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Abstract 

In order to investigate the brittle failure of key-hole-notched components, the stress distribution 

at notch tips is studied numerically and theoretically. A semi-analytical formula is developed 

for the maximum notch-tip-stress, incorporating crack-tip-blunting, stress-concentration and 

stress-equilibrium. Stress distributions in notched plates are simulated by finite-element method 

showing improved accuracy of the formula relative to established solutions. Application of the 

developed equation to components containing U-notches and blunt V-notches, is also explored, 

demonstrating its broad applicability. When combined with stress-based failure criteria, the 

semi-analytical model can be employed to assess brittle failure in notched components with 

significance towards fracture in heterogeneous materials.  

 

Keywords: Key-hole notches; Crack tip blunting; Stress concentration; Stress equilibrium; 

Failure criterion 

 

 

1 Introduction 

As widely observed in engineering structures and experimental specimens, the existence of 

notches often results in inhomogeneous stress distribution and leads to the failure of 

components [1-4]. Common notch geometries include key-hole notches [5], i.e. a slit ending 

with a circular hole, and types of key-hole-like notches including U-notches [6] and blunt V-

notches ( V-notches with rounded tips [7] or end holes [8]). Rather than being solely a defect, 

carefully introduced notches can be used to alleviate stress concentration at the tip of cracks or 
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slits. A common example is the repair of structural components damaged by small cracks by 

drilling a hole at the crack tip to reduce the stress concentration. With such methods, a slit 

ending in a circular hole is obtained, which can be considered as a key-hole notch [9, 10]. Due 

to their frequent occurrence in engineering structures, understanding the stress distribution and 

failure criteria of notched components is of significant importance in damage resistance 

evaluation [11]. 

 

Numerous studies have been conducted to investigate the brittle failure of notched components 

with either key-hole or key-hole-like notches. The analysis of failure in defected structures 

under various loading conditions constitutes a significant aspect of classic fracture mechanics 

and theoretical frameworks have been established to provide a reliable basis for assessing 

engineering design and structural safety [12]. For notched components, the stress singularity of 

cracks is substituted by a region of high stress concentrated at the tip, which is correlated to the 

notch geometry. The field of notch fracture mechanics (NFM), which is an extension of the 

classic fracture mechanics of cracked domains, has been developed by introducing the notch 

stress intensity factor (NSIF, denoted as K 

 ) and notch fracture toughness (NTF, denoted as 

cK 

 ) [13]. There are several stress-based criteria and theories in the context of NFM for the 

assessment of brittle failure in notched components under mode I loading. These theories 

include the cohesive zone model (CZM) [14], finite fracture mechanics (FFM) [15], point-stress 

(PS) and mean-stress (MS) criteria [7, 16], and the maximum hoop stress criterion [17], among 

others. All these criteria predict brittle fracture on the basis of a simple closed-form solution 

whereby = cK K 

  , which is similar to Irwin’s model in classic fracture mechanics. It should 

be noted that the maximum hoop stress criterion is believed to be more suitable for crack 

kinking in notched components of brittle materials, even under mode I loading. 

 

The application of failure criteria in notched components necessitates the development of 

improved methods for stress analysis. Based upon an earlier work of Creager and Paris [18], 

Kullmer and Richard [19] presented an asymptotical elastic stress distribution around a key-

hole notch tip by introducing the concept of effective crack length. They developed a brittle 

fracture criterion based on the estimated stress field and considered the notch fracture toughness 

cK 

  as a generalization of the crack toughness IcK , where IcK  forms the lower bound of 

cK 

 . It is important to note that since the asymptotical stress field was deduced from Airy’s 

stress function in their work, the solution is only valid when the radius of key-hole is much 

smaller than the crack length. In recent years, on the basis of the work of Kullmer and Richard, 

NFM has been broadly applied to the evaluation of failure resistance in key-hole notches [5, 9, 

