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Analysis of an Adaptive Biasing Force method based on self-interacting dynamics

This article fills a gap in the mathematical analysis of Adaptive Biasing algorithms, which are extensively used in molecular dynamics computations. Given a reaction coordinate, ideally, the bias in the overdamped Langevin dynamics would be given by the gradient of the associated free energy function, which is unknown. We consider an adaptive biased version of the overdamped dynamics, where the bias depends on the past of the trajectory and is designed to approximate the free energy.

The main result of this article is the consistency and efficiency of this approach. More precisely we prove the almost sure convergence of the bias as time goes to infinity, and that the limit is close to the ideal bias, as an auxiliary parameter of the algorithm goes to 0.

The proof is based on interpreting the process as a self-interacting dynamics, and on the study of a non-trivial fixed point problem for the limiting flow obtained using the ODE method.

Introduction

Let µ ‹ be a probability distribution on the d-dimensional flat torus T d , of the type:

dµ ‹ pxq "
e ´βV pxq Zpβq dx , Zpβq "

ż T d e ´βV pxq dx, (1) 
where dx is the normalized Lebesgue measure on T d . For applications in physics and chemistry (e.g. in molecular dynamics), µ ‹ is referred to as the Boltzmann-Gibbs distribution associated with the potential energy function V and the inverse temperature parameter β ą 0. For applications in statistics (e.g. in Bayesian statistics), ´βV is referred to as the log-likelihood. In this article, the function V : T d Ñ R is assumed to be smooth. In order to estimate integrals of the type ş ϕdµ ‹ , with ϕ : T d Ñ R, probabilistic methods are used, especially when d is large. The Markov Chain Monte Carlo (MCMC) method consists in interpreting the integral as the (almost sure) limit

ż ϕdµ ‹ " lim T Ñ8 1 T ż T 0 ϕpX 0 t qdt " lim T Ñ8 ż ϕdµ 0 T ,
where µ 0 t " 1 T ş T 0 δ X 0 t dt is the random empirical distribution associated with an ergodic Markov process `X0 t ˘tě0 , with unique invariant distribution µ ‹ . The choice of the Markov dynamics is not unique, and in this work we consider the overdamped Langevin dynamics

dX 0 t " ´∇V pX 0 t qdt `a2β ´1dW t
where `Wt ˘tě0 is a d-dimensional Wiener process. In practice, discrete-time Markov processes, defined for instance using the Metropolis-Hastings algorithm, are employed. The convergence to equilibrium requires that the Markov process explores the entire energy landscape, which may be a very slow process. Indeed, in practical problems, the dimension d, i.e. the number of degrees of freedom in the system, is very large, and the probability distribution µ ‹ is multimodal: the function V admits several local minima (interpreted as potential energy wells) and β is large. In that situation, the Markov process is metastable: when it reaches an energy well, it tends to stay there for a long time (whose expectation goes to infinity when β goes to infinity) before hopping to another energy well. Asymptotic results for the exit time from energy wells when β Ñ 8 are given by Eyring-Kramers type formulas [START_REF] Bovier | Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Lelièvre | Two mathematical tools to analyze metastable stochastic processes[END_REF]. The metastability of the process substantially slows down the exploration of the energy landscape, hence the convergence when T Ñ 8 towards the target quantity ş ϕdµ ‹ . In the development of Monte-Carlo methods in the last decades, many techniques have been studied in order to efficiently sample multimodal distributions. The bottom-line strategy to enhance sampling consists in biasing the dynamics and in reweighting the averages: indeed, for any smooth function Ṽ : T d Ñ R, one has ż ϕdµ ‹ " ş ϕe ´βV ş e ´βV " ş ϕe ´βpV ´Ṽ q e ´β Ṽ ş e ´βpV ´Ṽ q e ´β Ṽ " lim tÑ8 ş t 0 ϕp Xs qe ´βpV p Xsq´Ṽ p Xsq ds ş t 0 e ´βpV p Xsq´Ṽ p Xsq ds , where the biased dynamics is given by d Xt " ´∇ Ṽ p Xt qdt `a2β ´1dW t . This is nothing but an Importance Sampling method, and choosing carefully the function Ṽ may substantially reduce the computational cost. Indeed, if the distribution with density proportional to e ´β Ṽ pxq is not multimodal, the biased process Xt converges to equilibrium and explores the state space faster than the unbiased process X t . In the sequel, we explain how to choose Ṽ in order to benefit from the importance sampling strategy.

From now on, in order to simplify the notation, β " 1. In addition, without loss of generality, assume that ş T d e ´V pxq dx " 1. Instead of treating the problem in an intractable full generality, we focus on the typical situation when some additional a priori knowledge on the system is available. Precisely, let ξ : T d Ñ T m be a smooth function, which is referred to as the reaction coordinate (following the terminology employed in the molecular dynamics community). Let us stress that the identification of appropriate reaction coordinates is a delicate question, which depends on the system at hand. The problem of automatic learning of good reaction coordinates currently generates a lot of research, see for instance [START_REF] Bittracher | Data-driven computation of molecular reaction coordinates[END_REF][START_REF] Brandt | Machine learning of biomolecular reaction coordinates[END_REF] and references within. We do not consider this question in the sequel.

The biasing potential in the importance sampling schemes considered in this work will be of the type Ṽ pxq " V pxq ´Apξpxqq, where A : T m Ñ R. In practice, the number of macroscopic variables m is very small compared to the dimension d of the model (which describes the full microscopic system). As will be explained below, without loss of generality, we assume that ξpxq " ξpy, zq " z for all x " py, zq P T d´m ˆTm . This expression for the reaction coordinate simplifies the presentation of the method, however considering more general reaction coordinates ξ is possible up to adapting some definitions below. To explain the construction of the method and to justify its efficiency, we assume that the reaction coordinate is representative of the metastable behavior of the system: roughly, this means that only the exploration in the z variable is affected by the metastability, whereas the exploration in the y variable is much faster.

In this framework, the fundamental object is the free energy function A ‹ defined as follows: for all z P T m , A ‹ pzq " ´log ´żT d´m e ´V py,zq dy ¯.

(

) 2 
For general considerations on the free energy and related computational aspects, we refer to [START_REF] Lelièvre | Free energy computations: A mathematical perspective[END_REF][START_REF] Lelièvre | Partial differential equations and stochastic methods in molecular dynamics[END_REF]. By construction, if X " pY, Zq is a random variable with distribution µ ‹ , then the marginal distribution of Z is given by dν ‹ pzq " e ´A‹pzq dz.

Introduce the notation pY 0 t , Z 0 t q " X 0 t for the solution of the overdamped Langevin dynamics

# dY 0 t " ´∇y V pY 0 t , Z 0 t qdt `?2dW pd´mq t , dZ 0 t " ´∇z V pY 0 t , Z 0 t qdt `?2dW pmq t , where W t " pW pd´mq t , W pmq t q. It ν 0 t " 1 t ş t 0 δ Z 0
s ds denotes the empirical distribution for the variable Z 0 , then almost surely

ν 0 t Ñ tÑ8 ν ‹ ,
in the sense of weak convergence in the set PpT m q of probability distributions on T m . Since the reaction coordinate is representative of the metastability of the system, this convergence shares the same computational issues as when considering the full process X 0 .

A much better performance can be attained considering the following biased dynamics, where V pxq is replaced by Ṽ‹ pxq " V pxq ´A‹ pξpxqq:

# dY ‹ t " ´∇y V pY ‹ t , Z ‹ t qdt `?2dW pd´mq t , dZ ‹ t " ´∇z V pY ‹ t , Z ‹ t qdt `∇A ‹ pZ ‹ t qdt `?2dW pmq t .
Define the associated empirical measures on T d and T m respectively:

µ ‹ t " 1 t ż t 0 δ X ‹ s ds , ν ‹ t " 1 t ż t 0 δ Z ‹ s ds,
where X ‹ s " pY ‹ s , Z ‹ s q. As explained above, ş ϕdµ ‹ can then be computed by the reweighting procedure. Observe that by ergodicity for `X‹ t ˘tě0 and the definition of A ‹ , one has

ν ‹ t Ñ tÑ8 dz,
i.e. at the limit the distribution of Z ‹ t is uniform on T m . This observation, which is referred to as the flat histogram property in the literature devoted to applications, means that the process X ‹ does not suffer from slow convergence to equilibrium due to energy barriers, compared to the process X 0 .

In practive, the free energy function A ‹ is not known, thus the ideal approach described above is not applicable. In fact, in many applications, the real objective is the computation of the free energy function. One of the important features of many free energy computation algorithms, such as the one studied in this work, is to compute an approximation of the free energy function on-the-fly, and to use this approximation to enhance sampling. Checking that such adaptive algorithms are efficient and consistent requires careful mathematical analysis.

