈ H1(Ω) satisfies ∆w = 0 in Ω} ,

plays a central role in our study. From Lemmata A.2 and A.3, we know that the bilinear application

on H−1/2(Γc) ×H
1/2
◇ (Γc)

{(ϕ1, ψ1), (ϕ2, ψ2)} z→ ∫
Ω
(∇vϕ1 ⋅ ∇vϕ2 +∇vψ1 ⋅ ∇vψ2) dx,

is a scalar product, the corresponding norm being equivalent to the standard norm on the space

H−1/2(Γc) × H
1/2
◇ (Γc), so that H−1/2(Γc) × H

1/2
◇ (Γc) endowed with this scalar product is a Hilbert

space. Similarly, from Lemma A.4, H(Ω) is a Hilbert space when endowed with the standard L2-
scalar product.

We first have the following properties.

Proposition 2.1. Ker(A) = {(0,0)}, Range(A) ≠ H(Ω) and Range(A) = H(Ω).

Proof. Firstly let (ϕ,ψ) ∈ H−1/2(Γc)×H
1/2
◇ (Γc) be such that A(ϕ,ψ) = 0, that is ∇vϕ −∇vψ = 0. There

exists α ∈ R such that vϕ = vψ + α. Then

∫
Γc

ψ ds = ∫
Γc

vψ ds = 0⇒ α = 1

∣Γc∣ ∫Γc

vϕ ds.

It is clear that
∂νvϕ∣Γ = ∂ν (vψ + α)∣Γ = ∂νvψ∣Γ = 0.

As also ∆vϕ = 0 and vϕ∣Γ = 0, we have vϕ = 0. Hence ϕ = 0 and α = 0. As a consequence, we
have vψ = vϕ − α = 0, so ψ = 0.

Secondly, for (gD, gN) ∈ H1/2(Γ) × H−1/2(Γ) such that problem (1.1) fails to have a solution, we

define F = ∇uN − ∇uD ∈ H(Ω). If there would exist (ϕ,ψ) ∈ H−1/2(Γc) × H
1/2
◇ (Γc) such that we

have A(ϕ,ψ) = F , we would get ∇(vϕ + uD) = ∇(vψ + uN) in Ω. Therefore, there would exist α ∈ R
such that vϕ + uD = vψ + uN + α, leading to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆(vϕ + uD) = 0 in Ω,
vϕ + uD = gD on Γ,

∂ν(vϕ + uD) = gN on Γc.

In other words, vϕ + uD verifies (1.1), leading to a contradiction. Hence Range(A) ≠ H(Ω).
Finally, let p ∈ H(Ω) be such that for all (ϕ,ψ) ∈ H−1/2(Γc) ×H

1/2
◇ (Γc), we have

(A(ϕ,ψ),p)L2(Ω) = 0⇐⇒ ∫
Ω
∇(vϕ − vψ) ⋅ pdx = 0.

Let us prove that p = 0 which implies that Range(A)⊥ = {0} and then, using the classical density criteria

(i.e. a corollary of the Hahn-Banach theorem in Hilbert spaces), we will obtain Range(A) = H(Ω).
There exists w ∈ H1(Ω), harmonic in Ω, such that p = ∇w. So w verifies

∫
Ω
∇(vϕ − vψ) ⋅ ∇w dx = 0, ∀(ϕ,ψ) ∈ H−1/2(Γc) ×H

1/2
◇ (Γc).
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For θ ∈ C∞
c (Γc), we define h ∈ H1(Ω) as the unique solution of

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆h = 0 in Ω,
h = 0 on Γ,

∂νh = θ on Γc.

Setting ϕ = ∂νh∣Γc
, it is readily seen that vϕ = h. So choosing also ψ = 0 so that vψ = 0, we obtain

0 = ∫
Ω
∇(vϕ − vψ) ⋅ ∇w dx = ∫

Ω
∇vϕ ⋅ ∇w dx = ∫

Ω
∇h ⋅ ∇w dx = ⟨∂νw, θ⟩Γc .

Since this equality holds for all θ ∈ C∞
c (Γc), it follows ∂νw∣Γc

= 0. Now, for θ ∈ C∞
c (Γc), we define

h ∈ H1(Ω) the solution of
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆h = 0 in Ω,
∂νh = 0 on Γ,

h = θ − 1

∣Γc∣ ∫Γc

θ ds on Γc.

Note that such a function h is determined only up to a constant, which is without consequences for
what follows. We define

ψ = h∣Γc
− 1

∣Γc∣ ∫Γc

hds,

which belongs to H
1/2
◇ (Γc). Then ∇vψ = ∇h, so choosing ϕ = 0 so that vϕ = 0, we obtain

0 = ∫
Ω
∇vψ ⋅ ∇w dx = ∫

Ω
∇h ⋅ ∇w dx = ∫

Γc

θ (w − 1

∣Γc∣ ∫Γc

w ds) dx = ∫
Γc

w (θ − 1

∣Γc∣ ∫Γc

θ ds) dx.

Since this equality holds for all θ ∈ C∞
c (Γc), it follows w∣Γc

= 1

∣Γc∣ ∫Γc

w ds. As a conclusion, as w

verifies ∆w = 0, ∂νw∣Γc
= 0 and w∣Γc

= α ∈ R, we obtain w = α in Ω. Hence p = ∇w = 0, which ends the
proof.

We can now focus on A∗, the adjoint of A, which as usually is defined by the relation

(A(ϕ,ψ),p)L2(Ω) = {(ϕ,ψ),A∗p} , ∀(ϕ,ψ) ∈ H−1/2(Γc) ×H
1/2
◇ (Γc), ∀p ∈ H(Ω).

Proposition 2.2. Let p ∈ H(Ω), so that there exists w ∈ H1(Ω) such that p = ∇w with ∆w = 0 in Ω.
Then we have

A∗p = (ϕp, ψp), with ϕp = ∂νw∣Γc
and ψp = −(w∣Γc

− 1

∣Γc∣ ∫Γc

w ds) .

Proof. Let p ∈ H(Ω), and A∗p = (ϕp, ψp) in H−1/2(Γc) × H
1/2
◇ (Γc). There exists w ∈ H1(Ω) verify-

ing ∆w = 0 and ∇w = p. For any ϕ ∈ H−1/2(Γc), we have

∫
Ω
∇vϕ ⋅ ∇w dx = (A(ϕ,0),p)L2(Ω) = {(ϕ,0),A∗p} = ∫

Ω
∇vϕ ⋅ ∇vϕp dx.

For θ ∈ C∞
c (Γc), let h ∈ H1(Ω) be the unique solution of

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆h = 0 in Ω,
h = 0 on Γ,
h = θ on Γc.
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Defining ϕ = ∂νh∣Γc
, it is readily seen that vϕ = h. This easily leads to

⟨∂νw, θ⟩Γc = ∫
Ω
∇vϕ ⋅ ∇w dx = ∫

Ω
∇vϕ ⋅ ∇vϕp dx = ⟨ϕp, θ⟩Γc .

Since this equality holds for all θ ∈ C∞
c (Γc), it follows ϕp = ∂νw∣Γc

.

Now, for any ψ ∈ H
1/2
◇ (Γc), we have

∫
Ω
∇vψ ⋅ ∇w dx = −(A(0, ψ),p)L2(Ω) = −{(0, ψ),A∗p} = −∫

Ω
∇vψ ⋅ ∇vψp dx.