10, 20]. Stress fields of two typical examples of key-hole-like notches (U-notches and blunt V-

notches) have been studied [21-24]. The widely used stress field solution of round-tip V-notches 

given by Filippi et al. [21] has been shown to agree well with the finite element results in the 
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high stress region around the notch tip. Subsequently, this stress field prediction has been 

extended to the case of finite size plates [22]. Recently, the stress field solution of key-hole 

notches given by Kullmer and Richard has been extended to geometries consisting of V-notches 

with end holes [23] and blunt cracks in anisotropic plates under in-plane loadings [24]. It should 

be noted that the maximum principal notch tip stress was introduced into the expression of 

stress components as an unknown parameter, and, subsequently, the NSIF was related to the 

maximum stress [21, 22]. It can thus be seen that an effective prediction of the maximum stress 

at notch tips is important for the application of the stress field solutions and their corresponding 

fracture criteria.  

 

For typical heterogeneous materials (e.g. rocks and ceramics), the inevitable presence of voids 

around crack tips has significant effect on their fracture properties. Bazant discovered that crack 

tips in concrete and rock are blunted by the existing of micro pores, and similar effects were 

found in ductile metals through the presence of plastic zones [25]. Smith showed that the role 

of crack tip pores could not be ignored, regardless of size, giving rise to the so-called “key-hole 

problem” [26]. Further studies have indicated that, when pores exist at crack tips, there exist 

competing effects of nominal toughness enhancement due to crack blunting by pores and the 

weakening caused by the increasing volume fraction of pores [27]. As a consequence, recently 

established approaches for modelling key-hole notches can be applied to fracture analysis of 

porous materials [28]. 

 

In the present work, the stress distribution of a notched finite rectangular plate under remote 

uniaxial tensile stress is studied. In Section 2, a semi-analytical formula, which is based on the 

combined actions of crack tip blunting, stress concentration and stress equilibrium, is presented 

to predict the maximum notch tip stress. Feasibility of the prediction is discussed in view of 

FEM results in Section 3. FEM simulations of the stress distributions of U-notches and blunt 

V-notches are shown in Section 4, demonstrating that the equation presented for key-hole 

notches is applicable also to U-notches and blunt V-notches with large notch tip radii and small 

open-angles. The paper is finished with a few conclusions in the last section. 

2 Stress analysis of key-hole notched components 

The presence of holes, cracks and notches complicates the prediction of stress fields in 

structures. For components with cracks, the maximum stress cannot be defined due to the stress 

singularity at the crack tip. Irwin introduced the concept of stress intensity factor (SIF) to 

characterize the extent of stress singularity at crack tip, which forms the foundation of linear 

elastic fracture mechanics (LEFM) [29]. In order to calculate the SIF of different type of cracks, 

a comprehensive description of the weight function technique has been given by Fett and 

Munz [30]. For structures with voids around the crack tip, the singularity can be reduced or 

even removed, owing to the blunting effect induced by crack tip microstructures [29, 30], but 

nonetheless defect localized stresses still exist. In the failure of structures, various mechanisms 

can prevail: For crack or crack-like defects under mode I loading, the normal stress 

perpendicular to the crack plays a leading role in the failure of structures [33]; in fatigue life 

predictions of notched components, only the maximum principal stress is generally taken into 



Liu, M., Gan, Y., Hanaor, D. A., Liu, B., & Chen, C. (2015). An improved semi-analytical 

solution for stress at round-tip notches. Engineering fracture mechanics, 149, 134-143. 

 

4 

account [21, 22]. Therefore, stress analysis is of paramount important for notched components. 

In the following, such an analysis is performed for the mode I loading of structural components 

containing notch defects. 

 

2.1 Stress fields of defected plates 

To investigate the stress distributions of defected components, the stress distributions of a 

simple defected structural component - a two dimensional finite rectangular plate with an edge 

crack as shown in Fig. 1(a) by the black solid lines is first considered, where    is the remote 

loading in the y direction, a is the crack length, w is the plate width, and b is the plate height. 