In this article, we consider a class of adaptive biasing methods, where the dynamics is of the form # dY t " ´∇y V pY t , Z t qdt `?2dW 

where the function A t depends on time t, approximates A ‹ when t Ñ 8, and is defined in terms of the empirical measure

µ t " 1 t ż t 0 δ Xs ds. (4) 
The process `Xt ˘tě0 " `Yt , Z t ˘tě0 is not a Markov process, instead it is a self-interacting diffusion process. The precise construction of the algorithm studied in this article is provided below. This article is organized as follows. The construction of the algorithm [START_REF] Benaïm | Self-interacting diffusions[END_REF] studied in this work is presented in Section 2 below. The main result, Theorem 2.3, is stated in Section 2.3, and a comparison with the literature is given. Section 3 gives a proof of the well-posedness of the self-interacting dynamics (9) (Proposition 2.2). Section 4 exhibits the limiting flow (obtained by applying the ODE method) and establishes the asymptotic pseudotrajectory property. Finally, Section 5 provides the final crucial ingredients for the proof of the main result, Theorem 2.3: a PDE estimate which provides some uniform bounds, and a global asymptotic stability property for the limiting flow.

The Adaptive Biasing Force algorithm

The objectives of this section are to define the Adaptive Biasing Force method [START_REF] Comer | The adaptive biasing force method: Everything you always wanted to know but were afraid to ask[END_REF] studied in this article, and to state the main results.

Recall the definitions (1) and (2) of the target distribution µ ‹ and of the free energy A ‹ respectively. The potential energy function V is assumed to be of class C 8 .

The reaction coordinate ξ : T d Ñ T m satisfies ξpy, zq " z for all x " py, zq P T d . This expression substantially simplifies the presentation compared with a more general choice of ξ : T d Ñ R m . In applications, this is not restrictive, and consists in considering the so-called extended ABF algorithm [START_REF] Fu | Extended adaptive biasing force algorithm. an on-the-fly implementation for accurate free-energy calculations[END_REF]. Precisely, an auxiliary variable Z is added to the state space, the extended potential energy function for X " pX, Zq is given by V pXq " V pXq `1 2σ 2 |ξpXq ´Z| 2 , where σ ą 0 is a small parameter, and one sets ξpXq " Z.

Construction

The definition of the algorithm requires to make precise how in the evolution equation ( 3), the biasing potential function A t , or its gradient ∇A t , is determined in terms of the empirical distribution µ t given by (4). The algorithm is based on the following identity: the gradient ∇A ‹ of the free energy function A ‹ defined by ( 2) is given by ∇A ‹ pzq " ş T d´m ∇ z V py, zqe ´V py,zq dy ş T d´m e ´V py,zq dy

" E µ‹ " ∇ z V pY, Zq ˇˇZ " z ‰ . (5) 
More generally, let A : T m Ñ R be a smooth function, and let dµ A ‹ pxq9e Apzq dµ ‹ py, zq be the ergodic invariant distribution of .

# dY A t " ´∇y V pY A t ,
Then one has the identity

∇A ‹ pzq " E µ A ‹ " ∇ z V pY, Zq ˇˇZ " z ‰ . (6) 
The expressions for the gradient of the free energy function in equations ( 5) and ( 6) are simpler than (for instance) the expressions ( 5) and ( 6) in [START_REF] Lelièvre | Long-time convergence of an adaptive biasing force method[END_REF] which hold for a general reaction coordinate mapping ξ, whereas we consider only the case ξpy, zq " z.

The occupation measures µ t defined by (4) are in general singular with respect to the Lebesgue measure on T m . In order to define the mapping µ t Þ Ñ A t , we introduce a regularization kernel K , depending on the parameter P p0, 1s, such that

∇A ‹ pzq " lim Ñ0 ť T d ∇ z V py, z 1 qK pz 1 , zqdµ ‹ py, z 1 q ť T d K pz 1 , zqdµ ‹ py, z 1 q .
Indeed, formally, the expression (5) for ∇A ‹ is obtained with the kernel K pz, z 1 q replaced by a Dirac distribution δpz ´z1 q. See Assumption 2.1 below for precise conditions on the kernel function K .

For every P p0, 1s and µ P PpT d q, define the mapping F rµs : T m Ñ R m as follows:

F rµsp¨q " ť ∇ z V py, zqK pz, ¨qdµpy, zq ť K pz, ¨qdµpy, zq .

Due to the action of the regularization kernel K , in general F rµs cannot be written as a gradient. For instance if m " 1, a smooth function F : T Ñ R is a gradient if and only if its average value is zero ş F pzqdz " 0; in general, ş F rµspzqdz ‰ 0. The last ingredient in the construction is a projection operator P, such that one defines ∇A rµs " PpF rµsq. More precisely, for every P p0, 1s and µ P PpT d q, define the mapping A rµs as follows:

A rµs " argmin

APH 1 pT m q, ş Apzqdz"0 ż ˇˇF rµspzq ´∇Apzq ˇˇ2 dz . (8) 
As will be explained below, A rµs is solution of an elliptic PDE. Note that F rµs and A rµs are functions depending only on z P T m , with a dimension m much smaller than d the total number of degrees of freedom of the system. Typically, one has m P t1, 2, 3u, which makes it possible to use the algorithm in practice.

We are now in position to define the process considered in this article: it is the solution 

Arbitrary (deterministic) initial conditions Y 0 " y 0 P T d´m , Z 0 " z 0 P T m , µ 0 " δ py 0 ,z 0 q and A 0 " A rµ 0 s are provided. This process belongs to the class of self-interacting diffusions, see [START_REF] Benaïm | Self-interacting diffusions[END_REF][START_REF] Benaïm | Self-interacting diffusions. II. Convergence in law[END_REF][START_REF] Benaïm | Self-interacting diffusions. III. Symmetric interactions[END_REF][START_REF] Benaïm | Self-interacting diffusions IV: Rate of convergence[END_REF] for standard references.

Well-posedness of the system (9)

Recall that V : T d Ñ R is assumed to be of class C 8 . Let us first state the assumptions satisfied by the kernel function K .

Assumption 2.1. For any P p0, 1s, the mapping K : T m ˆTm Ñ p0, 8q is of class C 8 and positive. For all z P T m , one has

ż K pz, ¨qdz " ż K p¨, zqdz " 1
In addition, if ψ : T d Ñ R is a continuous and bounded function, one has

ij T d ψpy, z 1 qK pz 1 , zqdydz 1 Ñ Ñ0 ż T d´m
ψpy, zqdy , @ z P T m .

Finally, there exists c K P p0, 8q, such that

sup zPT m ż T m |z ´z1 | 2 `K pz 1 , zq `K pz, z 1 q ˘dz 1 ď c K . Define m " min z,z 1 PT m K pz 1 , zq and M pkq " max z,z 1 PT m |∇ k z K pz 1 , zq|`max z,z 1 PT m |∇ k z 1 K pz 1 , zq|,
where k is a nonnegative integer and ∇ k denotes the derivative of order k. Owing to Assumption 2.1, one has m ą 0 and M pkq ă 8 for all P p0, 1s, however these estimates are not uniform with respect to , i.e. inf Pp0,1s

m " 0 and sup Pp0,1s

M pkq " 8.

Note that to establish the well-posedness of the system ( 9), where P p0, 1s is fixed, upper bounds are allowed to depend on . However, it will be crucial in Section 5 to derive some upper bounds which are uniform with respect to in order to prove the convergence when t goes to infinity of µ t and A t (to a limit depending on ), see Proposition 5.3.

The exact form of the kernel function K has no influence on the analysis below. Let us give an example: let K pz 1 , z 2 q " ś m j"1 k `z2 j ´z1 j ˘, where for all z P T,

k pzq " Z ´1 exp `´sin 2 pz{2q 2 {2
ȋs the so-called von-Mises kernel.

Owing to Assumption 2.1, it is straightforward to check that F rµs is of class C 8 , for any µ P PpT d q. Then the mapping A rµs is the solution of the elliptic linear partial differential equation ∆A rµs " divpF rµsq and standard elliptic regularity theory implies that A rµs is also of class C 8 . See Lemma 3.1 below for quantitative bounds (depending on ).

Proposition 2.2. Under Assumption 2.1, for any initial conditions x 0 " py 0 , z 0 q P T d , the system (9) admits a unique solution, which is defined for all times t ě 0.

The proof of Proposition 2.2 is postponed to Section 3

Main result and discussion

Remark that the free energy can be defined up to an additive constant. Above, A ‹ has been normalized so that

ş T m e ´A‹ dz " 1, while A t is such that ş T m A t dz " 0. Denote Ā‹ " A ‹ ´şT m A ‹ pzqdz.
The standard norm on the Sobolev space W 1,p pT m q, for p P r2, 8q, is denoted by } ¨}W 1,p . Theorem 2.3. Under Assumption 2.1, there exists 0 ą 0 and, for all p P r1, `8q, there exists C p P r0, `8q such that, for all P p0, 0 s, there exists a unique probability distribution µ 8 P PpT d q which satisfies dµ 8 pxq " dµ A rµ 8 s ‹ pxq9e A rµ 8 spzq dµ ‹ py, zq.

