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Abstract
This article fills a gap in the mathematical analysis of Adaptive Biasing algorithms,

which are extensively used in molecular dynamics computations. Given a reaction
coordinate, ideally, the bias in the overdamped Langevin dynamics would be given by
the gradient of the associated free energy function, which is unknown. We consider an
adaptive biased version of the overdamped dynamics, where the bias depends on the
past of the trajectory and is designed to approximate the free energy.

The main result of this article is the consistency and efficiency of this approach.
More precisely we prove the almost sure convergence of the bias as time goes to infinity,
and that the limit is close to the ideal bias, as an auxiliary parameter of the algorithm
goes to 0.

The proof is based on interpreting the process as a self-interacting dynamics, and
on the study of a non-trivial fixed point problem for the limiting flow obtained using
the ODE method.

1 Introduction
Let µ‹ be a probability distribution on the d-dimensional flat torus Td, of the type:

dµ‹pxq “
e´βV pxq

Zpβq
dx , Zpβq “

ż

Td
e´βV pxqdx, (1)
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†brehier@math.univ-lyon1.fr
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where dx is the normalized Lebesgue measure on Td. For applications in physics and chem-
istry (e.g. in molecular dynamics), µ‹ is referred to as the Boltzmann-Gibbs distribution
associated with the potential energy function V and the inverse temperature parameter
β ą 0. For applications in statistics (e.g. in Bayesian statistics), ´βV is referred to as the
log-likelihood. In this article, the function V : Td Ñ R is assumed to be smooth.

In order to estimate integrals of the type
ş

ϕdµ‹, with ϕ : Td Ñ R, probabilistic methods
are used, especially when d is large. The Markov Chain Monte Carlo (MCMC) method
consists in interpreting the integral as the (almost sure) limit

ż

ϕdµ‹ “ lim
TÑ8

1

T

ż T

0

ϕpX0
t qdt “ lim

TÑ8

ż

ϕdµ0
T ,

where µ0
t “

1
T

şT

0
δX0

t
dt is the random empirical distribution associated with an ergodic

Markov process
`

X0
t

˘

tě0
, with unique invariant distribution µ‹. The choice of the Markov

dynamics is not unique, and in this work we consider the overdamped Langevin dynamics

dX0
t “ ´∇V pX0

t qdt`
a

2β´1dWt

where
`

Wt

˘

tě0
is a d-dimensional Wiener process. In practice, discrete-time Markov pro-

cesses, defined for instance using the Metropolis-Hastings algorithm, are employed.
The convergence to equilibrium requires that the Markov process explores the entire

energy landscape, which may be a very slow process. Indeed, in practical problems, the
dimension d, i.e. the number of degrees of freedom in the system, is very large, and the
probability distribution µ‹ is multimodal: the function V admits several local minima (in-
terpreted as potential energy wells) and β is large. In that situation, the Markov process
is metastable: when it reaches an energy well, it tends to stay there for a long time (whose
expectation goes to infinity when β goes to infinity) before hopping to another energy well.
Asymptotic results for the exit time from energy wells when β Ñ 8 are given by Eyring-
Kramers type formulas [14, 27]. The metastability of the process substantially slows down
the exploration of the energy landscape, hence the convergence when T Ñ 8 towards the
target quantity

ş

ϕdµ‹.
In the development of Monte-Carlo methods in the last decades, many techniques have

been studied in order to efficiently sample multimodal distributions. The bottom-line strat-
egy to enhance sampling consists in biasing the dynamics and in reweighting the averages:
indeed, for any smooth function Ṽ : Td Ñ R, one has

ż

ϕdµ‹ “

ş

ϕe´βV
ş

e´βV
“

ş

ϕe´βpV´Ṽ q e´βṼ
ş

e´βpV´Ṽ q e´βṼ
“ lim

tÑ8

şt

0
ϕpX̃sqe

´βpV pX̃sq´Ṽ pX̃sqds
şt

0
e´βpV pX̃sq´Ṽ pX̃sqds

,

where the biased dynamics is given by dX̃t “ ´∇Ṽ pX̃tqdt`
a

2β´1dWt. This is nothing but
an Importance Sampling method, and choosing carefully the function Ṽ may substantially
reduce the computational cost. Indeed, if the distribution with density proportional to
e´βṼ pxq is not multimodal, the biased process X̃t converges to equilibrium and explores the
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state space faster than the unbiased process Xt. In the sequel, we explain how to choose Ṽ
in order to benefit from the importance sampling strategy.

From now on, in order to simplify the notation, β “ 1. In addition, without loss of
generality, assume that

ş

Td e
´V pxqdx “ 1.

Instead of treating the problem in an intractable full generality, we focus on the typical
situation when some additional a priori knowledge on the system is available. Precisely, let
ξ : Td Ñ Tm be a smooth function, which is referred to as the reaction coordinate (following
the terminology employed in the molecular dynamics community). Let us stress that the
identification of appropriate reaction coordinates is a delicate question, which depends on the
system at hand. The problem of automatic learning of good reaction coordinates currently
generates a lot of research, see for instance [13, 15] and references within. We do not consider
this question in the sequel.

The biasing potential in the importance sampling schemes considered in this work will
be of the type Ṽ pxq “ V pxq ´ Apξpxqq, where A : Tm Ñ R. In practice, the number
of macroscopic variables m is very small compared to the dimension d of the model (which
describes the full microscopic system). As will be explained below, without loss of generality,
we assume that ξpxq “ ξpy, zq “ z for all x “ py, zq P Td´m ˆ Tm. This expression for the
reaction coordinate simplifies the presentation of the method, however considering more
general reaction coordinates ξ is possible up to adapting some definitions below. To explain
the construction of the method and to justify its efficiency, we assume that the reaction
coordinate is representative of the metastable behavior of the system: roughly, this means
that only the exploration in the z variable is affected by the metastability, whereas the
exploration in the y variable is much faster.

In this framework, the fundamental object is the free energy function A‹ defined as
follows: for all z P Tm,

A‹pzq “ ´ log
´

ż

Td´m
e´V py,zqdy

¯

. (2)

For general considerations on the free energy and related computational aspects, we refer to
[31, 32]. By construction, if X “ pY, Zq is a random variable with distribution µ‹, then the
marginal distribution of Z is given by

dν‹pzq “ e´A‹pzqdz.

Introduce the notation pY 0
t , Z

0
t q “ X0

t for the solution of the overdamped Langevin dynamics
#

dY 0
t “ ´∇yV pY

0
t , Z

0
t qdt`

?
2dW

pd´mq
t ,

dZ0
t “ ´∇zV pY

0
t , Z

0
t qdt`

?
2dW

pmq
t ,

where Wt “ pW
pd´mq
t ,W

pmq
t q. It ν0

t “
1
t

şt

0
δZ0

s
ds denotes the empirical distribution for the

variable Z0, then almost surely
ν0
t Ñ
tÑ8

ν‹,

in the sense of weak convergence in the set PpTmq of probability distributions on Tm. Since
the reaction coordinate is representative of the metastability of the system, this convergence
shares the same computational issues as when considering the full process X0.
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A much better performance can be attained considering the following biased dynamics,
where V pxq is replaced by Ṽ‹pxq “ V pxq ´ A‹pξpxqq:

#

dY ‹t “ ´∇yV pY
‹
t , Z

‹
t qdt`

?
2dW

pd´mq
t ,

dZ‹t “ ´∇zV pY
‹
t , Z

‹
t qdt`∇A‹pZ‹t qdt`

?
2dW

pmq
t .

Define the associated empirical measures on Td and Tm respectively:

µ‹t “
1

t

ż t

0

δX‹sds , ν‹t “
1

t

ż t

0

δZ‹sds,

where X‹
s “ pY

‹
s , Z

‹
s q. As explained above,

ş

ϕdµ‹ can then be computed by the reweighting
procedure. Observe that by ergodicity for

`

X‹
t

˘

tě0
and the definition of A‹, one has

ν‹t Ñ
tÑ8

dz,

i.e. at the limit the distribution of Z‹t is uniform on Tm. This observation, which is referred
to as the flat histogram property in the literature devoted to applications, means that the
process X‹ does not suffer from slow convergence to equilibrium due to energy barriers,
compared to the process X0.

In practive, the free energy function A‹ is not known, thus the ideal approach described
above is not applicable. In fact, in many applications, the real objective is the computation
of the free energy function. One of the important features of many free energy computation
algorithms, such as the one studied in this work, is to compute an approximation of the free
energy function on-the-fly, and to use this approximation to enhance sampling. Checking that
such adaptive algorithms are efficient and consistent requires careful mathematical analysis.

In this article, we consider a class of adaptive biasing methods, where the dynamics is of
the form

#

dYt “ ´∇yV pYt, Ztqdt`
?

2dW
pd´mq
t ,

dZt “ ´∇zV pYt, Ztqdt`∇AtpZtqdt`
?