For θ ∈ C∞
c (Γc), let h ∈ H1(Ω) be a solution of

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆h = 0 in Ω,
∂νh = 0 on Γ,

∂νh = θ − 1

∣Γc∣ ∫Γc

θ ds on Γc.

Setting

ψ = h∣Γc
− 1

∣Γc∣ ∫Γc

hds ∈ H
1/2
◇ (Γc),

we clearly have ∇vψ = ∇h and then vψ = h + α with α ∈ R, so that

∫
Γc

θ (w − 1

∣Γc∣ ∫Γc

w ds) ds = ∫
Γc

w (θ − 1

∣Γc∣ ∫Γc

θ ds) ds =

⟨∂νh,w⟩ = ∫
Ω
∇vψ ⋅ ∇w dx = −∫

Ω
∇vψ ⋅ ∇vψp dx = −∫

Γc

θ ψp dx,

the last equality coming from the fact that ψp is by definition mean-free on Γc. Hence

ψp = −(w − 1

∣Γc∣ ∫Γc

w ds) ,

which ends the proof.

Remark 2.3. Note that A∗ is a one-to-one operator, as expected as Range(A) = H(Ω). Indeed,
if A∗p = (0,0), then any w ∈ H1(Ω) verifying ∇w = p and ∆w = 0 is a constant function in Ω, and
therefore p = 0.

3 Abstract setting

We now present the main results of our work in an abstract setting, that we will later apply to our
problem of interest. The strategy described below is a generalization of the one developed in [14] for
the quasi-reversibility, with a point of view which is in a sense reversed, as our primal problem here is
the dual problem in [14]. This is also closely related to the works on control theory [28, 31].

Let X , Y be two Hilbert spaces with scalar products (⋅, ⋅)X and (⋅, ⋅)Y and corresponding norms
∥ ⋅ ∥X and ∥ ⋅ ∥Y . Let A be a linear continuous operator from X to Y , such that Ker(A ) = 0Y ,

Range(A ) ≠ Y but Range(A ) = Y . Then A ∗ is well defined as a linear continuous operator from Y
to X , and is one-to-one.

Remark 3.1. Obviously, in next section, we will choose X = H−1/2(Γc) × H
1/2
◇ (Γc), Y = H(Ω)

and A = A.
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For y ∈ Y , the problem of finding some x ∈ X such that A x = y is ill-posed, as by definition it
may fail to have a solution. Let ys be in the range of A , xs be the only element of X such that

A xs = ys,

and yη in Y be such that
∥yη − ys∥Y ⩽ η,

for some η > 0. Here ys has to be understood as an exact data, xs the corresponding exact solution, yη

a noisy data for our problem, and η is the supposedly known amplitude of noise on the data.
As A is not onto, they may have no x in X such that A x = yη. Thus it is not judicious to use

a usual least-squares approach which consists in minimizing
1

2
∥Ax − yη∥2

Y , even if this is the main

problem on which we want to focus on. However, the set

M = {x ∈ X , ∥A x − yη∥Y ⩽ η} ,

i.e. the set of element of X satisfying the Morozov discrepancy principle, is not empty, as xs belongs
to M . We now aim to construct from yη one element of this set, stably, without other parameters
than η and the noisy data itself, and in such a way that the lower the amplitude of noise is, the closer
it is to the exact solution xs.

To do so, we start by solving a well-posed minimization problem not in the space X of the solutions,
but in the space Y of the data. It is in that sense that the regularization method is a dual strategy.

3.1 A minimization problem

We define a functional acting on Y :

J ∶ y ∈ Y z→ 1

2
∥A ∗y∥2

X + η∥y∥Y − (y, yη)Y . (3.1)

This functional is clearly continuous, and it is also strictly convex as A ∗ is one-to-one.

Proposition 3.2. The functional J is coercive, i.e.

lim
∥y∥Y→∞

J (y) = ∞.

Proof. Suppose it is not the case. Then it exists a sequence (yn)n∈N of elements of Y and a constant
C ∈ R such that

lim
n→∞

∥yn∥Y = ∞ and J (yn) < C.

Define, for all n ∈ N, zn = yn ∥yn∥−1
Y , which is obviously a bounded sequence. Therefore, one can

extract from (zn)n∈N a subsequence weakly converging to some z in Y . We still denote (zn)n∈N this
subsequence. As A ∗ is a linear operator, A ∗zn converges to A ∗z. From this and since

1

2
∥A ∗zn∥2

X + 1

∥yn∥Y
[η − (zn, yη)Y ] < C

∥yn∥2
Y

,

we obtain that A ∗z = 0X , leading immediately to z = 0Y . Note that in particular we have

lim
n→∞

(zn, yη)Y = 0.

As in addition
J (yn) > ∥yn∥Y [η − (zn, yη)Y ] ,

we obtain a contradiction by letting n goes to infinity.
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As J is continuous, strictly convex and coercive, we know (see, e.g., [29, Proposition 1.2 p.35])
that there existe a unique yo ∈ Y such that

yo = arg min
y∈Y

J (y). (3.2)

Lemma 3.3. yo = 0Y if and only if ∥yη∥Y ⩽ η.

Proof. For any β > 0, one has

J (β yη) = β
2

2
∥A ∗yη∥2

X + β∥yη∥Y [η − ∥yη∥Y ] .

Then, on the one hand, if yo = 0Y , one has J (β yη) ⩾ 0 for all β > 0, leading to ∥yη∥Y [η − ∥yη∥Y ] ⩾ 0
and finally η ⩾ ∥yη∥Y .

On the other hand, if yo ≠ 0Y , then J (yo) < J (0Y ) = 0, implying in particular that

η∥yo∥Y < (yo, y
η)Y ,

and hence ∥yη∥Y > η.

From now on we make the assumption that ∥yη∥Y > η, so that the minimum of J is not reached
in 0Y . Note that it is necessarily true for η small enough, as by definition

∥yη − ys∥Y ⩽ η⇒ ∥ys∥Y − η ⩽ ∥yη∥Y .

In other word, for all η such that 2η is strictly smaller than ∥ys∥Y , all below results apply, which is in
particular the case when η goes to zero.

Proposition 3.4. yo is the minimizer of J if and only if

A A ∗yo + η
yo

∥yo∥Y
= yη.

Proof. This is just the Euler-Lagrange equation associated with J , which is well-defined as soon
as yo ≠ 0Y .

3.2 The regularized solution

Definition and first properties. We are now in position to define our regularized solution to
problem A x = yη. To do so, we define

xo = A ∗yo, (3.3)

which by definition is an element of X . The previous Proposition 3.4 shows that

A xo = yη − η
yo

∥yo∥Y
, (3.4)

which implies in particular that
∥A xo − yη∥Y = η. (3.5)

Hence, xo belongs to M by construction. From now on, we consider xo as our regularized solution.
Note in particular that it is unique, exists regardless of the compatibility of the noisy data, and does
not depend on any parameter except for the noise amplitude η (and obviously the noisy data itself).
Note also that it satisfies the regularized problem (3.4), so in some sense the right-hand side of (3.4) can
be viewed as a regularized version of the data for which our main problem always have a (necessarily
unique) solution.

Before looking at convergence properties as η goes to zero, we prove some results about xo.
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Proposition 3.5. We have
∥xo∥2

X = −2J (yo).