In addition, one has the error estimate

} Ā‹ ´A rµ 8 s} W 1,p ď C p ? ,
and, for any initial conditions x 0 " py 0 , z 0 q P T d , almost surely, one has the convergence

}A t ´A rµ 8 s} W 1,p ÝÑ tÑ8 0 µ t ÝÑ tÑ8 µ 8 ,
the latter in the sense of weak convergence in the set PpT d q.

The first identity in Theorem 2.3 means that the limit µ 8 of µ t is the fixed point of the mapping µ Þ Ñ µ A rµs ‹ , see Section 4. Equivalently, the limit A rµ 8 s of A t is the fixed point of the mapping A Þ Ñ A rµ A ‹ s, where we recall that dµ A ‹ pxq " e Apzq dµ ‹ py, zq. The almost sure convergence results of Theorem 2.3 may be loosely rephrased as follows

lim Ñ0 lim tÑ8 A t " A ‹ , lim Ñ0 lim tÑ8 µ t " µ A‹ ‹ ,
and implies that the empirical distribution ν t " 

ż ϕdµ ‹ ,
for any smooth ϕ : T d Ñ R. Indeed, by the Sobolev embedding W 1,p pT m q Ă C 0 pT m q if p ą m, A t converges to A rµ 8 s uniformly on T m . Up to an error depending only on the width ą 0 of the kernel function K , the adaptive algorithm ( 9) is thus a consistent way to approximately compute ş ϕdµ ‹ , as well as the free energy function A ‹ . The approximate asymptotic flat-histogram property stated above shows that the sampling in the slow, macroscopic variable z is enhanced, hence the efficiency of the approach. Such results are a mathematical justification for the use of the ABF method based on self-interating dynamics in practical computations.

Remark 2.4. From Theorem 2.3, we expect the following Central Limit Theorem to hold: for all bounded ϕ on T d , ?

t ˆż ϕdµ t ´ż ϕdµ 8 ˙law ÝÑ tÑ8 N p0, σ ϕ q where σ ϕ is the asymptotical variance obtained by considering the process with a constant bias ∇A rµ 8 s. Nevertheless, the proof of such a result, extending [20, Theorem 4.III.5] at the cost of technical considerations, exceeds the scope of the present article.

Remark 2.5. The convergence of A t to A rµ 8 s when t Ñ 8 in fact holds for C k norms, for all integers k. However, the convergence of Ā‹ ´A rµ 8 s when Ñ 0 can be obtained only in W 1,p , for all p P r2, 8q (hence in C 0 due to a Sobolev embedding, for p ą m). In fact, higher-order derivatives of F rµs (and of A rµs) are expected to explode when Ñ 0.

The ABF has originally been introduced in [START_REF] Darve | Calculating free energies using average force[END_REF] in the molecular dynamics community, where it is widely used, see [START_REF] Hénin | Overcoming free energy barriers using unconstrained molecular dynamics simulations[END_REF][START_REF] Bradley M Dickson | Survey of adaptive biasing potentials: comparisons and outlook[END_REF][START_REF] Comer | The adaptive biasing force method: Everything you always wanted to know but were afraid to ask[END_REF]. An example of application in statistics is developed in [START_REF] Chopin | Free energy methods for Bayesian inference: efficient exploration of univariate Gaussian mixture posteriors[END_REF]. Another popular related biasing algorithm is the metadynamics algorithm [START_REF] Laio | Escaping free-energy minima[END_REF], [START_REF] Barducci | Well-tempered metadynamics: a smoothly converging and tunable free-energy method[END_REF], [START_REF] Jourdain | Convergence of metadynamics: discussion of the adiabatic hypothesis[END_REF], [START_REF] Benaïm | Self-repelling diffusions via an infinite dimensional approach[END_REF].

From a theoretical point of view, several variants of the ABF algorithm have been considered in various works. In a series of papers [START_REF] Lelièvre | Long-time convergence of an adaptive biasing force method[END_REF][START_REF] Alrachid | Long-time convergence of an adaptive biasing force method: variance reduction by Helmholtz projection[END_REF][START_REF] Lelièvre | Computation of free energy profiles with parallel adaptive dynamics[END_REF][START_REF] Lelièvre | Long-time convergence of an adaptive biasing force method: the bi-channel case[END_REF], Lelièvre and his co-authors considered a process similar to [START_REF] Benaïm | Self-interacting diffusions[END_REF] except that µ t is replaced by the law of X t . This corresponds to the mean-field limit of a system of N interacting particles as N goes to infinity [START_REF] Jourdain | Existence, uniqueness and convergence of a particle approximation for the adaptive biasing force process[END_REF]. The law of X t then solves a non-linear PDE, and long-time convergence is established through entropy techniques. In practice in fact, the bias A t is obtained both from interacting particles and from interaction with the past trajectories, so that µ t is the empirical distribution of a system of N replicas of the system pX t , Y t q that contributes all to the same bias A t .

The case of adaptive bias algorithm with a self-interacting process is addressed in [START_REF] Ehrlacher | Increasing the number of reaction coordinates in adaptive biasing algorithms via tensor approximation[END_REF] for the ABF algorithm and in [START_REF] Benaïm | Convergence of adaptive biasing potential methods for diffusions[END_REF][START_REF] Benaïm | Convergence analysis of adaptive biasing potential methods for diffusion processes[END_REF] for the related adaptive biasing potential (ABP) algorithm. We emphasize on the fact that in these works, µ t is replaced by a weighted empirical measure μt given, in the spirit of an importance sampling scheme, by μt " ˆż t 0 e ´AspZsq ds ˙´1 ż t 0 δ Xs e ´AspZsq ds .

Contrary to µ t in Theorem 2.3, this weighted empirical measure converges toward µ ‹ . This makes the theoretical study simpler than in the present case. However, in practice, there should be no reason to use this weighting procedure for ABF due to the identity [START_REF] Benaïm | Convergence of adaptive biasing potential methods for diffusions[END_REF]. Indeed, provided that A t converges to some A 8 , in the idealized case where K is a Dirac mass, then (6) implies that necessarily A 8 " A ‹ . This is no more true as soon as ą 0 (which is necessary for the well-posedness of the algorithm), and one of the main motivation of the present work was to determine whether the convergence of the natural (non re-weighted) version of ABF, which is the one used in practice, was robust with respect to the regularization step. Our results shows that this is true, provided is small enough.

Notation

Let N " t1, . . .u and N 0 " N Y t0u, and let k P N 0 be a nonnegative integer. Let C k pT n 1 , R n 2 q be the space of functions of class C k on T n 1 with values on R n 2 . The derivative of order k is denoted by ∇ k . The space C k pT n 1 , R n 2 q is equipped with the norm } ¨}C k , defined by

}φ} C k " k ÿ "0 }∇ k φ} C 0 , with }φ} C 0 " max zPT n 1
}φpxq}. To simplify, the dimensions n 1 and n 2 are omitted in the notation for the norm } ¨}C k .

If φ : T n 1 Ñ R n 2 is a Lipschitz continuous function, its Lipschitz constant is denoted by Lippφq.

The space PpT d q of probability distributions on T d (equipped with the Borel σ-field) is equipped with the total variation distance d TV and with the Wasserstein distance d W 1 .

Recall that one has the following characterizations:

d T V pµ 1 , µ 2 q " sup ψ:T d ÑR,}ψ}8ď1 1 2 
ˇˇż ψdµ 2 ´ż ψdµ 1 ˇˇ,

d W 1 pµ 1 , µ 2 q " sup ψ:T d ÑR,Lippψqď1
ˇˇż ψdµ 2 ´ż ψdµ 1 ˇwhere

for the total variation distance the supremum is taken over bounded measurable functions ψ.

The space PpT d q is also equipped with the following distance, which generates the topology of weak convergence:

d w pµ 1 , µ 2 q " ÿ nPN 1 2 n ˇˇş f n dµ 2 ´ş f n dµ 1 ˇ1 `ˇş f n dµ 2 ´ş f n dµ 1 ˇˇ,
where the sequence S " tf n u nPN is dense in C 0 pT d , Rq, and, for all n P N, one has f n P C 8 and }f n } C 0 ď 1.

3 Proof of the well-posedness result Proposition 2.2

The objective of this section is to prove Proposition 2.2, which states that the system (9) is well-posed. Some auxiliary estimates are provided, where the upper bounds are allowed to depend on the parameter . Lemma 3.1 provides estimates for F rµs and A rµs, in C k , uniformly with respect to µ. Lemma 3.2 provides some Lipschitz continuity estimates with respect to µ, in total variation and Wasserstein distances.