At the same time, a finite plate with a key-hole notch is also shown in Fig. 1(a) by red dotted 

line with the same loading condition. The center point is located at the crack tip and radius is 

denoted ρ. The numerical solutions for the tip stress field of defected structures containing a 

standard crack and a key-hole notch are shown in Fig. 1(b), using 0.4a w   and =0.05  

as a typical example providing the y-direction normal stress distribution along the crack or 

notch bisector ( 0y   and 0x  ). 

 

 
Fig. 1 (a) Standard crack (black solid line) and Key-hole notch (red dashed line) together with 

their Cartesian coordinate system; (b) The tip stress distributions along the bisector for the crack 

(black solid line) and notch (red dashed line). 

 

According to LEFM, the normal stress yy  along the crack line of the problem shown in Fig. 

1(a) under mode I loading is related to K  (SIF) by 
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where K  is given by 

  = =K a f a w       ，  , (2) 

Here,  f   is the geometric shape factor for unconstrained specimens and is given by [34]  

   2 3 41.12 0.23 10.56 21.74 30.42f           . (3) 

According to Ref. [34], the error of Eq. (3) is less than 0.5% for 1b w   and 0.6a w . 

Eq. (1) is the asymptotic solution of the crack tip stress field, which is accurate only near the 

crack tip. It is noted that, for a crack in an infinitely large plate, an exact solution is available 

for the stress field, which is valid not only at the crack tip but also for the far field. The 

corresponding normal stress along the crack line has the form of [35, 36], 
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where K  is the stress intensity factor. In this study, we extended Eq. (4) to finite width plates 

with edge cracks by assuming K  has the same form as Eq. (2). 

For key-hole notches (i.e., cracks having a hole at their tip as represented in Fig. 1(a) by the red 

dashed line), the stress singularity can be removed due to the existence of the hole. Kullmer 

and Richard [19] obtained closed-form solution for the asymptotical elastic stress distribution 

around a central slit ending in a circular hole in an infinite large disk. According to their solution, 

the y-direction normal stress component along the notch bisector can be expressed as 
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 . (5) 

Considering the introduced effective crack length, a a    , the corresponding effective SIF 

for components with finite geometry can be assumed to have the following form 

    =K a f    
     . (6) 

It can be seen from Eq. (5) that the normal stress component yy  decreases with increasing 

distance from the edge of the notch, reaching its maximum value at the notch tip, that is, 

  max 3
3

22
yy yy x

K a
f




   






 
      . (7) 

Note that Eq. (5) is based upon the assumption that the radius of the crack-tip-hole is small 
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compared to the crack length (e.g., 0.1a  ). For plates with a large tip-hole relative to the 

crack length, there is yet no established formula to reliably predict the maximum stress. In the 

following section, a semi-analytical formula to predict the maximum stress around key-hole 

notch tips will be developed.  

 

2.2 Prediction of notch tip maximum stress 

For the key-hole notched component shown in Fig. 1(a), three major factors affecting the notch 

tip stress distribution. First, the crack induced stress can be estimated in accordance with Eq. 

(4). The presence of the hole at the crack tip results in crack blunting, thus removing the stress 

singularity. As crack tip stress singularity is related to crack length, the key-hole induced 

blunting effect corresponds to the crack length. Secondly, as a result of the limited plate width, 

w, compared to the standard crack with length a (effective bearing width of w a ), the 

effective load bearing area along the crack bisector 0y   is reduced to w a    when 

there exists a round hole with radius ρ at the crack tip. The stress equilibrium factor can be 

derived from the force and torque balance by comparing stress fields in cases for cracks with 

and without the hole using corresponding linear approximations of the normal stress along the 

crack bisector. Thirdly, for a finite rectangular plate significant stress concentration occurs 

around the circular hole. Taking above three majors effects into account, a semi-analytical 

model to predict the notch tip maximum stress can be assumed to be 

 
 

 max

2
=

2
yy s t

a
f K K

a

 
 

 

  
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
 , (8) 

where sK  denotes the stress equilibrium factor based on the force and torque balance effect, 

and it can be obtained as 

 