Proof. One has

J (yo) =
1

2
∥A ∗yo∥2

X + η∥yo∥Y − (yo, y
η)Y

= 1

2
(xo,A

∗yo)X + η∥yo∥Y − (yo, y
η)Y

= 1

2
(A xo, yo)Y + η∥yo∥Y − (yo, y

η)Y

= 1

2
(yη − η

∥yo∥Y
yo, yo)

Y

+ η∥yo∥Y − (yo, y
η)Y

= η
2
∥yo∥Y − 1

2
(yo, y

η)Y .

Therefore

J (yo) =
1

2
∥A ∗yo∥2

X + 2J (yo) =
1

2
∥xo∥2

X + 2J (yo),

which ends the proof.

It turns out that by construction, among all x ∈ M , xo is the one of minimal norm (see the following
proposition). In other word, xo defined by (3.4), could be alternatively defined as

xo = arg min
x∈M

∥x∥X ,

which is precisely the point of view adopted in [14].

Proposition 3.6. Let x ∈ M , x ≠ xo. Then ∥x∥X > ∥xo∥X .

Proof. Let x ∈ M with x ≠ xo. We define yp = −A x + yη, so that ∥yp∥Y ⩽ η since x ∈ M . Then, using
Proposition 3.5,

1

2
(∥x∥2

X − ∥xo∥2
X ) = 1

2
∥x∥2

X +J (yo) =
1

2
∥x∥2

X + 1

2
∥A ∗yo∥2

X + η∥yo∥Y − (yo, y
η)Y

= 1

2
∥x∥2

X + 1

2
∥xo∥2

X + η∥yo∥Y − (yo,A x + yp)Y

= 1

2
∥x∥2

X + 1

2
∥xo∥2

X − (A ∗yo, x)X

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 1

2 ∥x−xo∥
2
X
>0

+η∥yo∥Y − (yo, yp)Y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⩾0

,

which ends the proof.

As an immediate consequence, since xs ∈ M , we obtain

Corollary 3.7. For all η > 0, we have ∥xo∥X ⩽ ∥xs∥X .
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Convergence. We now prove that xo converges to xs as η goes to zero. Note however that we
cannot obtain the rate of convergence in this abstract framework without doing some extra assumptions
on yη, for example some source condition, which are in practice difficult if not impossible to verify.
We shall come back on this in Section 6.

Theorem 3.8. xo converges to xs when η tends to zero.

Proof. Let us choose (ηn)n∈N any sequence of strictly positive real numbers converging to zero, yn = yηn
the corresponding noisy data verifying ∥yn − ys∥Y ⩽ ηn, and xo,n = A ∗yo,n with yo,n the minimizer of
the functional

Jn ∶ y ∈ Y z→ 1

2
∥A ∗y∥2

X + ηn∥y∥Y − (y, yn)Y .

We have seen that the sequence (xo,n)n∈N is bounded by Corollary 3.7:

∥xo,n∥X ⩽ ∥xs∥X .

Therefore, up to a subsequence it weakly converges to some x∞ belonging to X . But, using (3.5),

∥A xo,n − ys∥Y ⩽ ∥A xo,n − yn∥Y + ∥yn − ys∥Y ⩽ 2ηn,

and then A xo,n strongly converges to ys in Y , while it weakly converges to A x∞, therefore A x∞ = ys,
leading to x∞ = xs. As for all n,

∥xo,n∥X ⩽ ∥xs∥X ⩽ lim inf ∥xo,n∥X ,

we deduce
lim
n→∞

∥xo,n∥X = ∥xs∥X ,

and obtain the strong converges of the subsequence to xs. The result follows, as this reasoning is
correct for any sequence of strictly positive real numbers (ηn)n∈N converging to zero.

Remark 3.9. Note that if we do not have any rate of convergence for the method, we nevertheless
know that

∥Axo − ys∥ ⩽ 2η,

i.e. we have a linear rate of convergence for the residual.

3.3 Link with the Tikhonov regularization

A commun way to regularize our main problem is the Tikhonov regularization, which in our context
reads: for ε > 0,

xε = arg min
x∈X

1

2
∥A x − yη∥2

Y + ε
2
∥x∥2

X . (3.6)

It is well-known (see, among others, [30]) that such problem is well-posed, and in the case of exact
data (i.e. yη = ys), xε converges to xs when ε goes to zero.

Furthermore, for yη such that ∥y − yη∥Y ⩽ η < ∥yη∥Y , there exists a unique value of the parameter
of regularization ε = ε(η) such that the corresponding minimizer xε satisfies the Morozov discrepancy
principle ∥A xε − yη∥Y = η, automatically ensuring both stability of the reconstruction procedure and
convergence towards the exact solution as η goes to zero. This is why this parameter of regularization
is often chosen in Tikhonov regularization.

It turns out that the method described above allows to automatically determine ε(η). Indeed, it
can be explicitly expressed in terms of η and ∥yo∥Y , whereas the corresponding xε is precisely xo (see
Theorem 3.10 below).
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Theorem 3.10. For all η > 0 and yη ∈ Y such that ∥ys − yη∥Y ⩽ η < ∥yη∥Y , one has

ε(η) = η

∥yo∥Y
and xε(η) = xo.

Proof. Clearly, xε satisfies (3.6) if and only if for all x ∈ X ,

(A xε,A x)Y + ε(xε, x)X = (yη,A x)Y .

Now, Proposition 3.4 implies that for all y ∈ Y , one has

(A A ∗yo, y)Y + η

∥yo∥Y
(yo, y)Y = (yη, y)Y ,

which, recalling that A ∗yo = xo and choosing y = A x for x ∈ X , leads to

(yη,A x)Y = (A A ∗yo,A x)Y + η

∥yo∥Y
(yo,A x)Y

= (A xo,A x)Y + η

∥yo∥Y
(A ∗yo, x)X

= (A xo,A x)Y + η

∥yo∥Y
(xo, x)X .

Therefore, xo is the solution of (3.6) associated to the parameter choice ε = η
∥yo∥Y

. The fact that this

parameter is such that the corresponding minimizer satisfies the Morozov discrepancy principle follows
from equation (3.5), which ends the proof.

4 Application to the data completion problem

We are now in position to prove all the results announced in the introduction, that is Theorem 1.4,
Theorem 1.5, Theorem 1.6 and Theorem 1.10, using the results of Section 3 in the functional setting

defined in Appendix A, that is with X = H−1/2(Γc) × H
1/2
◇ (Γc) defined in Section A.1, Y = H(Ω)

defined in Section A.2, and the operator A = A defined in Section 2. Notice also that η = cδ with c
and δ being defined in Section 1.

Using Proposition 2.2, we obtain that the functional J defined by (3.1), that we want to minimize,
reads

J ∶ p ∈ Hz→ ∫
Ω
(∣∇vϕp ∣2 + ∣∇vψp ∣2) dx + c δ∥∇wp∥L2(Ω) − ∫

Ω
F δ ⋅ ∇wp dx,

where wp is any harmonic H1-function so that ∇wp = p, and vϕp and vψp are defined by (1.7), with

ϕp = ∂νwp∣Γc
and ψp = −(wp∣Γc

− 1

∣Γc∣ ∫Γc

wp ds) .