Auxiliary estimates

Lemma 3.1. For all P p0, 1s and k P N 0 , there exists C ,k P p0, 8q such that one has

sup µPPpT d q ´}F rµs} C k pT m ,R m q `}A rµs} C k pT m ,Rq ¯ď C ,k .
Proof of Lemma 3.1. Observe that

F rµs " F aux rµ, ∇ z V s F aux rµ, 1s , 
where F aux rµ, ψs " ť ψpy, zqK pz, ¨qdµpy, zq. Owing to Assumption 2.1, one has

F aux rµ, 1s ě m ż dµ " m ą 0,
for all µ P PpT d q. In addition, for all k P N 0 , one has

∇ k F aux rµ, ψs " ij ψpy, zq∇ k K pz, ¨qdµpy, zq, thus, one obtains }F aux rµ, ψs} C k ď }ψ} C 0 M pkq ă 8,
owing to Assumption 2.1. Using the estimate above with ψ " ∇ z V and ψ " 1, it is then straightforward to deduce that

}F rµs} C k " } F aux rµ, ∇ z V s F aux rµ, 1s } C k ď C ,k .
This concludes the proof of the estimates for F rµs. To prove the estimates for A rµs, observe that à rµs solves the Euler-Lagrange equation associated with the minimization problem in [START_REF] Benaïm | Self-repelling diffusions via an infinite dimensional approach[END_REF],

∆ Ã rµs " div `F rµs ˘.
Using the result proved above, and standard elliptic regularity theory and Sobolev embeddings, one obtains the required estimates for à rµs: for all P p0, 1s and k P N 0 , there exists C ,k P p0, 8q such that for all µ P PpT d q, } à rµs} C k pT m ,Tq ď C ,k .

Since A rµs and à rµs only differ by an additive constant, it only remains to prove that

}A rµs} C 0 pT m ,Tq ď C ,0 .
This is a straightforward consequence of the estimate } Ã rµs} C 0 pT m ,Tq ď C ,0 and of (8). This concludes the proof of Lemma 3.1.

Lemma 3.2. For all P p0, 1s and k P N 0 , there exists L ,k P p0, 8q such that, for all µ 1 , µ 2 P PpT d q, one has

}F rµ 2 s ´F rµ 1 s} C k pT m ,R m q `}A rµ 2 s ´A rµ 1 s} C k pT m ,Rq ď L ,k `dTV pµ 1 , µ 2 q ^dW 1 pµ 1 , µ 2 q ˘.
Proof of Lemma 3.2. First, observe that Using the characterizations of total variation and Wasserstein distances and the regularity properties of V and K (Assumption 2.1), proceeding as in the proof of Lemma 3.1 then yields

F rµ 2 s ´F rµ 1 s " ť ∇ z V py,
}F rµ 2 s ´F rµ 1 s} C k pT m ,T m q ď L ,k d p µ 1 , µ 2 q,
for all µ 1 , µ 2 P PpT d q, with L ,k P p0, 8q, with d " d W 1 and d " d T V .

It remains to apply the same arguments as in the proof of Lemma 3.1 to obtain

} Ã rµ 2 s ´A rµ 1 s} C k pT m ,Tq `}A rµ 2 s ´A rµ 1 s} C k pT m ,Tq ď L ,k dpµ 1 , µ 2 q,
which concludes the proof of Lemma 3.2.

Well-posedness

Let T P p0, 8q be an arbitrary positive real number. Introduce the Banach spaces

Cpr0, T s, T d q , E " L 2 `Ω, Cpr0, T s, T d q ˘,
equipped with the norms defined by

}x} α " sup 0ďtďT e ´αt |xptq| , ~X~α " ´E" }X} 2 α ‰ ¯1 2 ,
depending on the auxiliary parameter α P p0, 8q. Let Φ : E Ñ E be defined as follows: for all x " `yt , z t ˘tě0 , let µ x t " 1 1`t `µ0 `şt 0 δ xs ds ˘and A x t " A rµ x t s, for all t ě 0. Then X " Φpxq is the solution X " `Y ptq, Zptqq tě0 of # dY ptq " ´∇y V py t , z t qdt `?2dW pd´mq ptq, dZptq " ´∇z V py t , z t qdt `∇A x t pz t qdt `?2dW pdq ptq, with initial condition pY p0q, Zp0qq " x 0 P T d , which is fixed. If α is sufficiently large, then the mapping Φ is a contraction, due to Lemma 3.3 stated below.

Lemma 3.3. There exists C P p0, 8q such that for all α P p0, 8q, and for all x 1 , x 2 P E,

~Φpx 2 q ´Φpx 1 q~α ď C α ~x2 ´x1 ~α.
Proof of Lemma 3.3. Let x 1 " py 1 , z 1 q and x 2 " py 2 , z 2 q be two elements of E, and set

X 1 " Φpx 1 q, X 2 " Φpx 2 q. Then d dt `Y 2 ptq ´Y 1 ptq ˘" ∇ y V py 1 t , z 1 t q ´∇y V py 2 t , z 2 t q and d dt `Z2 ptq ´Z1 ptq ˘" ∇ z V py 1 t , z 1 t q ´∇z V py 2 t , z 2 t q `∇A 2 t pz 2 t q ´∇A 1 t pz 1 t q,
where A i t " A rµ i t s and µ i t " 1 1`t pµ 0 `şt 0 δ x i s dsq. First, since V is of class C 2 , for all t ě 0, one has the almost sure estimate

e ´αt |Y 2 ptq ´Y 1 ptq| ď Ce ´αt ż t 0 `|y 2 s ´y1 s | `|z 2 s ´z1 s | ˘ds ď Ce ´αt ż t 0 e αs ds}x 2 ´x1 } α ď C α }x 2 ´x1 } α .
Second, similarly one has, for all t ě 0,

e ´αt |Z 2 ptq ´Z1 ptq| ď C α }x 2 ´x1 } α `e´αt ż t 0 |∇A 2 s pz 2 s q ´∇A 1 s pz 1 s q|ds ď C α }x 2 ´x1 } α `e´αt ż t 0 |∇A 2 s pz 2 s q ´∇A 2 s pz 1 s q|ds `e´αt ż t 0 |∇A 2 s pz 1 s q ´∇A 1 s pz 1 s q|ds ď C α }x 2 ´x1 } α `e´αt ż t 0 }A 2 s ´A1 s } C 1 ds,
owing to Lemma 3.1. In addition, owing to Lemma 3.2, one has

}A 2 s ´A1 s } C 1 " }A rµ 2 s s ´A rµ 1 s s} C 1 ď L ,1 d W 1 pµ 1 s , µ 2 s q ď L ,1 ż s 0 |x 2 prq ´x1 prq|dr ď L ,1 ż s 0 e αr dr}x 2 ´x1 } α ď L ,1 α e αs }x 2 ´x1 } α .
Finally, one obtains the almost sure estimate,

}Φpx 2 q ´Φpx 1 q} α " sup tě0 e ´αt |X 2 ptq ´X1 ptq| ď C α }x 2 ´x1 } α ,
then taking expectation concludes the proof of Lemma 3.3.

The proof of Proposition 2.2 is then straightforward.

Proof of Proposition 2.2. Observe that the following claims are satisfied.

• Owing to Lemma 3.1, for all x P E, one has the almost sure estimate sup tě0 }∇A x t } C 0 ď C ,0 , and owing to Lemma 3.2, the mapping t Þ Ñ A x t is Lipschitz continuous. Thus the mapping Φ is well-defined.

• The process `Y ptq, Zptq, A t , µ t ˘tě0 solves (9) if and only if X " pY, Zq is a fixed point of Φ.

• The mapping Φ : E Ñ E is a contraction if α is sufficiently large, and admits a unique fixed point X, owing to Lemma 3.3.

Since the initial conditions x 0 and µ 0 , and the time T P p0, 8q are arbitrary, these arguments imply that the global well-posedness of ( 9) and this concludes the proof.

The limiting flow

Define the mapping Π : µ P PpT d q Þ Ñ Π rµs P PpT d q, for P p0, 1s, as follows:

Π rµs " Z rµs ´1e ´V py,zq`A rµspzq dydz, with Z rµs " ť e ´V py,zq`A rµspzq dydz. The notation V µ py, zq " V py, zq ´A rµspzq is used in the sequel. The probability measure Π rµs is the unique invariant distribution for the system . The objectives of this section are twofold. First, one proves that, for every π P PpT d q, there exists a unique solution `Φ pt, πq ˘tě0 of the equation Φ pt, πq " e ´tπ `ż t 0 e s´t Π rΦ ps, πqsds.

# dY A t " ´∇y V pY A t ,
In addition, π t " Φ pt, πq solves, in a weak sense, the following ordinary differential equation

9 π t " Π rπ t s ´π t , π 0 " π.
Second, one relates the properties of the empirical measure `µt ˘tě0 in the regime t Ñ 8, with the behavior of the limit flow, using the notion of Asymptotic Pseudo-Trajectories.