2

s

w a
K

w a 

 
  
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 . (9) 

The stress concentration factor tK  of a circular hole in a finite plate subject to uniaxial tension 

can be approximated by [37] 

 

1 2
2 2

2 1 1tK
w w

 


   
      

   
 , (10) 

which increases from 3 monotonically with ρ/w. It can be seen from Eq. (8) that the maximum 

stress at the notch tip, 
max

yy , is related to geometrical parameters (plate width w, crack length 

a, and key-hole radius ρ) and loading conditions ( remote tensile stress   ). However, it is 

worth noting that the aspect ratio b w  of the finite rectangular plate has a significant impact 
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on the stress concentration factor only when it is less than 2.  

 

For a semi-edge notch in a semi-infinite rectangular plate, which is common in engineering 

problems, with plate width w ,   1.12f    should be substituted into Eq. (7) and 

we obtain 

 
max 3 36

2
yy

a 
 





 .  . (11) 

Whereas substituting   1.12f   , 1sK   and 1tK   into Eq. (8) for the case of 

semi-infinite plate yields  

 
 max

2
=3.36

2
yy

a

a


 

 






 . (12) 

It can be seen that for the special case of semi-infinite plates, our model (Eq. (12)) and the 

Kullmer-Richard model (Eq. (11)) predict similar results of the maximum stress, for small 

values of a . For large values of a , however, the Kullmer-Richard model differs 

significantly from our model, as illustrated in Fig. 3 and detailed in Section 3.2.  

 

3 Finite element simulations 

In order to validate the proposed semi-analytical solution (8), notch tip stress fields were 

calculated numerically using the commercial finite element software package ANSYS12.0. The 

plate of the model is meshed with 8-node biquadratic plane strain elements (Solid Quad 8Node 

82 elements). Due to symmetry, only half of the model ( 0y  ) in Fig. 1(a) is meshed and 

symmetrical boundary conditions are enforced along the notch bisector ( 0y   and 0x  ). 

The adopted loading conditions are remote tensile stress    at the edge 2y b  shown in 

Fig. 1(a), with the stress free boundary conditions employed for the rest boundary edges. A 

linear elastic material with Young’s modulus of 70GPaE   and Poisson ratio 0.3   was 

used with mesh sensitivity analyses conducted to ensure the numerical convergence of the 

model. Considering the concentrated stress around the notch tip, graded meshes are employed 

for the tip region. 

 

3.1 Effects of aspect ratio b/w 

In order to clarify the geometrical influence on the numerical simulations, several groups of 

key-hole notched plates with the same notch size (crack length a and tip curvature ρ) and 

different aspect ratios (b w ) were studied by FEM. All the cases are under remote uniform 
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tension in the y-direction, as shown in Fig. 2(a). The stress distribution and corresponding stress 

concentration (or singularity) are related to the geometry of finite rectangular plates containing 

defects. The FEM results overall showed similar stress distributions with notable differences in 

the high stress region and the maximum stress. It was further found that the maximum stress 

level changes significantly with increasing aspect ratio, following the relationship shown in Fig. 

2. For short crack lengths with small hole radii the maximum stress was found to decrease 

before reaching a convergence value denoted here as cv  as shown in Fig. 2(a). For long 

cracks with large holes, the maximum stress was found to increase before converging to cv  

as shown in Fig. 2(b). To determine the aspect ratio regime that shows negligible influence on 

the resulting maximum stress, the results of plates with different sizes of notches are compared. 

The maximum stresses normalized by the converging value are shown in Fig. 2(c). 

 

 

Fig. 2 Notch-tip maximum stress as a function of plate aspect ratio, b/w, for different notch 

geometries: (a) the relative crack length, a/w=0.28, and the relative radius of key-hole, 

ρ/w=0.0017; (b) a/w=0.55, and ρ/w=0.17. (c) Normalized maximum stress varies with the aspect 

ratio. 