Following the results of the previous section (see (3.2)), we define po ∈ H(Ω) as the unique minimizer
of J ,

po = arg min
p∈H(Ω)

J (p), (4.1)

and our regularized solution (see (3.3))

(ϕo, ψo) = A∗po = (∂νwpo∣Γc
,−wpo∣Γc

+ 1

∣Γc∣ ∫Γc

wpo ds) , (4.2)

where again wpo is any harmonic H1 function so that ∇wpo = po.
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Reparametrization: proofs of Theorem 1.4 and Theorem 1.5. Numerically, handling
the space H(Ω) might be complicated, in particular because of the harmonicity condition. Therefore,
we reparametrize H(Ω) through boundary conditions as follows. First of all, we recall (see Section 1

that, for any θ ∈ H
−1/2
◇ (∂Ω), with

H
−1/2
◇ (∂Ω) = {θ ∈ H−1/2(∂Ω), ⟨θ,1⟩ = 0} ,

we denote w(θ) the function of H1(Ω) verifying ∫
Γc

w(θ)ds = 0 and

{ ∆w(θ) = 0 in Ω,
∂νw(θ) = θ on ∂Ω.

Note that the application θ ∈ H
−1/2
◇ (∂Ω) z→ ∇w(θ) ∈ L2(Ω) is linear.

We have the following lemma.

Lemma 4.1. For all p ∈ H(Ω), there exists a unique θ ∈ H
−1/2
◇ (∂Ω) such that ∇w(θ) = p, where

w(θ) ∈ H1(Ω) is defined above.

Proof. Let us begin by proving the existence. Let p ∈ H(Ω). By definition, there exists W ∈ H1(Ω)
such that ∆W = 0 and ∇W = p. For any v ∈ H1(Ω), one has

⟨∂νW,v⟩ = ∫
Ω
∇W ⋅ ∇v dx,

which shows that ∂νW ∈ H
−1/2
◇ (∂Ω) choosing v = 1. Hence clearly p = ∇w(∂νW̃ ), where

W̃ =W − 1

∣Γc∣ ∫Γc

W ds.

Now let us prove the uniqueness. Let θ1, θ2 ∈ H
−1/2
◇ (∂Ω) such that p = ∇w(θ1) = ∇w(θ2). Then by

definition one has, for all v ∈ H1(Ω),

⟨θ1, v⟩ = ∫
Ω
∇w(θ1) ⋅ ∇v dx = ∫

Ω
∇w(θ2) ⋅ ∇v dx = ⟨θ2, v⟩.

Hence θ1 = θ2.

This result permits to replace the minimization problem

po = arg min
p∈H

{J (p) = 1

2
∫

Ω
(∣∇vϕp ∣2 + ∣∇vψp ∣2)dx + c δ (∫

Ω
∣p∣2 dx)

1
2

− ∫
Ω
F δ ⋅ pdx} ,

by a minimization problem over H
−1/2
◇ (∂Ω), easier to handle numerically, which reads

θo = arg min
θ∈H

−1/2
◇
(∂Ω)

{F (θ) = 1

2
∫

Ω
(∣∇v1∣2 + ∣∇v2∣2)dx + c δ (∫

Ω
∣∇w(θ)∣2 dx)

1
2

− ∫
Ω
F δ ⋅ ∇w(θ)dx} ,

with v1 and v2 being two harmonic functions in H1(Ω) such that

v1∣Γ = 0, ∂νv1∣Γc
= θ, ∂νv2∣Γ = 0 and v2∣Γc

= w(θ)∣Γc
.
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Then we have
po = ∇w(θo), (4.3)

and we use the fact that po is the unique solution of (4.1) and Lemma 4.1 to prove Theorem 1.4, i.e.

there exists a unique minimizer θo ∈ H
−1/2
◇ (∂Ω) of F .

Moreover, in our context, Equation (3.5) reads

∥A(ϕo, ψo) −F δ∥L2(Ω)
= c δ⇐⇒ ∥∇vϕo −∇vψo −F

δ∥
L2(Ω)

= c δ,

that is, taking into account of the expression of (ϕo, ψo) with respect to wpo (see (4.2)) and since
po = ∇w(θo),

∥∇v1(θo) − ∇v2(θo) −F δ∥L2(Ω)
= c δ,

which proves Theorem 1.5.

Convergence: proof of Theorem 1.6. We recall that (ϕex, ψex) denotes the exact missing
data associated to the exact solution uex (see Section 1). We now state the two following results which
proves Theorem 1.6.

Proposition 4.2. The couple (ϕo, ψo) converges to (ϕex, ψex) strongly in H−1/2(Γc) × H̃1/2(Γc) as δ
goes to zero.

Proof. Suppose that we have proven that

A(ϕex, ψ̃ex) = F = ∇uN −∇uD, (4.4)

where uN and uD are defined in (1.2) and where

ψ̃ex = ψex −
1

∣Γc∣ ∫Γc

ψex ds ∈ H
1/2
◇ (Γc).

Then Theorem 3.8 directly implies the convergence of (ϕo, ψo) to (ϕex, ψ̃ex), which in turn implies the
result as ψ̃ex = ψex in H̃1/2(Γc).

Remains to prove (4.4). We first note that

A(ϕex, ψ̃ex) = ∇vϕex −∇vψ̃ex
= ∇vϕex −∇vψex ,

as by construction vψ̃ex
= vψex + α for some real parameter α. Then (4.4) is equivalent to

∇(vϕex + uD) = ∇(vψex + uN).

But this last equation is necessarily true, as it is not difficult to see from the problem they solve
that vϕex + uD = uex = vψex + uN.

Corollary 4.3. The function uo, defined by (1.6), converges to uex strongly in H1(Ω), as δ goes to
zero.

Proof. This is direct consequence of the previous proposition, as uo−uex satisfies ∆(uo−uex) = 0 in Ω,
uo − uex = gδD − gD on Γ and ∂ν(uo − uex) = ϕo − ϕex on Γc.
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Link with the Kohn-Vogelius regularization: proof of Theorem 1.10. We now focus
on the Tikhonov regularization of the Cauchy problem, which is based on the minimization prob-
lem (3.6). In our context, for ε > 0, the quadratic functional to minimize turns out to be

(ϕ,ψ) ∈ H−1/2(Γc) ×H
1/2
◇ (Γc) z→

1

2
∫

Ω
∣∇vϕ −∇vψ −F δ ∣

2
dx + ε

2
∫

Ω
(∣∇vϕ∣2 + ∣∇vψ ∣2) dx,

that is precisely the Kohn-Vogelius functional used in [21] to regularize the data completion prob-
lem. Hence Theorem 1.10 is a direct consequence Theorem 3.10 up to the reparametrization of our
minimization problem discussed above.

5 Numerical simulations

5.1 Context for the numerical simulations

As mentioned previously in Remark 1.3, in order to numerically solve our problem, it is mandatory to
know an approximation of a constant c such that (see (1.3))

∥F δ −F ∥L2(Ω) ⩽ c δ.

This question is nontrivial as c depends on Poincaré constants and trace constants, both of them being
difficult to estimate theoretically. Therefore, we follow a naive numerical strategy in order to estimate
it. More precisely, for a given data gD, we construct the corresponding gN, and then compute uD

and uN, and finally F = ∇uN − ∇uD. Doing so for several Cauchy pair (gnD, gnN), for n = 1, . . . ,N ,
with N ∈ N, we define

c = max
n=1,...,N

∥F n∥L2(Ω)

∥gnN∥
H−1/2(Γ)

+ ∥gnD∥
H1/2(Γ)

.

Note that by definition this c is actually smaller than the correct constant.
We perform this for the following dataset

gD = cos(kθ), gD = sin(kθ) and gD = xex+y + y3 + cos(x),

with k = 1, . . . ,100, and where θ is the polar angle. Then, for the square and the annulus used in the
simulations done in Section 5.2, we find respectively c = 0.402361 and c = 0.412202, and for the cube
used in the simulations done in Section 5.3, we find c = 0.779726. Thus, in the below simulations, we
choose c = 1.