Well-posedness of the limiting flow

Let M " sup

µPPpT d q
}A rµs} C 0 pT m ,Rq , and M ‹ " }A ‹ } C 0 pT m ,Rq . Note that M ă 8 due to Lemma 3.1. Recall that L 0, is defined in Lemma 3.2.

Lemma 4.1. Let Lp q " 2L ,0 e 4pM `M‹q . Then for all µ 1 , µ 2 P PpT d q, one has

d T V `Π rµ 1 s, Π rµ 2 s ˘ď Lp qd T V pµ 1 , µ 2 q.
Proof of Lemma 4.1. 

d T V `Π rµ 1 s, Π rµ 2 s ˘" ij T d e ´V
d T V `Π rµ 1 s, Π rµ 2 s ˘ď 2e 4pM `M‹q ż T m |A rµ 1 spzq ´A rµ 2 spzq|dz ď 2e 4pM `M‹q }A rµ 1 s ´A rµ 2 s} C 0 ď 2L ,0 e 4pM `M‹q d TV pµ 1 , µ 2 q,
where the last inequality follows from Lemma 3.2. This concludes the proof of Lemma 4.1.

Proposition 4.2. Let π P PpT d q. Then there exists a unique solution `Φ pt, πq ˘tě0 , with values in C `r0, 8q, PpT d q ˘(where PpT d q is equipped with the total variation distance d T V ), of the equation Φ pt, πq " e ´tπ `ż t 0 e s´t Π rΦ ps, πqsds.

Proof. Uniqueness is a straightforward consequence of Lemma 4.1 and of Gronwall Lemma. Existence is obtained using a Picard iteration argument. Precisely, introduce the mapping Ψ : C `r0, 8q, PpT d q ˘Ñ C `r0, 8q, PpT d q ˘, be defined by

Ψpπqptq " e ´tπ `ż t 0 e s´t Π rπ s sds, for π " `πt ˘tě0 . Let d α pπ 1 , π 2 q " sup tě0 e ´αt d T V pπ 1 t , π 2 t q, where α ą 0 is chosen below. Then, using Lemma 4.1, one has d α `Ψpπ 1 q, Ψpπ 2 q ˘ď Lp q α d α pπ 1 , π 2 q.

Choose α " 2Lp q, and define π 0 " `π0 t " π ˘tě0 , π n`1 " Ψpπ n q, n ě 0, using the Picard iteration method. Let T P p0, 8q be an arbitrary positive real number. Since C `r0, T s, PpT d q ˘is a complete metric space (equipped with the distance d α ), then `πn ˘nPN converges when n Ñ 8, and the limit π 8 solves the fixed point equation π 8 " Ψpπ 8 q, which proves the existence of a solution, and concludes the proof.

By construction, the flow Φ : R `ˆP pT d q Ñ PpT d q is continuous, when PpT d q is equipped with the total variation distance d TV . Adapting the proof of [START_REF] Benaïm | Self-interacting diffusions[END_REF]Lemma 3.3], one checks that it is also a continuous mapping when PpT d q is equipped with the distance d w .

The asymptotic pseudotrajectory property

Recall that a continuous function ζ : R `Ñ PpT d q is an asymptotic pseudotrajectory for Φ , if one has sup sPr0,T s d w `ζpt `sq, Φ ps, ζptqq ˘Ñ tÑ8 0, for all T P R `. See for instance [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF] for details.

The following result is the rigorous formulation of the link between the dynamics of the empirical measures µ t in the ABF algorithm, and of the limit flow.

Theorem 4.3. The process `µe t ˘tě0 is almost surely an asymptotic pseudotrajectory for Φ .

The proof requires auxiliary notations and results. For every ą 0 and µ P PpT d q, let V µ py, zq " V py, zq ´A rµspzq, and define the infinitesimal generator

L µ " ∆ ´∇V µ ¨∇.
Introduce the projection operator defined by K µ f " f ´ş f dΠ rµs and let `P ,µ t ˘tě0 be the semi-group generated by L µ on L 2 pT d q. Finally, let

Q µ " ż 8 0 P ,µ t K µ dt .
Then one has the following result.

Lemma 4.4. For every ą 0, there exists C P p0, 8q, such that

}Q µ f } C 1 ď C }f } C 0 , (10) 
for all f P C 0 pT d , Rq and all µ P PpT d q. Moreover, L µ K µ " ´K µ .

Proof. Remark that, from Lemma 3.1, V ε µ P C 8 pT d q, from which it is classical to see that P ,µ t f P C 8 pT d q for all f P C 8 pT d q. In particular, C 8 pT d q is a core for L ,µ , see [3, Section 3.2] and thus it is enough to prove the result for f P C 8 pT d q.

As a first step, for all P p0, 1s there exists R ą 0 such that for all µ P PpT d q, Π rµs satisfies a log-Sobolev inequality and a Sobolev inequality both with constant R , in the sense that for all positive f P C 8 pT d q,

ż T d f ln f dΠ rµs ´żT d f dΠ rµs ln ż T d f dΠ rµs ď R ż T d |∇f | 2 f dΠ rµs }f } 2 L p pΠ rµsq ď R }f } 2 H 1 pΠ rµsq ,
where p " 2d d´2 . Indeed, from Lemma 3.1, the density of Π rµs with respect to the Lebesgue measure is bounded above and below away from zero uniformly in µ P PpT d q. The inequalities are then obtained by a perturbative argument from those satisfied by the Lebesgue measure, see [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]Proposition 5.1.6]).

As a second step, these inequalities imply the following estimates: for all P p0, 1s there exists R 1 ą 0 such that for all PpT d q, f P C 8 pT d q and t ě 0,

}P ,µ t K µ f } L 2 pΠ ε rµsq ď e ´R t{2 }K µ f } L 2 pΠ ε rµsq }P ,µ t f } 8 ď R 1 maxp1, t d{2 q }f } L 2 pΠ ε rµsq }∇P ,µ t f } 8 ď R 1 maxp1, ? tq }f } 8 .
for some c ą 0 which does not depend on µ P PpT d q thanks to Lemma 3.1. According to [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]Theorem 4.7.2], this implies that

Γ ,µ pP ,µ t f q ď ˆ1 ´e´c 1 t c 1 ˙´1 P ,µ f f 2 ď ˆ1 ´e´c 1 t c 1 ˙´1 }f } 2 8 ,
which concludes the proof of the third estimate. As a third step, we bound (using that }P ,µ t f } 8 ď }f } 8 for all t ě 0)

ż 8 0 }P ,µ t K µ f } 8 dt ď ż 1 0 }K µ f } 8 dt `ż 8 1 }P ,µ t K µ f } 8 dt ď 2}f } 8 `R1 ż 8 1 }P ,µ t´1 K µ f } L 2 pΠ rµsq dt ď 2}f } 8 `R1 ż 8 0 e ´R s{2 }K µ f } L 2 pΠ rµsq dt ď ˆ2 `4R 1 R ˙}f } 8 ,
and similarly

ż 8 0 }∇P ,µ t K µ f } 8 dt ď ż 2 0 R 1 maxp1, ? tq }K µ f } 8 dt `R1 ż 8 2 }P ,µ t´1 K µ f } 8 dt ď 6R 1 }f } 8 `R12 ż 8 0 e ´R s{2 }K µ f } L 2 pΠ rµsq dt ď ˆ6R 1 `4R 12 R ˙}f } 8 ,
from which Q µ f is well defined for f P C 8 pT d q and satisfies (10) for some C . Finally,

L µ Q µ f " ż 8 0 L µ P ,µ t K µ f dt " ż 8 0 B t `P ,µ t K µ f ˘dt " ´K µ f .
Proof of Theorem 4.3. First, note that the claim is equivalent to the following statement (see [9, Proposition 3.5]):

sup sPr0,T s |ε t psqf | Ñ tÑ8 0,
for all f P S and T P Q `, where ε t psq "

ż e t`s e t δ Xτ ´Π rµ τ s τ dτ.
Using a Borel-Cantelli argument, and the fact that S is a countable set, it is sufficient to establish that there exists C P p0, 8q, such that

E " sup sPr0,T s |ε t psqf | 2 ‰ ď C e ´t}f } 2 C 0 ,
for all t ě 0 and f P S.

Let f P S and introduce the function F : p0, 8q ˆTd Ñ R defined by F pt, xq " t ´1Q µt f . Then F is of class C 1,2 on p0, 8q ˆTd . Indeed, first, it is straightforward to check that t Þ Ñ F rµ t s P C k pT d , R m q is of class C 1 , for all k P N 0 , since t Þ Ñ µ t P PpT d q (equipped with the Wasserstein distance) is of class C 1 . Second, A rµs is solution of the Euler-Lagrange equation ∆A rµs " divpF rµsq, which establishes that t Þ Ñ A rµ t s P C k pT m , Rq is also of class C 1 . Finally, it remains to apply standard arguments to establish the

C 1 regularity of t Þ Ñ Q µt f .
Applying Itô formula yields, for all t ě 0 and s P r0, T s, the equality F pe t`s , X e t`s q " F pe t , X e t q `ż e t`s e t `Bτ `L µτ ˘F pτ, X τ qdτ `?2

ż e t`s e t
x∇F pτ, X τ q, dW pτ qy.