 

Figure 2(c) clearly shows that the notch tip maximum stress gradually decreases or increases 

with increasing aspect ratio ( b w ) in the interval from 1 to 2 for plates with different notch 

sizes. For aspect ratios satisfying 2b w , the maximum stress converges to stable values for 

all cases considered. As conditions of 2b w  are of little significance in engineering 

applications, the divergence of stress vales in this regime is not studied further in the present 

work. To eliminate geometrical effects from the numerical simulations, all cases discussed 

subsequently satisfy 2b w  and are thus within the regime of convergent maximum stress. 
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3.2 Numerical results 

For the key-hole notch problem with 0.42a w   shown in Fig. 1(a), the maximum notch tip 

stress component yy  predicted by the proposed semi-analytical formula (8), the 

asymptotical solution by Kullmer and Richard [19], and the FEM simulation is shown in Fig. 

3(a) as a function of the relative notch tip curvature a . One can see from Fig. 3(a) that the 

semi-analytical prediction (8) agrees well with the finite element results even for the notch size 

as big as 0.4a  . In contrast, the Kullmer-Richard asymptotical prediction is valid only 

for very small notches satisfying 0.1a  , which is consistent with the assumption of small 

crack tip curvature adopted by Kullmer and Richard for deriving their results. To be more 

specific, the relative errors of the semi-analytical prediction and the Kullmer-Richard 

asymptotical prediction with respect to the finite element results are shown as a function of key-

hole radius in Fig. 3(b). It can be seen that the relative error of Eq. (8) is less than 10% for the 

hole radius in the range of 0.4a   and can be less than 2% for 0.25a   However, 

the relative error from Kullmer-Richard equation is less than 10% only for 0.05a   and 

even reaches 60% at 0.4a  . Thus it can be concluded that our proposed semi-analytical 

formulae can effectively predict the maximum stress at the notch tip for a wider range of notches 

than the asymptotical equation of Kullmer and Richard. 

 

As a limiting case, notches in semi-infinite plates ( w ) were also investigated. The 

maximum stress at the notch tip as a function of the relative hole radius is plotted in Fig. 3(c). 

The prediction of the Kullmer-Richard equation is also included for the purpose of comparison. 

Similar to the results of finite plates (Fig. 3(a)), it can be seen that the agreement between the 

theoretical predictions given by our proposed semi-analytical model and the finite element 

results is closer than that of asymptotical predictions from the Kullmer-Richard equation. The 

corresponding relative error of our semi-analytical predictions and the asymptotical predictions 

given by Kullmer and Richard with respect to finite element results are shown as a function of 

key-hole radius in Fig. 3(d). The error over the entire range ( 1a  ) is less than 5% for our 

semi-analytical predictions, while the relative error from the Kullmer-Richard equation is less 

than 5% only in the range of 0.06a  , indicating the developed model (Eq. (12)) can be 

applied for a much wider range of a  compared to the Kullmer-Richard model (Eq. (11)). 
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Fig. 3 (a) Normalized maximum stress as a function of the relative key-hole radius. (b) The 

relative error with respect to FEM results as a function of relative key-hole radius. (c) and (d) 

respectively show the normalized maximum stress and the relative error for the case of a semi-

infinite plate. 

 

Recall that the semi-analytical equation is based on the assumption that three mechanisms of 

crack tip bluntness, stress concentration and stress equilibrium exhibit an interplay at the notch 

tip. To further validate of the assumption, the variations of maximum stress at the notch tip with 

increasing key-hole radius, for cases of fixed crack length ( consta  ) and fixed notch depth 

( consta   ), are plotted respectively in Figs. 4(a) and 4(b). Again, the maximum stresses 

predicted by the semi-analytical equation and the FEM simulations are in good agreement. 
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Fig. 4 The relationship between the dimensionless maximum stress and the relative key-hole 

radius: (a) Fixed crack length (a=const); (b) Fixed notch depth (a+ρ=const). 