Remark 5.1. To be very precise, in order to compute the constante c, we use for numerical sim-
plicity ∥gN∥L2(Γ) + ∥gD∥L2(Γ) instead of ∥gN∥H−1/2(Γ) + ∥gD∥H1/2(Γ). It is of course possible to obtain

numerical approximations of the norms ∥⋅∥H−1/2(Γ) and ∥⋅∥H1/2(Γ), as in [6], but it becomes costly for a
result that we believe would be close to the one we obtain.

In order to solve the initial Cauchy problem (1.1), taking into account of the duality strategy
exposed above, we recall that we want to find

θo = arg min
θ∈H

−1/2
◇
(∂Ω)

{F (θ) = 1

2
∫

Ω
(∣∇v1∣2 + ∣∇v2∣2)dx + δ (∫

Ω
∣∇w(θ)∣2 dx)

1
2

− ∫
Ω
F δ ⋅ ∇w(θ)dx} ,

with v1 and v2 being two harmonic functions in H1(Ω) such that

v1∣Γ = 0, ∂νv1∣Γc
= θ, ∂νv2∣Γ = 0 and v2∣Γc

= w(θ)∣Γc
,
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where w(θ) ∈ H1(Ω) is the solution of

∫
Ω
∇w(θ) ⋅ ∇v dx = ⟨θ, v⟩, ∀v ∈ H1(Ω), with ∫

Γc
w(θ)ds = 0,

and where F δ = ∇uδN −∇uδD with uδD and uδN in H1(Ω) being the unique harmonic functions satisfying
the following limit conditions:

uD∣Γ = gδD, ∂νuD∣Γc
= 0, ∂νuN∣Γ = gδN and uN∣Γc

= 0.

Then, according to Section 4, the solution of the dual problem is given by po = ∇w(θo) (see (4.3))
and our regularization solution is given by (see (4.2))

(ϕo, ψo) = A∗po = (∂νw(θo)∣Γc
,−w(θo)∣Γc

) .

In order to numerically solve the above optimization problem, we use a classical gradient method.

Let θ̃ ∈ H
−1/2
◇ (∂Ω). We easily compute:

∇F (θ) ⋅ θ̃ = ∫
Ω
(∇v1(θ) ⋅ ∇v1(θ̃) + ∇v2(θ) ⋅ ∇v2(θ̃)) dx

+ δ

∥∇w(θ)∥L2(Ω)
∫

Ω
∇w(θ) ⋅ ∇w(θ̃)dx − ∫

Ω
F δ ⋅ ∇w(θ̃)dx.

But, using Green’s formula,

∫
Ω
∇v1(θ) ⋅ ∇v1(θ̃)dx = ⟨∂νv1(θ̃), v1(θ)⟩∂Ω = ⟨θ̃, v1(θ)⟩Γc = ⟨θ̃, v1(θ)⟩∂Ω

and

∫
Ω
∇v2(θ) ⋅ ∇v2(θ̃)dx = ⟨∂νv2(θ), v2(θ̃)⟩∂Ω = ⟨∂νv2(θ),w(θ̃)⟩∂Ω = ∫

Ω
∇v2(θ) ⋅ ∇w(θ̃)dx = ⟨θ̃, v2(θ)⟩∂Ω.

Moreover

∫
Ω
∇w(θ) ⋅ ∇w(θ̃)dx = ⟨θ̃, w(θ)⟩∂Ω,

and

∫
Ω
F δ ⋅ ∇w(θ̃)dx = ⟨θ̃, (uδN − uδD)⟩∂Ω.

Thus we obtain

∇F (θ) ⋅ θ̃ = ⟨θ̃, v1(θ) + v2(θ) +
δ

∥∇w(θ)∥L2(Ω)

w(θ) + uδN − uδD⟩∂Ω,

and a descent direction is given by

θ̃ = −v1(θ) − v2(θ) −
δ

∥∇w(θ)∥L2(Ω)

w(θ) − uδN + uδD.

We perform the following simulations using Freefem++ (see [33]). We detail below the data of
each simulation. In order to have a suitable pair of Cauchy data, we use synthetic data: we fix a
Dirichlet boundary condition ψ∗ on Γc, we solve the Laplace’s equation with an explicit data gD on Γ
by means of another finite element method (here a P2b finite element discretization) from where we
extract the corresponding data gN by computing the value ∂νu on Γ. We specify that we add 1% of
noise on gD and gN for the simulations.
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5.2 Numerical results in the two dimensional case

Firstly, we perform the reconstruction of boundary data in the two dimensional case. In Figure 1,
we aim at reconstructing the data on the upper boundary of the square (−0.5,0.5)2 and we consider
gD = ψ∗ = y3 − 3x2y. This simulation underlines the efficiency of the method. Notice also that the
we obtain almost the minimum value of the functional in few iterations (see Figure 1d), even if the
additional iterations permit to obtain a better approximation of the solution.

IsoValue
-0.276316
-0.236842
-0.210526
-0.184211
-0.157895
-0.131579
-0.105263
-0.0789474
-0.0526316
-0.0263158
0
0.0263158
0.0526316
0.0789474
0.105263
0.131579
0.157895
0.184211
0.210526
0.276316

Exact solution

(a) Exact solution

IsoValue
-0.404244
-0.35312
-0.319037
-0.284955
-0.250872
-0.216789
-0.182706
-0.148624
-0.114541
-0.0804581
-0.0463753
-0.0122926
0.0217902
0.055873
0.0899557
0.124038
0.158121
0.192204
0.226287
0.311494

Initial approximated solution

(b) Initial solution
IsoValue
-0.279784
-0.239904
-0.213317
-0.186731
-0.160144
-0.133558
-0.106971
-0.0803848
-0.0537982
-0.0272117
-0.000625162
0.0259614
0.0525479
0.0791345
0.105721
0.132308
0.158894
0.185481
0.212067
0.278534

Final approximated solution

(c) Approximated solution (d) Value of the functional

Figure 1: Simulations when Γc is the upper boundary of the square, with 1% of noise.

We also present in Figure 2 the same simulation (the exact solution if the same as in Figure 1a
when we want to reconstruct the data on the upper boundary and the right boundary of the same
square. Naturally, we obtain a worse approximation uo of the solution uex. However notice that we
obtain ∥uex − uo∥L2(Ω) = 0.0551284, ∥uex − uo∥L2(Γ) = 0.182308 and ∥∂νuex − ∂νuo∥L2(Γ) = 0.838961.

Finally we consider the case of the annulus C ((0,0),1) / C ((0,0),0.35) with the same gD and ψ∗

than before. In Figure 3, we assume that the unknown boundary is the boundary of the inclusion, and
conversely in Figure 4. We can notice that the reconstruction is more efficient when the measurements
are made on the exterior boundary.

18



IsoValue
-3.08168
-2.83166
-2.66498
-2.49829
-2.33161
-2.16493
-1.99825
-1.83157
-1.66489
-1.49821
-1.33153
-1.16484
-0.998163
-0.831482
-0.6648
-0.498119
-0.331438
-0.164756
0.00192498
0.418628

Initial approximated solution

(a) Initial solution

IsoValue
-0.278828
-0.239012
-0.212468
-0.185925
-0.159381
-0.132837
-0.106293
-0.0797491
-0.0532052
-0.0266613
-0.000117481
0.0264264
0.0529702
0.0795141
0.106058
0.132602
0.159146
0.18569
0.212233
0.278593

Final approximated solution

(b) Approximated solution

(c) Value of the functional
(d) Value of the error

Figure 2: Simulations when Γc is the upper and the right boundaries of the square,
with 1% of noise.