2dW
pmq
t ,

(3)

where the function At depends on time t, approximates A‹ when t Ñ 8, and is defined in
terms of the empirical measure

µt “
1

t

ż t

0

δXsds. (4)

The process
`

Xt

˘

tě0
“

`

Yt, Zt
˘

tě0
is not a Markov process, instead it is a self-interacting

diffusion process. The precise construction of the algorithm studied in this article is provided
below.

This article is organized as follows. The construction of the algorithm (9) studied in this
work is presented in Section 2 below. The main result, Theorem 2.3, is stated in Section 2.3,
and a comparison with the literature is given. Section 3 gives a proof of the well-posedness
of the self-interacting dynamics (9) (Proposition 2.2). Section 4 exhibits the limiting flow
(obtained by applying the ODE method) and establishes the asymptotic pseudotrajectory
property. Finally, Section 5 provides the final crucial ingredients for the proof of the main
result, Theorem 2.3: a PDE estimate which provides some uniform bounds, and a global
asymptotic stability property for the limiting flow.
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2 The Adaptive Biasing Force algorithm
The objectives of this section are to define the Adaptive Biasing Force method [17] studied
in this article, and to state the main results.

Recall the definitions (1) and (2) of the target distribution µ‹ and of the free energy A‹
respectively. The potential energy function V is assumed to be of class C8.

The reaction coordinate ξ : Td Ñ Tm satisfies ξpy, zq “ z for all x “ py, zq P Td. This
expression substantially simplifies the presentation compared with a more general choice
of ξ : Td Ñ Rm. In applications, this is not restrictive, and consists in considering the
so-called extended ABF algorithm [22]. Precisely, an auxiliary variable Z is added to the
state space, the extended potential energy function for X “ pX,Zq is given by V pXq “
V pXq ` 1

2σ2 |ξpXq ´ Z|2, where σ ą 0 is a small parameter, and one sets ξpXq “ Z.

2.1 Construction

The definition of the algorithm requires to make precise how in the evolution equation (3),
the biasing potential function At, or its gradient ∇At, is determined in terms of the empirical
distribution µt given by (4). The algorithm is based on the following identity: the gradient
∇A‹ of the free energy function A‹ defined by (2) is given by

∇A‹pzq “
ş

Td´m∇zV py, zqe
´V py,zqdy

ş

Td´m e
´V py,zqdy

“ Eµ‹
“

∇zV pY, Zq
ˇ

ˇ Z “ z
‰

. (5)

More generally, let A : Tm Ñ R be a smooth function, and let dµA‹ pxq9eApzqdµ‹py, zq be the
ergodic invariant distribution of

#

dY A
t “ ´∇yV pY

A
t , Z

A
t qdt`

?
2dW

pd´mq
t ,

dZA
t “ ´∇zV pY

A
t , Z

A
t qdt`∇ApZA

t qdt`
?

2dW
pmq
t .

Then one has the identity

∇A‹pzq “ EµA‹
“

∇zV pY, Zq
ˇ

ˇ Z “ z
‰

. (6)

The expressions for the gradient of the free energy function in equations (5) and (6) are
simpler than (for instance) the expressions (5) and (6) in [30] which hold for a general
reaction coordinate mapping ξ, whereas we consider only the case ξpy, zq “ z.

The occupation measures µt defined by (4) are in general singular with respect to the
Lebesgue measure on Tm. In order to define the mapping µt ÞÑ At, we introduce a regular-
ization kernel Kε, depending on the parameter ε P p0, 1s, such that

∇A‹pzq “ lim
εÑ0

ť

Td∇zV py, z
1qKεpz

1, zqdµ‹py, z
1q

ť

Td Kεpz1, zqdµ‹py, z1q
.

Indeed, formally, the expression (5) for ∇A‹ is obtained with the kernel Kεpz, z
1q replaced

by a Dirac distribution δpz ´ z1q. See Assumption 2.1 below for precise conditions on the
kernel function Kε.

5



For every ε P p0, 1s and µ P PpTdq, define the mapping F εrµs : Tm Ñ Rm as follows:

F ε
rµsp¨q “

ť

∇zV py, zqKεpz, ¨qdµpy, zq
ť

Kεpz, ¨qdµpy, zq
. (7)

Due to the action of the regularization kernel Kε, in general F εrµs cannot be written as a
gradient. For instance if m “ 1, a smooth function F : TÑ R is a gradient if and only if its
average value is zero

ş

F pzqdz “ 0; in general,
ş

F εrµspzqdz ‰ 0.
The last ingredient in the construction is a projection operator P, such that one defines

∇Aεrµs “ PpF εrµsq. More precisely, for every ε P p0, 1s and µ P PpTdq, define the mapping
Aεrµs as follows:

Aεrµs “ argmin
APH1pTmq,

ş

Apzqdz“0

ż

ˇ

ˇF ε
rµspzq ´∇Apzq

ˇ

ˇ

2
dz . (8)

As will be explained below, Aεrµs is solution of an elliptic PDE. Note that F εrµs and Aεrµs
are functions depending only on z P Tm, with a dimension m much smaller than d the total
number of degrees of freedom of the system. Typically, one has m P t1, 2, 3u, which makes
it possible to use the algorithm in practice.

We are now in position to define the process considered in this article: it is the solution
of the system

$

’

’

’

&

’

’

’

%

dYt “ ´∇yV pYt, Ztqdt`
?

2dW
pd´mq
t ,

dZt “ ´∇zV pYt, Ztqdt`∇AtpZtqdt`
?

2dW
pmq
t ,

At “ Aεrµts,

µt “
1
t

şt

0
δpYs,Zsqds.

(9)

Arbitrary (deterministic) initial conditions Y0 “ y0 P Td´m, Z0 “ z0 P Tm, µ0 “ δpy0,z0q and
A0 “ Aεrµ0s are provided. This process belongs to the class of self-interacting diffusions, see
[9, 10, 11, 12] for standard references.

2.2 Well-posedness of the system (9)
Recall that V : Td Ñ R is assumed to be of class C8. Let us first state the assumptions
satisfied by the kernel function Kε.

Assumption 2.1. For any ε P p0, 1s, the mapping Kε : Tm ˆ Tm Ñ p0,8q is of class C8
and positive.

For all z P Tm, one has
ż

Kεpz, ¨qdz “

ż

Kεp¨, zqdz “ 1

In addition, if ψ : Td Ñ R is a continuous and bounded function, one has
ĳ

Td

ψpy, z1qKεpz
1, zqdydz1 Ñ

εÑ0

ż

Td´m
ψpy, zqdy , @ z P Tm.
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Finally, there exists cK P p0,8q, such that

sup
zPTm

ż

Tm
|z ´ z1|2

`

Kεpz
1, zq `Kεpz, z

1
q
˘

dz1 ď cKε.

Definemε “ min
z,z1PTm

Kεpz
1, zq andM pkq

ε “ max
z,z1PTm

|∇k
zKεpz

1, zq|` max
z,z1PTm

|∇k
z1Kεpz

1, zq|, where

k is a nonnegative integer and∇k denotes the derivative of order k. Owing to Assumption 2.1,
one has mε ą 0 and M

pkq
ε ă 8 for all ε P p0, 1s, however these estimates are not uniform

with respect to ε, i.e. inf
εPp0,1s

mε “ 0 and sup
εPp0,1s

M
pkq
ε “ 8.

Note that to establish the well-posedness of the system (9), where ε P p0, 1s is fixed, upper
bounds are allowed to depend on ε. However, it will be crucial in Section 5 to derive some
upper bounds which are uniform with respect to ε in order to prove the convergence when t
goes to infinity of µt and At (to a limit depending on ε), see Proposition 5.3.

The exact form of the kernel function Kε has no influence on the analysis below. Let us
give an example: let Kεpz

1, z2q “
śm

j“1 kε
`

z2
j ´ z

1
j

˘

, where for all z P T,

kεpzq “ Z´1
ε exp

`

´
sin2pz{2q

ε2{2

˘

is the so-called von-Mises kernel.
Owing to Assumption 2.1, it is straightforward to check that F εrµs is of class C8, for any

µ P PpTdq. Then the mapping Aεrµs is the solution of the elliptic linear partial differential
equation

∆Aεrµs “ divpF ε
rµsq

and standard elliptic regularity theory implies that Aεrµs is also of class C8. See Lemma 3.1
below for quantitative bounds (depending on ε).

Proposition 2.2. Under Assumption 2.1, for any initial conditions x0 “ py0, z0q P Td, the
system (9) admits a unique solution, which is defined for all times t ě 0.

The proof of Proposition 2.2 is postponed to Section 3

2.3 Main result and discussion

Remark that the free energy can be defined up to an additive constant. Above, A‹ has
been normalized so that

ş

Tm e
´A‹dz “ 1, while At is such that

ş

Tm Atdz “ 0. Denote
Ā‹ “ A‹ ´

ş

Tm A‹pzqdz. The standard norm on the Sobolev space W 1,ppTmq, for p P r2,8q,
is denoted by } ¨ }W 1,p .

Theorem 2.3. Under Assumption 2.1, there exists ε0 ą 0 and, for all p P r1,`8q, there
exists Cp P r0,`8q such that, for all ε P p0, ε0s, there exists a unique probability distribution
µε8 P PpTdq which satisfies

dµε8pxq “ dµA
εrµε8s
‹ pxq9eA

εrµε8spzqdµ‹py, zq.