 

For fixed crack length values ( consta  ), Fig. 4(a) clearly shows the competition of the three 

aforementioned mechanisms. As a result, the maximum stress decreases first and then increases 

with increasing key-hole size. This non-monotonic trend is more obvious for longer cracks. For 

a fixed key-hole radius, the resulting maximum stress increases with crack length. Longer 

cracks result in a smaller effective bearing area, and so the maximum notch tip stresses are 

larger. However, for cases with fixed notch depth ( consta   ), there is a monotonically 

decreasing trend of the maximum stress, as shown in Fig. 4(b). This arises as a constant 

effective bearing area is maintained, and the remaining factors influencing the maximum stress 

are thus crack tip bluntness and stress concentration. The combined effect of these two factors 

yields a decreasing trend of stress with key-hole radius. As is evident from Fig. 4, three principal 

factors affect the maximum stress of key-hole notched components, crack tip hole bluntness, 

stress concentration around the key-hole due to the finite plate size, and the reduction of the 

effective bearing area. Combining these three factors, we obtained the semi-analytical equation 

for predicting the maximum stress and validated the predictions with the FEM results.  

 

4. Stress analysis of Key-hole-like (U- and blunt V-) notches 

In order to further expand the application of the developed formula, we will generalize the semi-

analytical model (Eq. (8)) to key-hole-like notches (i.e., U- and blunt V-notches) and further 

examine failure criteria for notched components. In the past decade most studies on the brittle 

fracture of components containing key-hole-like notches were based upon the NFM extension 

of classical fracture mechanics, pertaining to notched engineering structures [13-16]. Various 

failure criteria in the field of NFM were developed using the concepts of NSIF and NFT, among 

others. These criteria usually involve a number of model parameters, requiring complex fitting 

of experimental data, motivating the use of reliable analytical models. Here we apply the semi-

analytical equation proposed in the Section 2 to investigate the maximum stress of U-notches 

and blunt V-notches shown in Fig. 5(a). 
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First, plates containing blunt V-notches and loaded by remote tensile stress   , as shown in 

Fig. 5(b), are studied by the FEM technique described in the preceding section. Notches with 

tip curvature 1 15w   and different opening angles 2α (0, 53º, 90º, 113º, 127º) were taken 

into account. As a special case, the blunt V-notch with 0   degenerates into a U-notch, see 

Fig. 5(a). The contour plots of the y-direction normal stress of the key-hole notch, U-notch and 

blunt V-notches with different opening angles are shown in Fig. 5(c-h) where the specimen 

dimensions are 2b w , 5 12a w   and 1 15w  . As is evident from Fig. 5, the stress 

distributions and maximum stresses at U-notches and V-notches with small opening angles are 

essentially similar to those of the key-hole notches. A close examination of Fig. 5(c) for a key-

hole notch and Fig. 5(d) for a U-notch of the same hole radius and crack length shows clearly 

that the stress distribution and maximum stress of the U-notch can be well approximated by 

those of the corresponding key-hole notch. With the opening angle of the blunt V-notches 

increasing (Figs. 5(e-h)), the maximum stress slightly decreases.  

 

 
Fig. 5 Tensioned plates weakened by U-notch (a) and blunt V-notch (b). Contours of normal 

stress σyy for key-hole notch (c), U-notch (d) and blunt V-notches with different opening angles (e-

h). The geometrical parameters are: b/w=2, a/w=5/12, and ρ/w=1/15. All the stress profiles are 

scaled in range of -30~175MPa. 
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of the relative difference between the maximum notch-tip stresses of V-notches and that of the 

corresponding key-hole notches (or U-notches) of the same notch dimensions are shown in Fig. 

6, where the horizontal and vertical axes represent the opening angle 2α and the relative notch 

tip curvature a , respectively. The corresponding relative crack lengths in Figs. 6(a-c) are 

a w  = 0.28, 0.42 and 0.55. It can be seen that the maximum stress of V-notches can be well 

described by the developed semi-analytical model for key-hole notches, with the relative 

difference well below 5% in most of the    space. Only when 2 90   and 

0.1a   (see the small heavily shaded regions in Fig. 6), the relative difference reaches 10% 

or even higher. Moreover, for notches of larger depths, an even larger regime in the    

space is found to have relative difference less than 5%.  