5.3 Numerical results in the three dimensional case

To conclude these numerical simulations, we present hereafter an example of numerical reconstruction
in the three dimensional case. We consider the case of the cube (0,1)3 with gD = ψ∗ = y3 − 3x2y + 10z
and Γc is composed by the upper and lower sides. Once again, the value of the functional decreases
until it becomes constant, and we then obtain an approximation uo of the solution.

6 Further comments

6.1 Rate of convergence of the method

As already noted, no rate of convergence for the method is obtained in the abstract setting developed in
Section 3 without additional assumption on the data. Nevertheless, in our situation, an unconditional
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IsoValue
-1.10526
-0.947368
-0.842105
-0.736842
-0.631579
-0.526316
-0.421053
-0.315789
-0.210526
-0.105263
0
0.105263
0.210526
0.315789
0.421053
0.526316
0.631579
0.736842
0.842105
1.10526

Exact solution

(a) Exact solution

IsoValue
-1.10814
-0.949801
-0.844243
-0.738684
-0.633126
-0.527568
-0.42201
-0.316452
-0.210894
-0.105336
0.000222506
0.105781
0.211339
0.316897
0.422455
0.528013
0.633571
0.739129
0.844688
1.10858

Initial approximated solution

(b) Initial solution
IsoValue
-1.10814
-0.949801
-0.844243
-0.738684
-0.633126
-0.527568
-0.42201
-0.316452
-0.210894
-0.105336
0.000222506
0.105781
0.211339
0.316897
0.422455
0.528013
0.633571
0.739129
0.844688
1.10858

Final approximated solution

(c) Approximated solution
(d) Value of the functional

Figure 3: Simulations when Γc is the interior boundary, with 1% of noise.

rate of convergence can be obtained thanks to Theorem 1.1. This is another example of the link between
Carleman estimates and Tikhonov regularization for partial differential equations (see, e.g., [34]).

Theorem 6.1. There exist δ0 ∈ (0,1], µ ∈ (0,1) and C > 0 such that for all δ ∈ (0, δ0),

∥uo − uex∥L2(Ω) ⩽
C

ln (C+δ
δ

)µ
.

Proof. Let δ ⩽ 1. Then we have

∥gδD∥H−1/2(Γ) ⩽ ∥gD∥H−1/2(Γ) + δ ⩽ ∥gD∥H−1/2(Γ) + 1.

Moreover, by Lemma A.3 and Corollary 3.7, there exists a constant C > 0 such that

∥ϕo∥2
H−1/2(Γc)

⩽ C ∫
Ω
(∣∇vϕo ∣2 + ∣∇vψo ∣2) dx ⩽ C ∫

Ω
(∣∇vϕex ∣2 + ∣∇vψex ∣2) dx.

Then, since uo solves (1.6), there exists a positive constant, still denoted by C, so that, for all δ ∈ (0,1),

∥uo − uex∥H1(Ω) ⩽ C.
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IsoValue
-1.10526
-0.947368
-0.842105
-0.736842
-0.631579
-0.526316
-0.421053
-0.315789
-0.210526
-0.105263
0
0.105263
0.210526
0.315789
0.421053
0.526316
0.631579
0.736842
0.842105
1.10526

Exact solution

(a) Exact solution

IsoValue
-1.60565
-1.37615
-1.22314
-1.07013
-0.917126
-0.76412
-0.611114
-0.458108
-0.305101
-0.152095
0.000911039
0.153917
0.306924
0.45993
0.612936
0.765942
0.918949
1.07195
1.22496
1.60748

Initial approximated solution

(b) Initial solution
IsoValue
-0.0932212
-0.0799329
-0.0710741
-0.0622153
-0.0533565
-0.0444976
-0.0356388
-0.02678
-0.0179212
-0.00906234
-0.000203516
0.00865531
0.0175141
0.026373
0.0352318
0.0440906
0.0529494
0.0618083
0.0706671
0.0928141

Final approximated solution

(c) Approximated solution
(d) Value of the functional

Figure 4: Simulations when Γc is the exterior boundary, with 1% of noise.

Now, from Theorem 1.5, we known that

∫
Ω
∣∇v1(θo) − ∇v2(θo) −F δ ∣2 dx = ∫

Ω
∣∇vϕo −∇vψo +∇uδD −∇uδN∣2 dx = c2 δ2,

where we recall that uδD and uδN are defined by (1.2) with gD and gN replaced by their noisy counter-
parts gδD and gδN. It is not difficult to see from their respective definitions that actually uo = vϕo + uδD
and that ũ = vψo +uδN is harmonic in Ω and verifies ∂ν ũ∣Γ = gδN. Hence we have, using the continuity of
the trace and the above equality,

∥∂νuo − gδN∥H−1/2(Γ) ⩽ C∥∇(uo − ũ)∥L2(Ω) ⩽ C δ,

for some constant C > 0.
Finally, uo − uex is a harmonic in Ω, uniformly bounded for δ ∈ (0,1), and satisfies

∥uo − uex∥H1/2(Γ) = ∥gδD − gD∥H1/2(Γ) ⩽ δ,
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(a) Exact solution (b) Initial solution

(c) Approximated solution (d) Value of the functional

Figure 5: Simulations in the three dimensional case, with 1% of noise.

and
∥∂ν(uo − uex)∥H−1/2(Γ) ⩽ ∥∂νuo − gδN∥H−1/2(Γ) + ∥gδN − gN∥H−1/2(Γ) ⩽ C δ.

The result is then obtained by applying Theorem 1.1 with u = uo − uex.

Remark 6.2. The logarithmic rate of convergence, very slow, is characteristic of the ill-posedness of
Problem (1.1). Note also that even if uo converges to uex strongly in H1, we only obtain a convergence
rate in the weaker L2 norm.

6.2 Imposing exactly a finite dimensional subpart of the data

Even if the data at hand is noisy, some subpart of the data might be trustworthy. For example,
if we decompose the data in some Fourier-type series, the low frequency part of the data is usually
less affected by the noise than the high frequency part. In that situation, we might want to obtain a
regularized solution of our inverse problem that corresponds exactly to the part of the data we trust.
This is the topic of this section.

22



In order to be more general, we present the results in the abstract setting of Section 3: let ys ∈ Y
be the exact data and xs ∈ A the corresponding solution (i.e. A xs = ys). We recall that yη ∈ Y is the
noisy data, verifying, for a given η > 0,

∥yη − ys∥Y ⩽ η.

Additionally, let P ∶ Y → Y be an orthogonal projection, such that rank(P ) < ∞. We suppose that

P yη = P ys.

In our setting, P yη is the trustworthy part of our data, which corresponds exactly to P ys, while
(Id −P )yη is the part of the data which is really affected by the noise. We modify our Morozov set of
regularized solutions:

MP = {x ∈ X , ∥A x − yη∥Y ⩽ η, P A x = Pyη} .

In another word, we seek for an approximated solution that solves the problem up to the level of
noise, but solves exactly the problem on the trustworthy part of the data. Note that MP is not empty
as xs ∈ MP .