7



In addition, one has the error estimate

}Ā‹ ´ A
ε
rµε8s}W 1,p ď Cp

?
ε ,

and, for any initial conditions x0 “ py0, z0q P Td, almost surely, one has the convergence

}At ´ A
ε
rµε8s}W 1,p ÝÑ

tÑ8
0

µt ÝÑ
tÑ8

µε8 ,

the latter in the sense of weak convergence in the set PpTdq.

The first identity in Theorem 2.3 means that the limit µε8 of µt is the fixed point of the
mapping µ ÞÑ µ

Aεrµs
‹ , see Section 4. Equivalently, the limit Aεrµε8s of At is the fixed point of

the mapping A ÞÑ AεrµA‹ s, where we recall that dµA‹ pxq “ eApzqdµ‹py, zq.
The almost sure convergence results of Theorem 2.3 may be loosely rephrased as follows

lim
εÑ0

lim
tÑ8

At “ A‹ , lim
εÑ0

lim
tÑ8

µt “ µA‹‹ ,

and implies that the empirical distribution νt “ 1
t

şt

0
δξpXsqds satisfies the approximate asymp-

totic flat-histogram property
lim
εÑ0

lim
tÑ8

νt “ dz.

We stress that µε8 is not close (when ε Ñ 0) to the multimodal target distribution µ‹:
with the notation above one has µ‹ “ µ0

‹ ‰ µA‹‹ . However, the algorithm gives a way to
approximate

ş

ϕdµ‹ by reweighting: using the Cesaro Lemma, it is straightforward to check
that one has

lim
tÑ8

şt

0
ϕpXsqe

´AspZsqds
şt

0
e´AspZsqds

“ lim
tÑ8

şt

0
ϕpXsqe

´Aεrµε8spZsqds
şt

0
e´Aεrµ

ε
8spZsqds

“

ş

ϕpy, zqe´A
εrµε8spzqdµε8py, zq

ş

e´Aεrµ
ε
8spzqdµε8py, zq

“

ż

ϕdµ‹,

for any smooth ϕ : Td Ñ R. Indeed, by the Sobolev embedding W 1,ppTmq Ă C0pTmq if
p ą m, At converges to Aεrµε8s uniformly on Tm.

Up to an error depending only on the width ε ą 0 of the kernel function Kε, the adaptive
algorithm (9) is thus a consistent way to approximately compute

ş

ϕdµ‹, as well as the free
energy function A‹. The approximate asymptotic flat-histogram property stated above shows
that the sampling in the slow, macroscopic variable z is enhanced, hence the efficiency of
the approach. Such results are a mathematical justification for the use of the ABF method
based on self-interating dynamics in practical computations.

Remark 2.4. From Theorem 2.3, we expect the following Central Limit Theorem to hold:
for all bounded ϕ on Td,

?
t

ˆ
ż

ϕdµt ´

ż

ϕdµε8

˙

law
ÝÑ
tÑ8

N p0, σϕq

where σϕ is the asymptotical variance obtained by considering the process with a constant
bias ∇Aεrµε8s. Nevertheless, the proof of such a result, extending [20, Theorem 4.III.5] at
the cost of technical considerations, exceeds the scope of the present article.
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Remark 2.5. The convergence of At to Aεrµε8s when tÑ 8 in fact holds for Ck norms, for
all integers k. However, the convergence of Ā‹ ´ Aεrµε8s when ε Ñ 0 can be obtained only
in W 1,p, for all p P r2,8q (hence in C0 due to a Sobolev embedding, for p ą m). In fact,
higher-order derivatives of F εrµs (and of Aεrµs) are expected to explode when εÑ 0.

The ABF has originally been introduced in [18] in the molecular dynamics community,
where it is widely used, see [23, 19, 17]. An example of application in statistics is devel-
oped in [16]. Another popular related biasing algorithm is the metadynamics algorithm
[26],[4],[25],[8].

From a theoretical point of view, several variants of the ABF algorithm have been con-
sidered in various works. In a series of papers [30, 1, 29, 28], Lelièvre and his co-authors
considered a process similar to (9) except that µt is replaced by the law of Xt. This corre-
sponds to the mean-field limit of a system of N interacting particles as N goes to infinity
[24]. The law of Xt then solves a non-linear PDE, and long-time convergence is established
through entropy techniques. In practice in fact, the bias At is obtained both from inter-
acting particles and from interaction with the past trajectories, so that µt is the empirical
distribution of a system of N replicas of the system pXt, Ytq that contributes all to the same
bias At.

The case of adaptive bias algorithm with a self-interacting process is addressed in [21] for
the ABF algorithm and in [6, 7] for the related adaptive biasing potential (ABP) algorithm.
We emphasize on the fact that in these works, µt is replaced by a weighted empirical measure
µ̄t given, in the spirit of an importance sampling scheme, by

µ̄t “

ˆ
ż t

0

e´AspZsqds

˙´1 ż t

0

δXse
´AspZsqds .

Contrary to µt in Theorem 2.3, this weighted empirical measure converges toward µ‹. This
makes the theoretical study simpler than in the present case. However, in practice, there
should be no reason to use this weighting procedure for ABF due to the identity (6). Indeed,
provided that At converges to some A8, in the idealized case where Kε is a Dirac mass, then
(6) implies that necessarily A8 “ A‹. This is no more true as soon as ε ą 0 (which is neces-
sary for the well-posedness of the algorithm), and one of the main motivation of the present
work was to determine whether the convergence of the natural (non re-weighted) version of
ABF, which is the one used in practice, was robust with respect to the regularization step.
Our results shows that this is true, provided ε is small enough.

2.4 Notation

Let N “ t1, . . .u and N0 “ NYt0u, and let k P N0 be a nonnegative integer. Let CkpTn1 ,Rn2q

be the space of functions of class Ck on Tn1 with values on Rn2 . The derivative of order k is
denoted by ∇k. The space CkpTn1 ,Rn2q is equipped with the norm } ¨ }Ck , defined by

}φ}Ck “
k
ÿ

`“0

}∇kφ}C0 ,

9



with }φ}C0 “ max
zPTn1

}φpxq}. To simplify, the dimensions n1 and n2 are omitted in the notation
for the norm } ¨ }Ck .

If φ : Tn1 Ñ Rn2 is a Lipschitz continuous function, its Lipschitz constant is denoted by
Lippφq.

The space PpTdq of probability distributions on Td (equipped with the Borel σ-field)
is equipped with the total variation distance dTV and with the Wasserstein distance dW1 .
Recall that one has the following characterizations:

dTV pµ1, µ2q “ sup
ψ:TdÑR,}ψ}8ď1

1

2

ˇ

ˇ

ż

ψdµ2 ´

ż

ψdµ1

ˇ

ˇ,

dW1pµ1, µ2q “ sup
ψ:TdÑR,Lippψqď1

ˇ

ˇ

ż

ψdµ2 ´

ż

ψdµ1

ˇ

ˇ

where for the total variation distance the supremum is taken over bounded measurable
functions ψ.

The space PpTdq is also equipped with the following distance, which generates the topol-
ogy of weak convergence:

dwpµ1, µ2q “
ÿ

nPN

1

2n

ˇ

ˇ

ş

fndµ2 ´
ş

fndµ1

ˇ

ˇ

1`
ˇ

ˇ

ş

fndµ2 ´
ş

fndµ1

ˇ

ˇ

,

where the sequence S “ tfnunPN is dense in C0pTd,Rq, and, for all n P N, one has fn P C8
and }fn}C0 ď 1.

3 Proof of the well-posedness result Proposition 2.2
The objective of this section is to prove Proposition 2.2, which states that the system (9)
is well-posed. Some auxiliary estimates are provided, where the upper bounds are allowed
to depend on the parameter ε. Lemma 3.1 provides estimates for F εrµs and Aεrµs, in Ck,
uniformly with respect to µ. Lemma 3.2 provides some Lipschitz continuity estimates with
respect to µ, in total variation and Wasserstein distances.

3.1 Auxiliary estimates

Lemma 3.1. For all ε P p0, 1s and k P N0, there exists Cε,k P p0,8q such that one has

sup
µPPpTdq

´

}F ε
rµs}CkpTm,Rmq ` }A

ε
rµs}CkpTm,Rq

¯

ď Cε,k.

Proof of Lemma 3.1. Observe that

F ε
rµs “

Fauxrµ,∇zV s

Fauxrµ, 1s
,

10



where F ε
auxrµ, ψs “

ť

ψpy, zqKεpz, ¨qdµpy, zq.
Owing to Assumption 2.1, one has

F ε
auxrµ, 1s ě mε

ż

dµ “ mε ą 0,

for all µ P PpTdq. In addition, for all k P N0, one has

∇kF ε
auxrµ, ψs “

ĳ

ψpy, zq∇kKεpz, ¨qdµpy, zq,

thus, one obtains
}F ε

auxrµ, ψs}Ck ď }ψ}C0M pkq
ε ă 8,

owing to Assumption 2.1.
Using the estimate above with ψ “ ∇zV and ψ “ 1, it is then straightforward to deduce

that
}F ε
rµs}Ck “ }

Fauxrµ,∇zV s

Fauxrµ, 1s
}Ck ď Cε,k.