Observing that L µτ F pτ, X τ q " τ ´1L µτ Q µτ pX τ qf " ´τ ´1`f pX τ q ´ş f dΠ rµ τ s ˘, one obtains

ε t psqf " ε 1 t psqf `ε2 t psqf `ε3 t psqf `ε4 t psqf,
where

ε 1 t psqf " e ´t´Q µt f ´e´s Q µ t`s f ¯, ε 2 t psqf " ż e t`s e t
´τ ´2Q µtτ f pX τ qdτ,

ε 3 t psqf " ż e t`s e t τ ´1 d dτ Q µτ f pX τ qdτ, ε 4 t psqf " ? 2 
ż e t`s
e t τ ´1x∇Q µτ f pX τ q, dW pτ qy.

First, it is straightforward to check that the error terms ε 1 t psqf and ε 2 t psqf are upper estimated as follows: almost surely,

sup 0ďsďT |ε 1 t psqf | `sup 0ďsďT |ε 2 t psqf | ď C e ´t}f } 8 .
To treat the error term ε 3 t psqf , it suffices to upper estimate the Lipschitz constant of t Þ Ñ Q µt f . Let t 1 , t 2 P p0, 8q, then one has

K µt 1 f ´K µt 2 f " L µt 2 Q µt 2 f ´L µt 1 Q µt 1 f " L µt 1 ´Q µt 2 f ´Q µt 1 f ¯`´L µt 2 ´L µt 1 ¯Q µt 2 f, thus one obtains Q µt 2 f ´Q µt 1 f " Q µt 1 δ t 1 ,t 2 f,
where the auxiliary function δ t 1 ,t 2 f is defined as

δ t 1 ,t 2 f " K µt 1 f ´K µt 2 f ´´L µt 2 ´L µt 1 ¯Q µt 2 f,
and satisfies the centering condition

ş δ t 1 ,t 2 f dΠ rµ t 1 s " ş L µt 1 ´Q µt 2 f ´Q µt 1 f ¯dΠ rµ t 1 s " 0. One has the estimate }Q µt 2 f ´Q µt 1 f } 8 ď C }δ t 1 ,t 2 f } 8 .
On the one hand, one has

}K µt 1 f ´K µt 2 f } 8 " ˇˇż f dΠ rµ t 1 s ´ż f dΠ rµ t 2 s ˇď }f } 8 d TV pΠ rµ t 1 s, Π rµ t 2 sq ď Lp q}f } 8 d TV pµ t 1 , µ t 2 q,
owing to Lemma 4.1.

On the other hand, one has

} `L µt 2 ´L µt 1 ˘Q µt 2 f } 8 " }x∇A rµ t 2 s ´∇A rµ t 1 s, ∇ z Q µt 2 f y} 8 ď }A rµ t 2 s ´A rµ t 1 s} C 1 }Q µt 2 f } C 1 ď L 1, C }f } 8 d TV pµ t 1 , µ t 2 q.
Finally, it is straightforward to check that

d TV pµ t 1 , µ t 2 q ď 2|t 2 ´t1 | t 1 ^t2 ,
using the identity 9 µ t " 1 t`r pδ Xt ´µt q. As a consequence, one obtains

sup 0ďsďT |ε 3 t psqf | ď ż e t`T e t τ ´1| d dτ Q µτ f pX τ q|dτ ď C ż e t`T e t τ ´2dτ }f } 8 ď C e ´t}f } 8 .
It remains to deal with the error term ε 4 t psqf . Using Doob inequality implies

E " sup 0ďsďT |ε 4 t psqf | 2 ‰ ď C ż e t`T e t τ ´2E " |∇Q µτ f pX τ q| 2 ‰ dτ ď C e ´t}f } 2 8 .
This concludes the proof of the claim,

E " sup sPr0,T s |ε t psqf | 2 ‰ ď C e ´t}f } 2 C 0 ,
for all t ě 0 and f P S.

Applying a Borel-Cantelli argument then concludes the proof.

5 Proof of Theorem 2.3

The objective of this section is to give a detailed proof of Theorem 2.3. There are two main ingredients. The first one is Proposition 5.3 below, which provides a uniform estimate over ą 0 for A rµs, in the C 0 norm (compare with Lemma 3.1 where the upper bound may depend on ). The second key ingredient is Proposition 5.7, which states a contraction property for the mapping Π , for an appropriate distance, for sufficiently small , when restricted to an attracting set identified below (compare with Lemma 4.1 which is valid on the entire state space, but where no upper bound for Lp q holds). Combining these two ingredients provides a candidate for the limit as t Ñ 8, using a standard Picard iteration argument. Using Theorem 4.3 (asymptotic pseudo-trajectory property) then proves the almost sure convergence of µ t to this candidate limit.

Uniform estimate

The following PDE estimate is crucial for the analysis. Proposition 5.1. Let m P N. For every p P r2, 8q, there exists C p P p0, 8q, such that the following holds: let F : T m Ñ R m be a continuous function, then the solution A of the elliptic PDE ∆A " divpF q, with the condition ş Apzqdz " 0, satisfies

}A} W 1,p pT m ,Rq ď C p }F } C 0 pT m ,R m q ,
and if p ą m, then

}A} C 0 pT m ,Rq ď C p }F } C 0 pT m ,R m q .
Proof. The proof combines three arguments.

• If p ą m, then by Sobolev embedding properties, one has }A} C 0 pT m ,Rq ď C p }A} W 1,p pT m ,Rq , with C p P p0, 8q.

• By the Poincaré inequality (using the condition ş Apzqdz " 0, one has }A} W 1,p pT m ,Rq ď C p }∇A} L p pT m ,R m q , with C p P p0, 8q, see [START_REF] Ambrosio | Lecture notes on elliptic partial differential equations[END_REF]Theorem 1.13].

• By elliptic regularity theory, one has }∇A} L p pT m ,R m q ď C p }F } L p pT m ,R m q ď C p }F } C 0 pT m ,R m q , with C p P p0, 8q, see [2, Theorem 15.12].

Remark 5.2. If m " 1, the proof is straighforward: indeed for all z P T, one has the identity Apzq " ş z 0 F pz 1 qdz 1 ´z ş 1 0 F pz 1 qdz 1 . Using Proposition 5.1, one gets the following crucial estimate, which is uniform for ą 0 (contrary to those given in Lemmas 3.1,3.2 and 4.1 above). }F rµs} C 0 pT m ,R m q ă 8.

That estimate is a straightforward consequence of the definition 7, of the boundedness of ∇ z V , and of the positivity of the kernel function K .

Attracting set

Introduce the following notation: for all B P CpT m , Rq, let dµ B py, zq " Z ´1 B e ´V py,zq`Bpzq dydz P PpT d q,

with Z B " ť e ´V py,zq`Bpzq dydz " ş e ´A‹pzq`Bpzq dz. First, for probability distribution of the form µ B , one has the following useful identity for F rµ B s. Proof. This is a straightforward consequence of the two identities below: for all z P T m , ż e ´V py,zq dy " e ´A‹pzq , ż ∇ z V py, zqe ´V py,zq dy " ´∇ ˆż e ´V py,zq dy ˙" e ´A‹pzq ∇A ‹ pzq.

The set of the probability distribution of the type µ B is an attractor for the dynamics of the limit flow, more precisely one has the following result. Proof. For all t ě 0 and µ P PpT d q, one has Lemma 5.6. For every p P r2, 8q, there exists C p P p0, 8q, such that for every ą 0, and every B P CpT m , Rq, one has

Φ
}A rµ B s ´Ā ‹ } W 1,p pT m q ď C p ? e 2 `}B} C 0 `}A‹} C 0 ˘. (11) 
Recall that Ā‹ " A ‹ ´şT m A ‹ dz.

Proof. Using Proposition 5.1, one has the following inequality:

}A rµ B s ´Ā ‹ } W 1,p pT m ,Rq ď C p }F rµ B s ´∇A ‹ } C 0 pT m ,R m q .
Owing to Lemma 5.4 and using the Lipschitz continuity of A ‹ , for all z P T m , one has

ˇˇF rµ B spzq ´∇A ‹ pzq ˇˇď ˇˇş `∇A ‹ pz 1 q ´∇A ‹ pzq ˘K pz 1 , zqe Bpz 1 q´A‹pz 1 q dz 1 ş K pz 1 , zqe Bpz 1 q´A‹pz 1 q dz 1 ˇď C ş |z ´z1 |K pz 1 , zqdz 1 e }B} C 0 `}A‹} C 0 ş K pz 1 , zqdz 1 e ´}B} C 0 ´}A‹} C 0 ď C ? e 2p}B} C 0 `}A‹} C 0 q ,
owing to Assumption 2.1. This inequality concludes the proof.