It turns out that we only need a minor modification of our dual method to obtain exactly such a
solution. It suffices to minimize the modified functional

JP ∶ y ∈ Y z→ 1

2
∥A ∗y∥2

X + η ∥(Id − P )y∥Y − (y, yη)Y .

Let us begin by proving the well-posedness of this optimization problem.

Proposition 6.3. There exists a unique yo ∈ Y such that

yo = arg min
y∈Y

JP (y).

Proof. The functional JP being continuous and strictly convex (as A ∗ is one-to-one), we only need to
prove that it is coercive. To do so, we follow the argument to absurdity of the proof of Proposition 3.2.
We introduce the same sequence (yn)n∈N that verifies

lim
n→∞

∥yn∥Y = ∞ and JP (yn) < C,

for a constant C ∈ R, and then defined, for all n ∈ N, zn = yn∥yn∥−1
Y , which, as in the proof of

Proposition 3.2, weakly converges (up to a subsequence) to 0Y .
Now the proof slightly changes. We first note that, as rank(P ) < ∞, up to a subsequence Pzn

strongly converges to 0Y . Therefore, (Id − P )zn does not converges strongly to zero in Y , otherwise
a subsequence of zn would strongly converge to 0Y , which is impossible as ∥zn∥Y = 1.

Finally, as
JP (yn) > ∥yn∥Y [η∥(Id − P )zn∥Y − (zn, yη)Y ] ,

the contradiction follows by letting n goes to infinity.

Remark 6.4. The results remains true if we replace the projection P by any compact operator K.

Let us now prove three propositions that will permit to obtain our main convergence theorem 6.8.
To do so, let us introduce, as in Section 3,

xo = A ∗yo.
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Proposition 6.5. The regularized solution xo belongs to MP . Furthermore, if Pyo ≠ yo, then xo

verifies

A xo − yη = η
(P − Id)yo

∥(P − Id)yo∥Y
.

Proof. Suppose Pyo ≠ yo. Then JP is differentiable at yo, and the Euler-Lagrange equation associated
to our minimization problem gives

A A ∗yo + η
(Id − P )yo

∥(Id − P )yo∥Y
− yη = 0Y .

The results follows since we can deduce from this equality that, additionally, xo ∈ MP .
The case Pyo = yo is slightly more delicate. First of all, even if JP is not anymore differentiable

at y0, we recall that, since JP (yo) = min
y∈Y

JP (y), 0Y belongs to the sub-differential of JP at yo (see,

e.g., [29, Section 5 p.20]), or equivalently

A A ∗yo − yη ∈ ηB1,

where B1 is the closed unit ball of Y . Hence ∥A xo − yη∥Y ⩽ η. Furthermore, we note that

JP (yo) = min
y∈Y

JP (y) ⩽ min
y∈Im(P )

JP (y) = min
y∈Im(P )

1

2
∥A ∗y∥2

X − (yη, y)Y ,

which easily implies, since yo ∈ Im(P ),

yo = arg min
y∈Im(P )

1

2
∥A ∗y∥2

X − (yη, y)Y .

The Euler-Lagrange equation associated with this minimization problem leads to

(A ∗yo,A
∗y)X − (yη, y)Y = 0 = (A xo − yη, y)Y , ∀y ∈ Im(P ). (6.1)

Hence A xo − yη belongs to the kernel of P , which proves that xo ∈ MP .

Proposition 6.6. We have
∥xo∥2

X = −2JP (yo).

Proof. In the case Pyo ≠ yo, the proof is precisely the one of Proposition 3.5. In the other case, we
have

JP (yo) =
1

2
∥xo∥2

X − (yη, yo)Y ,

and as shown in the previous proof of Proposition 6.5,

yo = arg min
y∈Im(P )

1

2
∥A ∗y∥2

X − (yη, y)Y .

Then, using the Euler-Lagrange equation associated to this minimization problem (see (6.1)), we
deduce that

∥xo∥2
X = ∥A ∗yo∥2

X = (yη, yo)Y ,

and the result follows.

Proposition 6.7. Let x ∈ MP , x ≠ xo. Then ∥x∥X > ∥xo∥X .
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Proof. The proof is almost exactly the same as the one of Proposition 3.6. Let x ∈ MP , with x ≠ xo,
and define yp = yη −A x, which by definition verifies

Pyp = 0Y and ∥yp∥Y ⩽ η.

Then, using Proposition 6.6,

1

2
(∥x∥2

X − ∥xo∥2
X ) = 1

2
∥x∥2

X +J (yo) =
1

2
∥x∥2

X + 1

2
∥A ∗yo∥2

X + η∥(Id − P )yo∥Y − (yo, y
η)Y

= 1

2
∥x∥2

X + 1

2
∥xo∥2

X + η∥(Id − P )yo∥Y − (yo,A x + yp)Y

= 1

2
∥x∥2

X + 1

2
∥xo∥2

X − (A ∗yo, x)X + η∥(Id − P )yo∥Y − (yo, (Id − P )yp)Y

= 1

2
∥x∥2

X + 1

2
∥xo∥2

X − (xo, x)X

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 1

2 ∥x−xo∥
2
X
>0

+η∥(Id − P )yo∥Y − ((Id − P )yo, yp)Y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⩾0

,

which ends the proof.

We can now state our convergence theorem, which can be proven exactly as Theorem 3.8 thanks
to the previous propositions.

Theorem 6.8. The regularized solution xo converges to xs as η goes to zero.

As a conclusion, if Pyη = Pys, then minimizing the modified functional JP leads to a regularized
solution that satisfies both the constraints

∥A xo − yη∥Y ⩽ η, and PA xo = Pyη = Pys,

without numerical difficulties since the main minimization problem remains without constraint.

A Functional framework

In this appendix, we precise the functional framework used in the present study, in particular the
functional spaces defined on open subparts of the boundary of Ω.

A.1 Functional spaces on the boundary

Let Σ be an open subset of ∂Ω of positive Lebesgue measure. As usual, we denote by H1/2(Σ) the set
of functions of L2(Σ) which are the trace on Σ of functions of H1(Ω):

H1/2(Σ) = {g ∈ L2(Σ), ∃w ∈ H1(Ω), w∣Σ = g} .

The space H1/2(Σ) endowed with the usual norm,

∥g∥H1/2(Σ) = inf
w∈H1(Ω), w∣Σ=g

∥w∥H1(Ω),

is a Banach space. We note

H
1/2
◇ (Σ) = {g ∈ H1/2(Σ), ∫

Σ
g ds = 0} ,
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which is a closed subspace of H1/2(Σ). Note that thanks to Poincaré inequality, there exists a con-

stant C > 0 such that for all g in H
1/2
◇ (Σ), all v ∈ H1(Ω) such that v∣Σ = g, one has

∥g∥H1/2(Σ) ⩽ C∥v∥H1(Ω) ⩽ C∥∇v∥L2(Ω). (A.1)

We also define
H̃1/2(Σ) = H1/2(Σ)/R,

which, endowed with the norm
∥g∥H̃1/2(Σ) = inf

c∈R
∥g − c∥H1/2(Σ),

is also a Banach space. Clearly, we have, for all (g1, g2) ∈ H1/2(Σ)2,

g1 = g2 ∈ H̃1/2(Σ) ⇐⇒ g1 = g2 + c for some real constant c.