This concludes the proof of the estimates for F εrµs. To prove the estimates for Aεrµs,
observe that Ãεrµs solves the Euler-Lagrange equation associated with the minimization
problem in (8),

∆Ãεrµs “ div
`

F ε
rµs

˘

.

Using the result proved above, and standard elliptic regularity theory and Sobolev embed-
dings, one obtains the required estimates for Ãεrµs: for all ε P p0, 1s and k P N0, there exists
Cε,k P p0,8q such that for all µ P PpTdq,

}Ãεrµs}CkpTm,Tq ď Cε,k.

Since Aεrµs and Ãεrµs only differ by an additive constant, it only remains to prove that

}Aεrµs}C0pTm,Tq ď Cε,0.

This is a straightforward consequence of the estimate }Ãεrµs}C0pTm,Tq ď Cε,0 and of (8).
This concludes the proof of Lemma 3.1.

Lemma 3.2. For all ε P p0, 1s and k P N0, there exists Lε,k P p0,8q such that, for all
µ1, µ2 P PpTdq, one has

}F ε
rµ2s ´ F

ε
rµ1s}CkpTm,Rmq ` }A

ε
rµ2s ´ A

ε
rµ1s}CkpTm,Rq ď Lε,k

`

dTVpµ1, µ2q ^ dW1pµ1, µ2q
˘

.

Proof of Lemma 3.2. First, observe that

F ε
rµ2s ´ F

ε
rµ1s “

ť

∇zV py, zqKεpz, ¨qdpµ2 ´ µ1qpy, zq
ť

Kεpz, ¨qdµ2py, zq

´

ť

∇zV py, zqKεpz, ¨qdµ1py, zq
ť

Kεpz, ¨qdpµ2 ´ µ1qpy, zq
ť

Kεpz, ¨qdµ1py, zq
ť

Kεpz, ¨qdµ2py, zq
.
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Using the characterizations of total variation and Wasserstein distances and the regularity
properties of V andKε (Assumption 2.1), proceeding as in the proof of Lemma 3.1 then yields

}F ε
rµ2s ´ F

ε
rµ1s}CkpTm,Tmq ď Lε,kdpµ1, µ2q,

for all µ1, µ2 P PpTdq, with Lε,k P p0,8q, with d “ dW1 and d “ dTV .
It remains to apply the same arguments as in the proof of Lemma 3.1 to obtain

}Ãεrµ2s ´ A
ε
rµ1s}CkpTm,Tq ` }A

ε
rµ2s ´ A

ε
rµ1s}CkpTm,Tq ď Lε,kdpµ1, µ2q,

which concludes the proof of Lemma 3.2.

3.2 Well-posedness

Let T P p0,8q be an arbitrary positive real number. Introduce the Banach spaces

Cpr0, T s,Tdq , E “ L2
`

Ω, Cpr0, T s,Tdq
˘

,

equipped with the norms defined by

}x}α “ sup
0ďtďT

e´αt|xptq| , ~X~α “
´

E
“

}X}2α
‰

¯
1
2
,

depending on the auxiliary parameter α P p0,8q. Let Φ : E Ñ E be defined as follows: for
all x “

`

yt, zt
˘

tě0
, let µxt “

1
1`t

`

µ0`
şt

0
δxsds

˘

and Axt “ Aεrµxt s, for all t ě 0. Then X “ Φpxq

is the solution X “
`

Y ptq, Zptqqtě0 of
#

dY ptq “ ´∇yV pyt, ztqdt`
?

2dW pd´mqptq,

dZptq “ ´∇zV pyt, ztqdt`∇Axt pztqdt`
?

2dW pdqptq,

with initial condition pY p0q, Zp0qq “ x0 P Td, which is fixed.
If α is sufficiently large, then the mapping Φ is a contraction, due to Lemma 3.3 stated

below.

Lemma 3.3. There exists C P p0,8q such that for all α P p0,8q, and for all x1, x2 P E,

~Φpx2q ´ Φpx1q~α ď
C

α
~x2 ´ x1~α.

Proof of Lemma 3.3. Let x1 “ py1, z1q and x2 “ py2, z2q be two elements of E, and set
X1 “ Φpx1q, X2 “ Φpx2q. Then

d

dt

`

Y 2
ptq ´ Y 1

ptq
˘

“ ∇yV py
1
t , z

1
t q ´∇yV py

2
t , z

2
t q

and
d

dt

`

Z2
ptq ´ Z1

ptq
˘

“ ∇zV py
1
t , z

1
t q ´∇zV py

2
t , z

2
t q `∇A2

t pz
2
t q ´∇A1

t pz
1
t q,
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where Ait “ Aεrµits and µit “
1

1`t
pµ0 `

şt

0
δxisdsq.

First, since V is of class C2, for all t ě 0, one has the almost sure estimate

e´αt|Y 2
ptq ´ Y 1

ptq| ď Ce´αt
ż t

0

`

|y2
s ´ y

1
s | ` |z

2
s ´ z

1
s |
˘

ds

ď Ce´αt
ż t

0

eαsds}x2
´ x1

}α

ď
C

α
}x2

´ x1
}α.

Second, similarly one has, for all t ě 0,

e´αt|Z2
ptq ´ Z1

ptq| ď
C

α
}x2

´ x1
}α ` e

´αt

ż t

0

|∇A2
spz

2
sq ´∇A1

spz
1
sq|ds

ď
C

α
}x2

´ x1
}α ` e

´αt

ż t

0

|∇A2
spz

2
sq ´∇A2

spz
1
sq|ds` e

´αt

ż t

0

|∇A2
spz

1
sq ´∇A1

spz
1
sq|ds

ď
C

α
}x2

´ x1
}α ` e

´αt

ż t

0

}A2
s ´ A

1
s}C1ds,

owing to Lemma 3.1. In addition, owing to Lemma 3.2, one has

}A2
s ´ A

1
s}C1 “ }Aεrµ2

ss ´ A
ε
rµ1

ss}C1

ď Lε,1dW1pµ
1
s, µ

2
sq ď Lε,1

ż s

0

|x2
prq ´ x1

prq|dr

ď Lε,1

ż s

0

eαrdr}x2
´ x1

}α

ď
Lε,1
α
eαs}x2

´ x1
}α.

Finally, one obtains the almost sure estimate,

}Φpx2
q ´ Φpx1

q}α “ sup
tě0

e´αt|X2
ptq ´X1

ptq| ď
C

α
}x2

´ x1
}α,

then taking expectation concludes the proof of Lemma 3.3.

The proof of Proposition 2.2 is then straightforward.

Proof of Proposition 2.2. Observe that the following claims are satisfied.

• Owing to Lemma 3.1, for all x P E, one has the almost sure estimate sup
tě0

}∇Axt }C0 ď

Cε,0, and owing to Lemma 3.2, the mapping t ÞÑ Axt is Lipschitz continuous. Thus the
mapping Φ is well-defined.

• The process
`

Y ptq, Zptq, At, µt
˘

tě0
solves (9) if and only if X “ pY, Zq is a fixed point

of Φ.
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• The mapping Φ : E Ñ E is a contraction if α is sufficiently large, and admits a unique
fixed point X, owing to Lemma 3.3.

Since the initial conditions x0 and µ0, and the time T P p0,8q are arbitrary, these arguments
imply that the global well-posedness of (9) and this concludes the proof.

4 The limiting flow
Define the mapping Πε : µ P PpTdq ÞÑ Πεrµs P PpTdq, for ε P p0, 1s, as follows:

Πε
rµs “ Zε

rµs´1e´V py,zq`A
εrµspzqdydz,

with Zεrµs “
ť

e´V py,zq`A
εrµspzqdydz. The notation V ε

µ py, zq “ V py, zq ´ Aεrµspzq is used in
the sequel. The probability measure Πεrµs is the unique invariant distribution for the system

#

dY A
t “ ´∇yV pY

A
t , Z

A
t qdt`

?
2dW

pd´mq
t ,

dZA
t “ ´∇zV pY

A
t , Z

A
t qdt`∇ApZA

t qdt`
?

2dW
pmq
t

with A “ Aεrµs. With notations used above, Πεrµs “ µ
Aεrµs
‹ .

The objectives of this section are twofold. First, one proves that, for every π P PpTdq,
there exists a unique solution

`

Φεpt, πq
˘

tě0
of the equation

Φε
pt, πq “ e´tπ `

ż t

0

es´tΠε
rΦε
ps, πqsds.

In addition, πεt “ Φεpt, πq solves, in a weak sense, the following ordinary differential equation

9πεt “ Πε
rπεt s ´ π

ε
t , πε0 “ π.

Second, one relates the properties of the empirical measure
`

µt
˘

tě0
in the regime t Ñ 8,

with the behavior of the limit flow, using the notion of Asymptotic Pseudo-Trajectories.