Contraction property on the attracting set

Let M P p0, 8q. Introduce the set

B M " " B P C 0 pT m , Rq, ż Bpzqdz " 0, }B} C 0 ď M * .
Owing to Proposition 5.3, if M ě M 0 , then A rµs P B M for every µ P PpT d q and ą 0.

Introduce the notation h B py, zq " Z ´1 B e ´V py,zq`Bpzq and Π rh B s " h A rµ B s , so that h B and Π rh B s are the density with respect to the lebesgue measure of, respectively, µ B and Π rµ B s.

To state the following result, the notation }h} 2 " `ş hpxq 2 dx ˘1 2 is used.

Proposition 5.7. For every M P p0, 8q, there exists C M P p0, 8q, such that for all ą 0 and all B 1 , B 2 P B M , one has

} Π rh B 1 s ´Π rh B 2 s} 2 ď C M ? }h B 1 ´hB 2 } 2 .
Proof. Let B 1 , B 2 P B M . Using Proposition 5.3, one has

} Π rh B 1 s ´Π rh B 2 s} 2 " }h A rµ B 1 s ´hA rµ B 2 s } 2 ď C}A rµ B 1 s ´A rµ B 2 s} 2 .
In addition, using the Poincaré inequality and the definition of A rµs as the orthogonal projection in L 2 of F rµs, one has

}A rµ B 1 s ´A rµ B 2 s} 2 ď C}F rµ B 1 s ´F rµ B 2 s} 2 .
Then, using Lemma 5.4, one obtains, for all z P T m ,

|F rµ B 1 spzq´F rµ B 2 spzq| " ˇˇş `∇A ‹ pz 1 q ´∇A ‹ pzq ˘K pz 1 , zqe B 1 pz 1 q´A‹pz 1 q dz 1 ş K pz 1 , zqe B 1 pz 1 q´A‹pz 1 q dz 1 ´ş`∇ A ‹ pz 1 q ´∇A ‹ pzq ˘K pz 1 , zqe B 2 pz 1 q´A‹pz 1 q dz 1 ş K pz 1 , zqe B 2 pz 1 q´A‹pz 1 q dz 1 ˇď ˇˇş `∇A ‹ pz 1 q ´∇A ‹ pzq ˘K pz 1 , zq ´eB 1 pz 1 q ´eB 2 pz 1 q ¯e´A‹pz 1 q dz 1 ş K pz 1 , zqe B 1 pz 1 q´A‹pz 1 q dz 1 ˇş `∇A ‹ pz 1 q ´∇A ‹ pzq ˘K pz 1 , zqe B 2 pz 1 q´A‹pz 1 q dz 1 ş K pz 1 , zq ´eB 1 pz 1 q ´eB 2 pz 1 q ¯e´A‹pz 1 q dz 1 ş K pz 1 , zqe B 1 pz 1 q´A‹pz 1 q dz 1 ş K pz 1 , zqe B 2 pz 1 q´A‹pz 1 q dz 1 ˇď Ce }B 1 } C 0 pT,Rq ż |z 1 ´z|K pz 1 , zq|e B 1 pz 1 q ´eB 2 pz 1 q |dz 1 `Ce }B 1 } C 0 pT,Rq `2}B 2 } C 0 pT,Rq ż |z 1 ´z|K pz 1 , zqdz 1 ż K pz 1 , zq|e B 1 pz 1 q ´eB 2 pz 1 q |dz 1 ,
using Lipschitz continuity of ∇A ‹ , and the lower bound

ż K pz 1 , zqe B i pz 1 q´A‹pz 1 q dz 1 ě e ´}B i } C 0 pT,Rq ´}A‹} C 0 pTq ż K pz 1 , zqdz 1 " e ´}B i } C 0 pT,Rq ´}A‹} C 0 pTq .
One has }B 1 } C 0 ď M and }B 2 } C 0 ď M . In addition, owing to Assumption 2.1, one has ş |z 1 ź|K pz 1 , zqdz 1 ď C ? . As a consequence, using the Jensen inequality (since

ş K pz 1 , zqdz 1 " ş K pz, z 1 qdz 1 " 1 for all z), one obtains }F rµ B 1 s ´F rµ B 2 s} 2 ď C M ij K pz 1 , zq|z 1 ´z| 2 |e B 1 pz 1 q ´eB 2 pz 1 q| 2 dzdz 1 `CM ij K pz 1 , zq|e B 1 pz 1 q ´eB 2 pz 1 q| 2 dzdz 1 ď C M ż |e B 1 pz 1 q ´eB 2 pz 1 q | 2 dz 1 .
It remains to check that

ż |e B 1 pz 1 q ´eB 2 pz 1 q| 2 dz 1 ď C}h B 1 ´hB 2 } 2 2 .
On the one hand,

}h B 1 ´hB 2 } 2 2 " ij e ´2V py,zq ˇˇe B 1 pzq ş e B 1 ´A‹ ´eB 2 pzq ş e B 2 ´A‹ ˇˇ2dydz ě c ż ˇˇe B 1 pzq ş e B 1 ´A‹ ´eB 2 pzq ş e B 2 ´A‹ ˇˇ2dz,
with c ą 0. On the other hand, using Young inequality (with auxiliary parameter η ą 0), one obtains

ż |e B 1 pz 1 q ´eB 2 pz 1 q| 2 dz 1 " ˇˇż e B 1 ´A‹ e B 1 pzq ş e B 1 ´A‹ ´ż e B 2 ´A‹ e B 2 pzq ş e B 2 ´A‹ ˇˇ2dz ď 2η 2 ż ˇˇe B 2 pzq ş e B 2 ´A‹ ˇˇ2dz ˇˇż e B 1 ´A‹ ´ż e B 2 ´A‹ ˇˇ2 `2 η 2 `ż e B 1 ´A‹ ˘2 ż ˇˇe B 1 pzq ş e B 1 ´A‹ ´eB 2 pzq ş e B 2 ´A‹ ˇˇ2dz ď 2C M η 2 ż |e B 1 pz 1 q ´eB 2 pz 1 q| 2 dz 1 `2C M η 2 }h B 1 ´hB 2 } 2 2 .
Choosing a sufficiently small parameter η one finally obtains the claim above.

Gathering the estimates finally concludes the proof of the estimate

} Π rh B 1 s ´Π rh B 2 s} 2 ď C M ? }h B 1 ´hB 2 } 2 .

Proof of the main result

The first part of this section is devoted to the construction of the candidate limits µ 8 and A 8 " A rµ 8 s, of µ t and A t respectively, for small enough . Let ¯ 0 " 1{pC 2 M p0q `1q, where M " M p0q is given by Proposition 5.3 and C M is given by Proposition 5.7.

Let P p0, ¯ 0 s, and consider A p0q P B M p0q . Define µ p0q " µ A p0q , h p0q " h A p0q , and by recursion, for all nonnegative integer k, let µ pk`1q " Π rµ pkq s , h pk`1q " Π rh pkq s, and let A pkq " A rµ pkq s. Then one has h pkq " h A pkq P B M p0q . We claim that `µpkq ˘kě0 is a Cauchy sequence in the space PpT d q equipped with the total variation distance d TV . Indeed, for all k, ě 0, one has d TV pµ pkq , µ pk` q q ď }h pkq ´hpk` q } 2 ď `CM p0q ? ˘kd 2 ph p0q , h p q q ď Cρ k , with ρ P p0, 1q. As a consequence, there exists µ 8 such that d TV pµ pkq , µ 8 q Ñ kÑ8 0. Owing to Lemma 4.1, the mapping Π is continuous on PpT d q equipped with d TV , thus µ 8 " Π rµ 8 s. This implies that µ 8 " h A ‹ pxqdx where A ‹ " A rµ 8 s P B M p0q .

It is then straightforward to check that h 8 " h A 8 is the unique fixed point of the mapping Π (uniqueness is a consequence of Proposition 5.7).

We claim that, for any initial condition of the type µ B , then Φ pt, µ B q Ñ tÑ8 µ 8 , more precisely one has exponential convergence to the fixed point µ 8 : there exists cp q P p0, 8q such that, for all t ě 0, one has sup BPB M p0q d TV pΦ pt, µ B q, µ 8 q ď Ce ´cp qt .

To prove this claim, observe that for all t ě 0, the probability distribution Φ pt, µ B q can be written as µ Bt , where B t P C 0 , see Proposition 5.5, and without loss of generality ş B t pzqdz " 0. In addition, B t P B M p1q , for all t ě 0, for some M p1q P p0, 8q depending only on M p0q : indeed, the identity and B t pzq is equal (up to an additive constant defined to respect the condition ş B t pzqdz " 0) to A ‹ pzq `log `ş e ´V py,zq dyq.

Let 0 " 1{pC 2 M p1q `1q, and assume in the sequel that P p0, 0 s. Note that M p1q ě M p0q , thus 0 ď ¯ 0 .