 

 
Fig. 6 The relative difference between maximum notch-tip stresses in blunt V-notches with 

different opening angles and the corresponding key-hole notches (or U-notches) of the same crack 

length a and tip curvature ρ. The relative crack lengths are: (a) a/w = 0.28, (b) 0.42, and (c) 0.55. 

 

From Fig. 6, we can conclude that the proposed semi-analytical is applicable for the prediction 

of the maximum stress for a variety of notch types, including key-hole, U- and blunt V-shapes 

with a wide geometrical parameters (radius, notch depth and opening angle). Such a prediction 

of the maximum stress can be adopted to analyze the damage in notched components and 

establish of failure criteria, as illustrated in the following.  

 

5. Discussion on stress-based failure criteria for notched components 

The proposed semi-analytical solution for the maximum stress in key-hole and key-hole-like 

problems can be implemented in various stress-based failure criteria. We discuss its potential 

applications in the following two typical stress-based criteria. 
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(usually the normal stress at the notch tip of the cross section, as labeled in Fig. 1(b)) reaches 

the material’s failure strength fs  [38]. Therefore, a simple method of predicting failure 

strength is based on the criterion of  

 
max

yy fs   . (13) 

This failure criterion can be applied for assessing cracks with small key-holes and notches with 

large holes, including U-notches and blunt V-notches [39]. Using the semi-analytical model 

(i.e., Eq. (8)) in conjunction with Eq. (13), one can predict the maximum admissible load of 

plates with notches. 

 

5.2 Notch tip stress field based fracture criteria 

In general, most failure criteria for notched components are based on the notch tip stress field. 

In these criteria, the notch tip maximum stress has been introduced into the stress field as a key 

parameter [21-24]. For example, in the widely used stress field solution for rounded-tip V-

notches obtained by Filippi et al. [21], the y-direction normal stress along the bisector for a 

notch with opening angle 2α and notch tip curvature ρ is given by 

  1 1max ,yy yy r f
   

    . (14) 

where r is the polar coordinate, 1  is a function of the notch opening angle. This equation has 

been found to be in good agreement with finite element results in the high stress region around 

the notch tip [21]. Subsequently, this stress field has further been extended to plates with finite 

width [22].  

 

In addition, the NSIF, which indicates the stress intensity at the notch tip, can be related to the 

maximum stress by the following equation 

  max 2 ,V

yyK g         (15) 

It can be seen from Eqs. (14) and (15) that the maximum stress 
max

yy  is contained in the 

notch tip stress field based failure criteria as an unknown parameter and varies with the 

geometry size of the components and the load conditions. By substituting the semi-analytical 

equation (Eq. (8)) into Eqs. (14) and (15), the y-direction normal stress yy  and NSIF 
VK  

can be directly related to the external load   .  

 

6. Conclusions 

In this paper, the stress distributions of notched components under mode I loading are 

investigated. Based upon the combined effects of three mechanisms, crack tip bluntness, stress 

concentration and stress equilibrium; a semi-analytical formula is proposed to predict the notch 
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tip maximum stress. Due to the competition of the three aforementioned mechanisms, the 

maximum stress at the notch tip first decreases and then increases with increasing notch tip 

radius for a fixed crack length. For constant notch depth the maximum stress is found to 

decrease monotonically with increasing notch tip radius. An extensive comparison between the 

theoretical prediction of the maximum stresses and FEM results was shown to validate the new 

semi-analytical model. 

 

It is further found that the stress fields of U-notches and blunt V-notches with small tip radii 

and opening angles are similar to those of key-hole notches. The proposed semi-analytical 

model can therefore be applied to predict the maximum stress at the tip of these notches and 

establish appropriate stress-based failure criteria. The model can also be applied to edge 

notched infinite plates. The presently developed approach can be extended to round-tip center 

notches and can further be generalized to incorporate alternative loading conditions including 

localized loads.  
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