4.1 Well-posedness of the limiting flow

Let M ε “ sup
µPPpTdq

}Aεrµs}C0pTm,Rq, and M‹ “ }A‹}C0pTm,Rq. Note that M ε ă 8 due to

Lemma 3.1. Recall that L0,ε is defined in Lemma 3.2.

Lemma 4.1. Let Lpεq “ 2Lε,0e
4pMε`M‹q. Then for all µ1, µ2 P PpTdq, one has

dTV
`

Πε
rµ1
s,Πε

rµ2
s
˘

ď LpεqdTV pµ
1, µ2

q.
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Proof of Lemma 4.1.

dTV
`

Πε
rµ1
s,Πε

rµ2
s
˘

“

ĳ

Td

e´V py,zq
ˇ

ˇ

eA
εrµ1spzq

Zεrµ1s
´
eA

εrµ2spzq

Zεrµ2s

ˇ

ˇdydz

“

ż

Tm
e´A‹pzq

ˇ

ˇ

eA
εrµ1spzq

Zεrµ1s
´
eA

εrµ2spzq

Zεrµ2s

ˇ

ˇdz

ď

ż

Tm

e´A‹pzq

Zεrµ1s

ˇ

ˇeA
εrµ1spzq

´ eA
εrµ2spzq

ˇ

ˇdz

`

ż

Tm

eA
εrµ2spzq´A‹pzq

Zεrµ1sZεrµ2s
dz
ˇ

ˇZε
rµ1
s ´ Zε

rµ2
s
ˇ

ˇ.

Using the lower bound

Zε
rµs “

ĳ

Td

e´V py,zq`A
εrµspzqdydz “

ż

Tm
e´A‹pzq`A

εrµspzqdz ě e´M‹´M
ε

,

and the upper bound

ˇ

ˇZε
rµ1
s ´ Zε

rµ2
s
ˇ

ˇ ď eM
ε`M‹

ż

Tm
|Aεrµ1

spzq ´ Aεrµ2
spzq|dz,

one obtains

dTV
`

Πε
rµ1
s,Πε

rµ2
s
˘

ď 2e4pMε`M‹q

ż

Tm
|Aεrµ1

spzq ´ Aεrµ2
spzq|dz

ď 2e4pMε`M‹q}Aεrµ1
s ´ Aεrµ2s}C0

ď 2Lε,0e
4pMε`M‹qdTVpµ1, µ2q,

where the last inequality follows from Lemma 3.2. This concludes the proof of Lemma 4.1.

Proposition 4.2. Let π P PpTdq. Then there exists a unique solution
`

Φεpt, πq
˘

tě0
, with

values in C
`

r0,8q,PpTdq
˘

(where PpTdq is equipped with the total variation distance dTV ),
of the equation

Φε
pt, πq “ e´tπ `

ż t

0

es´tΠε
rΦε
ps, πqsds.

Proof. Uniqueness is a straightforward consequence of Lemma 4.1 and of Gronwall Lemma.
Existence is obtained using a Picard iteration argument. Precisely, introduce the mapping

Ψ : C
`

r0,8q,PpTdq
˘

Ñ C
`

r0,8q,PpTdq
˘

, be defined by

Ψpπqptq “ e´tπ `

ż t

0

es´tΠε
rπssds,
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for π “
`

πt
˘

tě0
.

Let dαpπ1, π2q “ sup
tě0

e´αtdTV pπ
1
t , π

2
t q, where α ą 0 is chosen below. Then, using

Lemma 4.1, one has

dα
`

Ψpπ1
q,Ψpπ2

q
˘

ď
Lpεq

α
dαpπ

1, π2
q.

Choose α “ 2Lpεq, and define

π0
“
`

π0
t “ π

˘

tě0
, πn`1

“ Ψpπnq, n ě 0,

using the Picard iteration method. Let T P p0,8q be an arbitrary positive real number. Since
C
`

r0, T s,PpTdq
˘

is a complete metric space (equipped with the distance dα), then
`

πn
˘

nPN
converges when nÑ 8, and the limit π8 solves the fixed point equation π8 “ Ψpπ8q, which
proves the existence of a solution, and concludes the proof.

By construction, the flow Φε : R` ˆ PpTdq Ñ PpTdq is continuous, when PpTdq is
equipped with the total variation distance dTV. Adapting the proof of [9, Lemma 3.3], one
checks that it is also a continuous mapping when PpTdq is equipped with the distance dw.

4.2 The asymptotic pseudotrajectory property

Recall that a continuous function ζ : R` Ñ PpTdq is an asymptotic pseudotrajectory for Φε,
if one has

sup
sPr0,T s

dw
`

ζpt` sq,Φε
ps, ζptqq

˘

Ñ
tÑ8

0,

for all T P R`. See for instance [5] for details.
The following result is the rigorous formulation of the link between the dynamics of the

empirical measures µt in the ABF algorithm, and of the limit flow.

Theorem 4.3. The process
`

µet
˘

tě0
is almost surely an asymptotic pseudotrajectory for Φε.

The proof requires auxiliary notations and results. For every ε ą 0 and µ P PpTdq, let

V ε
µ py, zq “ V py, zq ´ Aεrµspzq,

and define the infinitesimal generator

Lεµ “ ∆´∇V ε
µ ¨∇.

Introduce the projection operator defined by Kε
µf “ f ´

ş

fdΠεrµs and let
`

P ε,µ
t

˘

tě0
be the

semi-group generated by Lεµ on L2pTdq. Finally, let

Qε
µ “

ż 8

0

P ε,µ
t Kε

µdt .

Then one has the following result.
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Lemma 4.4. For every ε ą 0, there exists Cε P p0,8q, such that

}Qε
µf}C1 ď Cε}f}C0 , (10)

for all f P C0pTd,Rq and all µ P PpTdq. Moreover, LεµKε
µ “ ´K

ε
µ.

Proof. Remark that, from Lemma 3.1, V ε
µ P C8pTdq, from which it is classical to see that

P ε,µ
t f P C8pTdq for all f P C8pTdq. In particular, C8pTdq is a core for Lε,µ, see [3, Section

3.2] and thus it is enough to prove the result for f P C8pTdq.
As a first step, for all ε P p0, 1s there exists Rε ą 0 such that for all µ P PpTdq, Πεrµs

satisfies a log-Sobolev inequality and a Sobolev inequality both with constant Rε, in the
sense that for all positive f P C8pTdq,

ż

Td
f ln fdΠε

rµs ´

ż

Td
fdΠε

rµs ln

ż

Td
fdΠε

rµs ď Rε

ż

Td

|∇f |2

f
dΠε

rµs

}f}2LppΠεrµsq ď Rε}f}
2
H1pΠεrµsq ,

where p “ 2d
d´2

. Indeed, from Lemma 3.1, the density of Πεrµs with respect to the Lebesgue
measure is bounded above and below away from zero uniformly in µ P PpTdq. The inequalities
are then obtained by a perturbative argument from those satisfied by the Lebesgue measure,
see [3, Proposition 5.1.6]).

As a second step, these inequalities imply the following estimates: for all ε P p0, 1s there
exists R1ε ą 0 such that for all PpTdq, f P C8pTdq and t ě 0,

}P ε,µ
t Kε

µf}L2pΠεrµsq ď e´Rεt{2}Kε
µf}L2pΠεrµsq

}P ε,µ
t f}8 ď

R1ε
maxp1, td{2q

}f}L2pΠεrµsq

}∇P ε,µ
t f}8 ď

R1ε
maxp1,

?
tq
}f}8.

Indeed, the first estimate is a usual consequence of the Poincaré inequality, implied by the
log-Sobolev one (see [3, Theorem 4.2.5 and Proposition 5.1.3]). The second one, namely
the ultracontractivity of the semi-group, is a consequence of the Sobolev inequality (see [3,
Theorem 6.3.1]). The last one can be established thanks to the Bakry-Emery calculus (see [3,
Section 1.16] for an introduction), by showing that Lεµ satisfies a curvature estimate. More
precisely, denote

Γε,µpf, gq “
1

2

`

Lεµpfgq ´ fLεµg ´ gLεµf
˘

Γε,µ2 pfq “
1

2
Γε,µpfq ´ Γε,µpf,Lεµfq,

with Γε,µpfq :“ Γε,µpf, fq. Straightforward computations yield

Γε,µpfq “ |∇f |2

Γε,µ2 pfq ě ´|∇2V ε
µ ||∇f |2 ě ´cεΓ

ε,µ
pfq
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for some cε ą 0 which does not depend on µ P PpTdq thanks to Lemma 3.1. According to
[3, Theorem 4.7.2], this implies that

Γε,µpP ε,µ
t fq ď

ˆ

1´ e´c
1
εt

c1ε

˙´1

P ε,µ
f f 2

ď

ˆ

1´ e´c
1
εt

c1ε

˙´1

}f}28,

which concludes the proof of the third estimate.
As a third step, we bound (using that }P ε,µ

t f}8 ď }f}8 for all t ě 0)
ż 8

0

}P ε,µ
t Kε

µf}8dt ď

ż 1

0

}Kε
µf}8dt`

ż 8

1

}P ε,µ
t Kε

µf}8dt

ď 2}f}8 `R
1
ε

ż 8

1

}P ε,µ
t´1K

ε
µf}L2pΠεrµsqdt

ď 2}f}8 `R
1
ε

ż 8

0

e´Rεs{2}Kε
µf}L2pΠεrµsqdt

ď

ˆ

2`
4R1ε
Rε

˙

}f}8 ,

and similarly
ż 8

0

}∇P ε,µ
t Kε

µf}8dt ď

ż 2

0

R1ε
maxp1,

?
tq
}Kε

µf}8dt`R
1
ε

ż 8

2

}P ε,µ
t´1K

ε
µf}8dt

ď 6R1ε}f}8 `R
12
ε

ż 8

0

e´Rεs{2}Kε
µf}L2pΠεrµsqdt

ď

ˆ

6R1ε `
4R12ε
Rε

˙

}f}8 ,

from which Qε
µf is well defined for f P C8pTdq and satisfies (10) for some Cε. Finally,

LεµQε
µf “

ż 8

0

LεµP
ε,µ
t Kε

µfdt

“

ż 8

0

Bt
`

P ε,µ
t Kε

µf
˘

dt “ ´Kε
µf .