Then A 8 is well-defined, h 8 is the unique fixed point of Π , and one obtains We are now in position to prove give the proof of Theorem 2.3. It is sufficient to focus on the question of convergence when t Ñ 8, indeed the estimate for }A 8 ´∇A ‹ } W 1,p is a straightforward consequence of Lemma 5.6, combined with Proposition 5.3, since A 8 is a fixed point of the mapping A Þ Ñ A rµ A s.

d
The idea of the proof, using concepts and tools developed in [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF] may be described as follows. Since almost surely `µt ˘tě0 is an asymptotic pseudo-trajectory for the semi-flow Φ , one has the following property: the limit set Lpµq is an attractor free set for the semi-flow Φ in PpT d q, in particular it is invariant, i.e. for all t ě 0 one has Φ pt, Lpµqq " Lpµq. Let us check that Lpµq " tµ 8 u. First, introduce the set M " tµ B u. Then Proposition 5.5 provides the inclusion Lpµq Ă M. Indeed, let ν P Lpµq and let t ě 0 be arbitrary, then by invariance there exists ν P Lpµq such that ν " Φ pνq, thus dpν, Mq " dpΦ pνq, Mq ď 2e ´t Ñ tÑ8 0.

Similarly, let ν P Lpµq Ă M, and let t ě 0 be arbitrary, then ν " Φ pνq for some ν P M. Thus dpν, µ 8 q " dpΦ pt, νq, Φ pt, µ 8 qq ď Ce ´ct Ñ tÑ8 0.

Let us now provide a detailed proof using only the results presented above.

Proof of Theorem 2.3. Let T 1 , T 2 P p0, 8q be arbitrary positive real numbers, and T " T 1 T2 . For every t ě T , one has d w `µe t , µ 8 ˘ď d w `µe t , Φ pT, µ e t´T ˘`d w `Φ pT, µ e t´T q, µ 8 ˘.

Owing to Theorem 4.3, for any fixed T 1 , T 2 , one has, almost surely, d w `µe t , Φ pT, µ e t´T q ˘Ñ tÑ8 0.

Observe that d w p¨, ¨q ď Cd TV p¨, ¨q. In addition, for all B P CpT, Rq, using Lemma 4.1 and the claim [START_REF] Benaïm | Self-interacting diffusions IV: Rate of convergence[END_REF] 

Proposition 5 . 3 .

 53 One has the following estimate: M 0 " sup ą0 sup µPPpT d q }A rµs} C 0 pT m ,Rq ă 8. Proof. Using Proposition 5.1 above, it suffices to check that sup ą0 sup µPPpT d q

Lemma 5 . 4 .

 54 For every B P CpT m , Rq, one has F rµ B s " ş ∇A ‹ pzqK pz, ¨qe Bpzq´A‹pzq dz ş K pz, ¨qe Bpzq´A‹pzq dz .

Proposition 5 . 5 .

 55 One has the following result: for all t ě 0, sup ą0 sup µPPpT d q inf BPCpT m ,Rq d TV pΦ pt, µq, µ B q ď 2e ´t.

hă inf tě0 inf xPT d h Bt pxq ď sup tě0 sup xPT dh

  Bt " e ´th B 0 `ż t 0 e ´pt´sq Π rh Bs sds implies, using Proposition 5.3, the bounds 0 Bt pxq ă 8,

  " ´∇z V pY t , Z t qdt `∇A t pZ t qdt `?2dW

	of the system	
	$ ' dY t " ´∇y V pY t , Z t qdt `?2dW t pd´mq	,
	' ' & dZ t pmq t	,
	' ' A t " A rµ t s,
	' % µ t " 1 t	ş t 0 δ pYs,Zsq ds.

  zqK pz, ¨qdpµ 2 ´µ1 qpy, zq ť K pz, ¨qdµ 2 py, zq

´ť ∇ z V py, zqK pz, ¨qdµ 1 py, zq ť K pz, ¨qdpµ 2 ´µ1 qpy, zq ť K pz, ¨qdµ 1 py, zq ť K pz, ¨qdµ 2 py, zq .

  py,zq ˇˇe A rµ 1 spzq Z rµ 1 s ´eA rµ 2 spzq Z rµ 2 s ˇˇe A rµ 1 spzq ´eA rµ 2 spzq ˇˇdz `żT m e A rµ 2 spzq´A‹pzq Z rµ 1 sZ rµ 2 s dz ˇˇZ rµ 1 s ´Z rµ 2 s ˇˇ.

						ˇˇdydz
		"	ż T m	e ´A‹pzq ˇˇe A rµ 1 spzq Z rµ 1 s	Z rµ 2 s ´eA rµ 2 spzq	ˇˇdz
		ď	ż T m	e ´A‹pzq Z rµ 1 s	
	Using the lower bound				
	ij			ż	
	Z rµs "	e ´V py,zq`A rµspzq dydz "	
	T d			T	

m e ´A‹pzq`A rµspzq dz ě e ´M‹´M , and the upper bound ˇˇZ rµ 1 s ´Z rµ 2 s ˇˇď e M `M‹ ż T m |A rµ 1 spzq ´A rµ 2 spzq|dz, one obtains

  pt, µq " e t µ `ż t 0 e s´t Π rΦ ps, µqsds " e ´tµ `p1 ´e´t qΨ pt, µq, where Ψ pt, µq " 1 1´e ´t ş t 0 e s´t Π rΦ ps, µqsds " µ B for some B P CpT m , Rq, owing to the definition of Π . Then inf BPCpT m ,Rq d TV pΦ pt, µq, µ B q ď d TV pΦ pt, µq, Ψ pt, µqq ď e ´t}µ ´Ψ pt, µq} TV ď 2e ´t.

  TV pΦ pt, µ B q, µ 8 q ď }h Bt ´h 8 } 2 ď e ´t}h B ´h 8 } 2 `ż t 0 e ´pt´sq } Π rh Bs s ´Π rh 8 s} 2 ds ď e ´t}h B ´h 8 } 2 `CM p1q ? }h Bs ´h 8 } 2 ds, with C M p1q ? ă 1. Applying the Gronwall Lemma, one obtains d TV pΦ pt, µ B q, µ 8 q ď }h Bt ´h 8 } 2 ď e ´p1´C M p1q ? qt }h B ´h 8 } 2 , and it is straightforward to check that sup t}h B ´h 8 } 2 , B P B M p0q u ă 8. This concludes the proof of the claim (12).

  above, one has d TV `Φ pT, µ e t´T q, µ 8 ˘ď d TV `ΦpT 1 , ΦpT 2 , µ e t´T qq, ΦpT 1 , µ B q ˘`d TV `ΦpT 1 , µ B q, µ 8 ď e Lp qT 1 d TV `ΦpT 2 , µ e t´T q, µ B ˘`Ce ´cp qT 1 pT, µ e t´T q, µ 8 ˘ď e Lp qT 1 sup BPCpT,Rqd T V pΦpT 2 , µ e t´T q, µ B q `Ce ´cp qT 1 ď 2e Lp qT 1 e ´T2 `2e ´cp qT 1 ,owing to Proposition 5.5. µ e t´T q, µ ‹ ˘ď 2e Lp qT 1 e ´T2 `2e ´cp qT 1 .Since T 1 and T 2 are arbitrary, letting first T 2 Ñ 8, then T 1 Ñ 8, one has almost surely

	This implies that		
	d TV	`Φ		
		lim sup tÑ8	d TV	`Φ	pT, lim sup

tÑ8

d w pµ e t , µ ‹ q " 0,

Indeed, the first estimate is a usual consequence of the Poincaré inequality, implied by the log-Sobolev one (see[START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF] Theorem 4.2.5 and Proposition 5.1.3]). The second one, namely the ultracontractivity of the semi-group, is a consequence of the Sobolev inequality (see[START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF] Theorem 6.3.1]). The last one can be established thanks to the Bakry-Emery calculus (see[START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF] Section 1.16] for an introduction), by showing that L µ satisfies a curvature estimate. More precisely, denoteΓ ,µ pf, gq " 1 2 `L µ pf gq ´f L µ g ´gL µ f Γ ,µ 2 pf q " 1 2 Γ ,µ pf q ´Γ ,µ pf, L µ f q,with Γ ,µ pf q :" Γ ,µ pf, f q. Straightforward computations yield Γ ,µ pf q " |∇f | 2 Γ ,µ 2 pf q ě ´|∇ 2 V µ ||∇f | 2 ě ´c Γ ,µ pf q
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which concludes the proof of the weak convergence of µ t to µ 8 .

It remains to check that A t " A rµ t s converges to A 8 " A rµ 8 s, in C k , for all k P N. This is a consequence of the regularity properties of K and of V , which proves that µ P pPpT d q, d w q Þ Ñ F rµs P C k is continuous for all k P N.

Using Sobolev embedding properties, as in the proof of Lemma 3.1, then concludes the proof.