Following [37], we define

H
1/2
00 (Σ) = {g ∈ L2(Σ), gext ∈ H1/2(∂Ω)} ⊂ H1/2(Σ),

where gext ∈ L2(∂Ω) is defined as

gext = g on Σ, and gext = 0 on ∂Ω/Σ,

and H−1/2(Σ) as the dual space of H
1/2
00 (Σ), endowed with the dual norm

∥h∥H−1/2(Σ) = sup
g∈H

1/2
00 (Σ),∥gext∥H1/2

(∂Ω)
=1

⟨h, g⟩,

the bracket meaning the dual evaluation between H−1/2(Σ) and H
1/2
00 (Σ). Note that by construction,

one has
H

1/2
◇ (Σ) ⊂ H1/2(Σ) ⊂ L2(Σ) ⊂ H−1/2(Σ).

Furthermore, thanks to Green formula, we know that for all v ∈ H1(Ω) such that ∆v ∈ L2(Ω), ∂νv∣Σ
belongs to H−1/2(Σ) and

∥∂νv∣Σ∥H−1/2(Σ) ⩽ c (∥v∥H1(Ω) + ∥∆v∥L2(Ω)) .

We now suppose that ∂Ω = Σ ∪Σc, with Σ and Σc be two open subsets and of positive Lebesgue

measure, and Σ ∩Σc = ∅. For g ∈ H
1/2
◇ (Σ) and h ∈ H−1/2(Σc), we define the following problem: find u

in H1(Ω) such that

(Pu)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆u = 0 in Ω,
u = g on Σ,

∂νu = h on Σc.

Lemma A.1. There exists a unique u ∈ H1(Ω) solution of Pu. Furthermore, there exists a positive
constant c such that

∥u∥H1(Ω) ⩽ c (∥g∥H1/2(Σ) + ∥h∥H−1/2(Γc)
) .

Proof. It is not difficult to prove that there exists a unique R(g) ∈ H1(Ω) satisfying R(g)∣Σ = g
and ∥R(g)∥H1(Ω) = ∥g∥H1/2(Σ). We then denote

H1
Σ(Ω) = {v ∈ H1(Ω), v∣Σ = 0} ,
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which is a closed subspace of H1(Ω), hence an Hilbert space when endowed by the H1-scalar product.
But thanks to Poincaré inequality, the H1-semi-norm is an equivalent norm on H1

Σ(Ω).
By definition, for all v ∈ H1

Σ(Ω), v∣Σc
belongs to H

1/2
00 (Σc), hence ⟨h, v∣Σc

⟩ is well defined. From
Lax-Milgram theorem, there exists a unique w ∈ H1

Σ(Ω) such that for all v ∈ H1
Σ(Ω),

∫
Ω
∇w ⋅ ∇v dx = −∫

Ω
∇R(g) ⋅ ∇v dx + ⟨h, v∣Σc

⟩,

which furthermore verifies
∥w∥H1(Ω) ⩽ c (∥g∥H1/2(Σ) + ∥h∥H−1/2(Σc)

) .

In particular, by linearity of Problem (Pu), we have obtained the uniqueness property of Lemma A.1.
We note that u = w +R(g) satisfies by construction ∆u = 0, u∣Σ = g and

∥u∥H1(Ω) ⩽ c (∥g∥H1/2(Σ) + ∥h∥H−1/2(Σc)
) .

Furthermore, using Green formula and the variational problem satisfied by w, we obtain that for

all g̃ ∈ H
1/2
00 (Σc),

⟨∂νu, g̃ext⟩ = ⟨h, g̃⟩,

hence ∂νu∣Σc
= h, which ends the proof.

For ψ in H
1/2
◇ (Σ) and ϕ ∈ H−1/2(Σc), we define vψ the unique solution of (Pu) with g = ψ and h = 0,

and symmetrically, we denote vϕ the unique solution of (Pu) with g = 0 and h = ϕ.

Lemma A.2. The application

{⋅, ⋅} ∶ (ψ1, ψ2) ∈ H
1/2
◇ (Σ) ×H

1/2
◇ (Σ) z→ {ψ1, ψ2} = ∫

Ω
∇vψ1 ⋅ ∇vψ2 dx,

defines a scalar product on H
1/2
◇ (Σ), the corresponding norm being equivalent to the standard norm.

Therefore, (H1/2
◇ (Σ),{⋅, ⋅}) is a Hilbert space.

Proof. It is not difficult to see that {⋅, ⋅} is bilinear symmetric positive. It is definite as if {ψ,ψ} = 0,
then ∇vψ = 0, hence vψ = α ∈ R. But as ψ = vψ∣Σ = α is mean free, this immediately implies α = 0.

Now, on one side, from the continuity of trace, we get ∥ψ∥H1/2(Σ) ⩽ c∥vψ∥H1(Ω). But as vψ∣Σ = ψ
is mean free, from a Poincaré-type inequality we obtain ∥vψ∥H1(Ω) ⩽ c∥∇vψ∥L2(Ω). So, using finally
Lemma A.1, we obtain two positive constants c1 and c2 so that

c1 ∥ψ∥H1/2(Σ) ⩽ ∥∇vψ∥H1(Ω) ⩽ c2∥ψ∥H1/2(Σ),

which ends the proof.

Lemma A.3. The application

{⋅, ⋅} ∶ (ϕ1, ϕ2) ∈ H−1/2(Σc) ×H−1/2(Σc) z→ {ϕ1, ϕ2} = ∫
Ω
∇vϕ1 ⋅ ∇vϕ2 dx,

defines a scalar product on H−1/2(Σc), the corresponding norm being equivalent to the standard norm.
Therefore, (H−1/2(Σc),{⋅, ⋅}) is a Hilbert space.
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Proof. It is not difficult to prove that {⋅, ⋅} is indeed a scalar product on H−1/2(Σc), using that by
definition, vϕ∣Σ = 0.

To prove the equivalence of the norms, we first note that by continuity of the normal derivative,
the fact that by definition vϕ is harmonic in Ω, and a Poincaré-like inequality as vϕ∣Σ = 0, we obtain

∥ϕ∥H−1/2(Σc)
⩽ c (∥vϕ∥H1(Ω) + ∥∆vϕ∥L2(Ω)) = c∥vϕ∥H1(Ω) ⩽ c∥∇vϕ∥L2(Ω).

On the other hand, Lemma A.1 gives

∥∇vϕ∥L2(Ω) ⩽ c∥ϕ∥H−1/2(Σc)
.

The result follows.

A.2 Functional space in the volume

We define
H(Ω) = {∇w, w ∈ H1(Ω) satisfies ∆w = 0 in Ω} ⊂ L2(Ω).

Lemma A.4. The space H(Ω), endowed with the usual scalar product of L2(Ω), is a Hilbert space.

Proof. As H(Ω) is a subspace of L2(Ω), it is sufficient to prove that it is closed for the L2-norm.
Therefore, let pn a sequence of elements of H(Ω) converging to some p ∈ L2(Ω):

lim
n→∞

∥pn − p∥L2(Ω) = 0.

By definition, there exists a sequence of harmonic functions vn ∈ H1(Ω) such that pn = ∇vn. The
sequence

ṽn = vn −
1

∣Ω∣ ∫Ω
vn dx

is also a sequence of harmonic functions such that ∇ṽn = pn. From Poincaré-Wirtinger inequality and
the fact that pn converges to p, we deduce that ṽn is a bounded sequence in H1(Ω), and therefore
weakly converge to some v ∈ H1(Ω). As ṽn is harmonic for all n, so is v, hence ∇v is an element
of H(Ω). Finally, in L2(Ω), ∇ṽn weakly converges to ∇v, and strongly converges to p, hence p = ∇v,
which ends the proof.
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