Proof of Theorem 4.3. First, note that the claim is equivalent to the following statement
(see [9, Proposition 3.5]):

sup
sPr0,T s

|εtpsqf | Ñ
tÑ8

0,

for all f P S and T P Q`, where

εtpsq “

ż et`s

et

δXτ ´ Πεrµτ s

τ
dτ.
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Using a Borel-Cantelli argument, and the fact that S is a countable set, it is sufficient to
establish that there exists Cε P p0,8q, such that

E
“

sup
sPr0,T s

|εtpsqf |
2
‰

ď Cεe
´t
}f}2C0 ,

for all t ě 0 and f P S.
Let f P S and introduce the function F : p0,8qˆ Td Ñ R defined by F pt, xq “ t´1Qε

µtf .
Then F is of class C1,2 on p0,8q ˆ Td. Indeed, first, it is straightforward to check that
t ÞÑ F εrµts P CkpTd,Rmq is of class C1, for all k P N0, since t ÞÑ µt P PpTdq (equipped with
the Wasserstein distance) is of class C1. Second, Aεrµs is solution of the Euler-Lagrange
equation ∆Aεrµs “ divpF εrµsq, which establishes that t ÞÑ Aεrµts P CkpTm,Rq is also of
class C1. Finally, it remains to apply standard arguments to establish the C1 regularity of
t ÞÑ Qε

µtf .
Applying Itô formula yields, for all t ě 0 and s P r0, T s, the equality

F pet`s, Xet`sq “ F pet, Xetq `

ż et`s

et

`

Bτ ` Lεµτ
˘

F pτ,Xτ qdτ `
?

2

ż et`s

et
x∇F pτ,Xτ q, dW pτqy.

Observing that LεµτF pτ,Xτ q “ τ´1LεµτQ
ε
µτ pXτ qf “ ´τ

´1
`

fpXτ q ´
ş

fdΠεrµτ s
˘

, one obtains

εtpsqf “ ε1
t psqf ` ε

2
t psqf ` ε

3
t psqf ` ε

4
t psqf,

where

ε1
t psqf “ e´t

´

Qε
µtf ´ e

´sQε
µt`s

f
¯

,

ε2
t psqf “

ż et`s

et
´τ´2Qε

µtτfpXτ qdτ,

ε3
t psqf “

ż et`s

et
τ´1 d

dτ
Qε
µτfpXτ qdτ,

ε4
t psqf “

?
2

ż et`s

et
τ´1
x∇Qε

µτfpXτ q, dW pτqy.

First, it is straightforward to check that the error terms ε1
t psqf and ε2

t psqf are upper
estimated as follows: almost surely,

sup
0ďsďT

|ε1
t psqf | ` sup

0ďsďT
|ε2
t psqf | ď Cεe

´t
}f}8.

To treat the error term ε3
t psqf , it suffices to upper estimate the Lipschitz constant of t ÞÑ

Qε
µtf . Let t1, t2 P p0,8q, then one has

Kε
µt1
f ´Kε

µt2
f “ Lεµt2Q

ε
µt2
f ´ Lεµt1Q

ε
µt1
f

“ Lεµt1
´

Qε
µt2
f ´Qε

µt1
f
¯

`

´

Lεµt2 ´ L
ε
µt1

¯

Qε
µt2
f,
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thus one obtains
Qε
µt2
f ´Qε

µt1
f “ Qε

µt1
δεt1,t2f,

where the auxiliary function δεt1,t2f is defined as

δεt1,t2f “ Kε
µt1
f ´Kε

µt2
f ´

´

Lεµt2 ´ L
ε
µt1

¯

Qε
µt2
f,

and satisfies the centering condition
ş

δεt1,t2fdΠεrµt1s “
ş

Lεµt1
´

Qε
µt2
f ´Qε

µt1
f
¯

dΠεrµt1s “ 0.
One has the estimate

}Qε
µt2
f ´Qε

µt1
f}8 ď Cε}δ

ε
t1,t2

f}8.

On the one hand, one has

}Kε
µt1
f ´Kε

µt2
f}8 “

ˇ

ˇ

ż

fdΠε
rµt1s ´

ż

fdΠε
rµt2s

ˇ

ˇ

ď }f}8dTVpΠ
ε
rµt1s,Π

ε
rµt2sq

ď Lpεq}f}8dTVpµt1 , µt2q,

owing to Lemma 4.1.
On the other hand, one has

}
`

Lεµt2 ´ L
ε
µt1

˘

Qε
µt2
f}8 “ }x∇Aεrµt2s ´∇Aεrµt1s,∇zQ

ε
µt2
fy}8

ď }Aεrµt2s ´ A
ε
rµt1s}C1}Qε

µt2
f}C1

ď L1,εCε}f}8dTVpµt1 , µt2q.

Finally, it is straightforward to check that

dTVpµt1 , µt2q ď
2|t2 ´ t1|

t1 ^ t2
,

using the identity 9µt “
1
t`r
pδXt ´ µtq.

As a consequence, one obtains

sup
0ďsďT

|ε3
t psqf | ď

ż et`T

et
τ´1
|
d

dτ
Qε
µτfpXτ q|dτ

ď Cε

ż et`T

et
τ´2dτ}f}8

ď Cεe
´t
}f}8.

It remains to deal with the error term ε4
t psqf . Using Doob inequality implies

E
“

sup
0ďsďT

|ε4
t psqf |

2
‰

ď C

ż et`T

et
τ´2E

“

|∇Qε
µτfpXτ q|

2
‰

dτ

ď Cεe
´t
}f}28.
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This concludes the proof of the claim,

E
“

sup
sPr0,T s

|εtpsqf |
2
‰

ď Cεe
´t
}f}2C0 ,

for all t ě 0 and f P S.
Applying a Borel-Cantelli argument then concludes the proof.

5 Proof of Theorem 2.3
The objective of this section is to give a detailed proof of Theorem 2.3. There are two
main ingredients. The first one is Proposition 5.3 below, which provides a uniform estimate
over ε ą 0 for Aεrµs, in the C0 norm (compare with Lemma 3.1 where the upper bound
may depend on ε). The second key ingredient is Proposition 5.7, which states a contraction
property for the mapping Πε, for an appropriate distance, for sufficiently small ε, when
restricted to an attracting set identified below (compare with Lemma 4.1 which is valid on
the entire state space, but where no upper bound for Lpεq holds).

Combining these two ingredients provides a candidate for the limit as t Ñ 8, using
a standard Picard iteration argument. Using Theorem 4.3 (asymptotic pseudo-trajectory
property) then proves the almost sure convergence of µt to this candidate limit.

5.1 Uniform estimate

The following PDE estimate is crucial for the analysis.

Proposition 5.1. Let m P N. For every p P r2,8q, there exists Cp P p0,8q, such that the
following holds: let F : Tm Ñ Rm be a continuous function, then the solution A of the elliptic
PDE ∆A “ divpF q, with the condition

ş

Apzqdz “ 0, satisfies

}A}W 1,ppTm,Rq ď Cp}F }C0pTm,Rmq,

and if p ą m, then
}A}C0pTm,Rq ď Cp}F }C0pTm,Rmq.

Proof. The proof combines three arguments.

• If p ą m, then by Sobolev embedding properties, one has }A}C0pTm,Rq ď Cp}A}W 1,ppTm,Rq,
with Cp P p0,8q.

• By the Poincaré inequality (using the condition
ş

Apzqdz “ 0, one has }A}W 1,ppTm,Rq ď

Cp}∇A}LppTm,Rmq, with Cp P p0,8q, see [2, Theorem 1.13].

• By elliptic regularity theory, one has }∇A}LppTm,Rmq ď Cp}F }LppTm,Rmq ď Cp}F }C0pTm,Rmq,
with Cp P p0,8q, see [2, Theorem 15.12].
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Remark 5.2. If m “ 1, the proof is straighforward: indeed for all z P T, one has the identity
Apzq “

şz

0
F pz1qdz1 ´ z

ş1

0
F pz1qdz1.

Using Proposition 5.1, one gets the following crucial estimate, which is uniform for ε ą 0
(contrary to those given in Lemmas 3.1,3.2 and 4.1 above).

Proposition 5.3. One has the following estimate:

M0
“ sup

εą0
sup

µPPpTdq
}Aεrµs}C0pTm,Rq ă 8.

Proof. Using Proposition 5.1 above, it suffices to check that

sup
εą0

sup
µPPpTdq

}F ε
rµs}C0pTm,Rmq ă 8.

That estimate is a straightforward consequence of the definition 7, of the boundedness of
∇zV , and of the positivity of the kernel function Kε.

5.2 Attracting set

Introduce the following notation: for all B P CpTm,Rq, let

dµBpy, zq “ Z´1
B e´V py,zq`Bpzqdydz P PpTdq,

with ZB “
ť

e´V py,zq`Bpzqdydz “
ş

e´A‹pzq`Bpzqdz.
First, for probability distribution of the form µB, one has the following useful identity

for F εrµBs.

Lemma 5.4. For every B P CpTm,Rq, one has

F ε
rµBs “

ş

∇A‹pzqKεpz, ¨qe
Bpzq´A‹pzqdz

ş

Kεpz, ¨qeBpzq´A‹pzqdz
.

Proof. This is a straightforward consequence of the two identities below: for all z P Tm,
ż

e´V py,zqdy “ e´A‹pzq,

ż

∇zV py, zqe
´V py,zqdy “ ´∇

ˆ
ż

e´V py,zqdy

˙

“ e´A‹pzq∇A‹pzq.

The set of the probability distribution of the type µB is an attractor for the dynamics of
the limit flow, more precisely one has the following result.

Proposition 5.5. One has the following result: for all t ě 0,

sup
εą0

sup
µPPpTdq

inf
BPCpTm,Rq

dTVpΦ
ε
pt, µq, µBq ď 2e´t.
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Proof. For all t ě 0 and µ P PpTdq, one has

Φε
pt, µq “ etµ`

ż t

0

es´tΠε
rΦε
ps, µqsds “ e´tµ` p1´ e´tqΨε

pt, µq,

where Ψεpt, µq “ 1
1´e´t

şt

0
es´tΠεrΦεps, µqsds “ µB for some B P CpTm,Rq, owing to the

definition of Πε.
Then

inf
BPCpTm,Rq

dTVpΦ
ε
pt, µq, µBq ď dTVpΦ

ε
pt, µq,Ψε

pt, µqq ď e´t}µ´Ψε
pt, µq}TV ď 2e´t.

Lemma 5.6. For every p P r2,8q, there exists Cp P p0,8q, such that for every ε ą 0, and
every B P CpTm,Rq, one has

}AεrµBs ´ Ā‹}W 1,ppTmq ď Cp
?
εe2

`

}B}C0`}A‹}C0

˘

. (11)

Recall that Ā‹ “ A‹ ´
ş

Tm A‹dz.

Proof. Using Proposition 5.1, one has the following inequality:

}AεrµBs ´ Ā‹}W 1,ppTm,Rq ď Cp}F
ε
rµBs ´∇A‹}C0pTm,Rmq.

Owing to Lemma 5.4 and using the Lipschitz continuity of A‹, for all z P Tm, one has

ˇ

ˇF ε
rµBspzq ´∇A‹pzq

ˇ

ˇ ď

ˇ

ˇ

ˇ

ş`

∇A‹pz1q ´∇A‹pzq
˘

Kεpz
1, zqeBpz

1q´A‹pz1qdz1
ş

Kεpz1, zqeBpz
1q´A‹pz1qdz1

ˇ

ˇ

ˇ

ď C

ş

|z ´ z1|Kεpz
1, zqdz1e}B}C0`}A‹}C0

ş

Kεpz1, zqdz1e´}B}C0´}A‹}C0

ď C
?
εe2p}B}C0`}A‹}C0 q,

owing to Assumption 2.1. This inequality concludes the proof.

5.3 Contraction property on the attracting set

Let M P p0,8q. Introduce the set

BM “

"

B P C0
pTm,Rq,

ż

Bpzqdz “ 0, }B}C0 ďM

*

.

Owing to Proposition 5.3, if M ěM0, then Aεrµs P BM for every µ P PpTdq and ε ą 0.
Introduce the notation

hBpy, zq “ Z´1
B e´V py,zq`Bpzq and Π̃ε

rhBs “ hAεrµBs ,

so that hB and Π̃εrhBs are the density with respect to the lebesgue measure of, respectively,
µB and ΠεrµBs.

To state the following result, the notation }h}2 “
`ş

hpxq2dx
˘

1
2 is used.
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Proposition 5.7. For every M P p0,8q, there exists CM P p0,8q, such that for all ε ą 0
and all B1, B2 P BM , one has

}Π̃ε
rhB1s ´ Π̃ε

rhB2s}2 ď CM
?
ε}hB1 ´ hB2}2.

Proof. Let B1, B2 P BM . Using Proposition 5.3, one has

}Π̃ε
rhB1s ´ Π̃ε

rhB2s}2 “ }hAεrµB1 s ´ hAεrµB2 s}2 ď C}AεrµB1s ´ AεrµB2s}2.

In addition, using the Poincaré inequality and the definition of Aεrµs as the orthogonal
projection in L2 of F εrµs, one has

}AεrµB1s ´ AεrµB2s}2 ď C}F ε
rµB1s ´ F ε

rµB2s}2.

Then, using Lemma 5.4, one obtains, for all z P Tm,

|F ε
rµB1spzq´F ε

rµB2spzq| “
ˇ

ˇ

ˇ

ş`

∇A‹pz1q ´∇A‹pzq
˘

Kεpz
1, zqeB

1pz1q´A‹pz1qdz1
ş

Kεpz1, zqeB
1pz1q´A‹pz1qdz1

´

ş`

∇A‹pz1q ´∇A‹pzq
˘

Kεpz
1, zqeB

2pz1q´A‹pz1qdz1
ş

Kεpz1, zqeB
2pz1q´A‹pz1qdz1

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ş`

∇A‹pz1q ´∇A‹pzq
˘

Kεpz
1, zq

´

eB
1pz1q ´ eB

2pz1q
¯

e´A‹pz
1qdz1

ş

Kεpz1, zqeB
1pz1q´A‹pz1qdz1

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ş`

∇A‹pz1q ´∇A‹pzq
˘

Kεpz
1, zqeB

2pz1q´A‹pz1qdz1
ş

Kεpz
1, zq

´

eB
1pz1q ´ eB

2pz1q
¯

e´A‹pz
1qdz1

ş

Kεpz1, zqeB
1pz1q´A‹pz1qdz1

ş

Kεpz1, zqeB
2pz1q´A‹pz1qdz1

ˇ

ˇ

ˇ

ď Ce}B
1}C0pT,Rq

ż

|z1 ´ z|Kεpz
1, zq|eB

1pz1q
´ eB

2pz1q
|dz1

` Ce}B
1}C0pT,Rq`2}B2}C0pT,Rq

ż

|z1 ´ z|Kεpz
1, zqdz1

ż

Kεpz
1, zq|eB

1pz1q
´ eB

2pz1q
|dz1,

using Lipschitz continuity of ∇A‹, and the lower bound
ż

Kεpz
1, zqeB

ipz1q´A‹pz1qdz1 ě e´}B
i}C0pT,Rq´}A‹}C0pTq

ż

Kεpz
1, zqdz1 “ e´}B

i}C0pT,Rq´}A‹}C0pTq .

One has }B1}C0 ďM and }B2}C0 ďM . In addition, owing to Assumption 2.1, one has
ş

|z1´
z|Kεpz

1, zqdz1 ď C
?
ε. As a consequence, using the Jensen inequality (since

ş

Kεpz
1, zqdz1 “

ş

Kεpz, z
1qdz1 “ 1 for all z), one obtains

}F ε
rµB1s ´ F ε

rµB2s}2 ď CM

ĳ

Kεpz
1, zq|z1 ´ z|2|eB1pz1q ´ eB2pz1q|2dzdz1

` CMε

ĳ

Kεpz
1, zq|eB1pz1q ´ eB2pz1q|2dzdz1

ď CMε

ż

|eB1pz1q ´ eB2pz1q|
2dz1.
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It remains to check that
ż

|eB1pz1q ´ eB2pz1q|2dz1 ď C}hB1 ´ hB2}
2
2.

On the one hand,

}hB1 ´ hB2}
2
2 “

ĳ

e´2V py,zq
ˇ

ˇ

ˇ

eB1pzq

ş

eB1´A‹
´

eB2pzq
ş

eB2´A‹

ˇ

ˇ

ˇ

2

dydz

ě c

ż

ˇ

ˇ

ˇ

eB1pzq

ş

eB1´A‹
´

eB2pzq
ş

eB2´A‹

ˇ

ˇ

ˇ

2

dz,

with c ą 0. On the other hand, using Young inequality (with auxiliary parameter η ą 0),
one obtains

ż

|eB1pz1q ´ eB2pz1q|2dz1 “
ˇ

ˇ

ˇ

ż

eB1´A‹
eB1pzq

ş

eB1´A‹
´

ż

eB2´A‹
eB2pzq
ş

eB2´A‹

ˇ

ˇ

ˇ

2

dz

ď 2η2

ż

ˇ

ˇ

ˇ

eB2pzq
ş

eB2´A‹

ˇ

ˇ

ˇ

2

dz
ˇ

ˇ

ˇ

ż

eB1´A‹ ´

ż

eB2´A‹
ˇ

ˇ

ˇ

2

`
2

η2

`

ż

eB1´A‹
˘2
ż

ˇ

ˇ

ˇ

eB1pzq

ş

eB1´A‹
´

eB2pzq
ş

eB2´A‹

ˇ

ˇ

ˇ

2

dz

ď 2CMη
2

ż

|eB1pz1q ´ eB2pz1q|2dz1 `
2CM
η2

}hB1 ´ hB2}
2
2.

Choosing a sufficiently small parameter η one finally obtains the claim above.
Gathering the estimates finally concludes the proof of the estimate

}Π̃ε
rhB1s ´ Π̃ε

rhB2s}2 ď CM
?
ε}hB1 ´ hB2}2.

5.4 Proof of the main result

The first part of this section is devoted to the construction of the candidate limits µε8 and
Aε8 “ Aεrµε8s, of µt and At respectively, for small enough ε.

Let ε̄0 “ 1{pC2
Mp0q ` 1q, where M “M p0q is given by Proposition 5.3 and CM is given by

Proposition 5.7.
Let ε P p0, ε̄0s, and consider Ap0q P BMp0q . Define µp0q “ µAp0q , hp0q “ hAp0q , and by

recursion, for all nonnegative integer k, let

µpk`1q “ Πε
rµpkqs , hpk`1q “ Π̃ε

rhpkqs,

and let Apkq “ Aεrµpkqs. Then one has hpkq “ hApkq P BMp0q . We claim that
`

µpkq
˘

kě0
is a

Cauchy sequence in the space PpTdq equipped with the total variation distance dTV. Indeed,
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for all k, ` ě 0, one has

dTVpµpkq, µpk``qq ď }hpkq ´ hpk``q}2

ď
`

CMp0q

?
ε
˘k
d2ph

p0q, hp`qq

ď Cρk,

with ρ P p0, 1q. As a consequence, there exists µε8 such that dTVpµpkq, µ
ε
8q Ñ

kÑ8
0. Owing to

Lemma 4.1, the mapping Πε is continuous on PpTdq equipped with dTV, thus µε8 “ Πεrµε8s.
This implies that µε8 “ hAε‹pxqdx where Aε‹ “ Aεrµε8s P BMp0q .

It is then straightforward to check that hε8 “ hAε8 is the unique fixed point of the mapping
Π̃ε (uniqueness is a consequence of Proposition 5.7).

We claim that, for any initial condition of the type µB, then Φεpt, µBq Ñ
tÑ8

µε8, more
precisely one has exponential convergence to the fixed point µε8: there exists cpεq P p0,8q
such that, for all t ě 0, one has

sup
BPB

Mp0q

dTVpΦ
ε
pt, µBq, µ

ε
8q ď Ce´cpεqt. (12)

To prove this claim, observe that for all t ě 0, the probability distribution Φεpt, µBq can be
written as µBt , where Bt P C0, see Proposition 5.5, and without loss of generality

ş

Btpzqdz “
0. In addition, Bt P BMp1q , for all t ě 0, for some M p1q P p0,8q depending only on M p0q:
indeed, the identity

hBt “ e´thB0 `

ż t

0

e´pt´sqΠ̃ε
rhBssds

implies, using Proposition 5.3, the bounds

0 ă inf
tě0

inf
xPTd

hBtpxq ď sup
tě0

sup
xPTd

hBtpxq ă 8,

and Btpzq is equal (up to an additive constant defined to respect the condition
ş

Btpzqdz “ 0)
to A‹pzq ` log

`ş

e´V py,zqdyq.
Let ε0 “ 1{pC2

Mp1q ` 1q, and assume in the sequel that ε P p0, ε0s. Note that M p1q ěM p0q,
thus ε0 ď ε̄0.

Then Aε8 is well-defined, hε8 is the unique fixed point of Π̃ε, and one obtains

dTVpΦ
ε
pt, µBq, µ

ε
8q ď }hBt ´ h

ε
8}2

ď e´t}hB ´ h
ε
8}2 `

ż t

0

e´pt´sq}Π̃ε
rhBss ´ Π̃ε

rhε8s}2ds

ď e´t}hB ´ h
ε
8}2 ` CMp1q

?
ε}hBs ´ h

ε
8}2ds,

with CMp1q

?
ε ă 1. Applying the Gronwall Lemma, one obtains

dTVpΦ
ε
pt, µBq, µ

ε
8q ď }hBt ´ h

ε
8}2 ď e´p1´CMp1q

?
εqt
}hB ´ h

ε
8}2,
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and it is straightforward to check that sup t}hB ´ hε8}2, B P BMp0qu ă 8. This concludes
the proof of the claim (12).

We are now in position to prove give the proof of Theorem 2.3. It is sufficient to focus
on the question of convergence when t Ñ 8, indeed the estimate for }Aε8 ´∇A‹}W 1,p is a
straightforward consequence of Lemma 5.6, combined with Proposition 5.3, since Aε8 is a
fixed point of the mapping A ÞÑ AεrµAs.

The idea of the proof, using concepts and tools developed in [5] may be described as
follows. Since almost surely

`

µt
˘

tě0
is an asymptotic pseudo-trajectory for the semi-flow Φε,

one has the following property: the limit set Lpµq is an attractor free set for the semi-flow
Φε in PpTdq, in particular it is invariant, i.e. for all t ě 0 one has Φεpt, Lpµqq “ Lpµq. Let us
check that Lpµq “ tµε8u. First, introduce the setM “ tµBu. Then Proposition 5.5 provides
the inclusion Lpµq ĂM. Indeed, let ν P Lpµq and let t ě 0 be arbitrary, then by invariance
there exists ν̃ P Lpµq such that ν “ Φεpν̃q, thus dpν,Mq “ dpΦεpν̃q,Mq ď 2e´t Ñ

tÑ8
0.

Similarly, let ν P Lpµq ĂM, and let t ě 0 be arbitrary, then ν “ Φεpν̃q for some ν̃ PM.
Thus dpν, µε8q “ dpΦεpt, ν̃q,Φεpt, µε8qq ď Ce´ct Ñ

tÑ8
0.

Let us now provide a detailed proof using only the results presented above.

Proof of Theorem 2.3. Let T1, T2 P p0,8q be arbitrary positive real numbers, and T “ T1 `

T2. For every t ě T , one has

dw
`

µet , µ
ε
8

˘

ď dw
`

µet ,Φ
ε
pT, µet´T

˘

` dw
`

Φε
pT, µet´T q, µ

ε
8

˘

.

Owing to Theorem 4.3, for any fixed T1, T2, one has, almost surely,

dw
`

µet ,Φ
ε
pT, µet´T q

˘

Ñ
tÑ8

0.

Observe that dwp¨, ¨q ď CdTVp¨, ¨q. In addition, for all B P CpT,Rq, using Lemma 4.1 and the
claim (12) above, one has

dTV

`

Φε
pT, µet´T q, µ

ε
8

˘

ď dTV

`

ΦpT1,ΦpT2, µet´T qq,ΦpT1, µBq
˘

` dTV

`

ΦpT1, µBq, µ
ε
8

˘

ď eLpεqT1dTV

`

ΦpT2, µet´T q, µB
˘

` Ce´cpεqT1

This implies that

dTV

`

Φε
pT, µet´T q, µ

ε
8

˘

ď eLpεqT1 sup
BPCpT,Rq

dTV pΦpT2, µet´T q, µBq ` Ce
´cpεqT1

ď 2eLpεqT1e´T2 ` 2e´cpεqT1 ,

owing to Proposition 5.5.

lim sup
tÑ8

dTV

`

Φε
pT, µet´T q, µ

ε
‹

˘

ď 2eLpεqT1e´T2 ` 2e´cpεqT1 .

Since T1 and T2 are arbitrary, letting first T2 Ñ 8, then T1 Ñ 8, one has almost surely

lim sup
tÑ8

dwpµet , µ
ε
‹q “ 0,
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which concludes the proof of the weak convergence of µt to µε8.
It remains to check that At “ Aεrµts converges to Aε8 “ Aεrµε8s, in Ck, for all k P N.

This is a consequence of the regularity properties of Kε and of V , which proves that µ P
pPpTdq, dwq ÞÑ F εrµs P Ck is continuous for all k P N.

Using Sobolev embedding properties, as in the proof of Lemma 3.1, then concludes the
proof.
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