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ASYMPTOTIC BEHAVIOR OF NERNST-PLANCK EQUATION

XINGYU LI

Abstract
This paper is devoted to the Nernst-Planck system of equations with an exter-

nal potential of confinement. The main result is concerned with the asymptotic
behaviour of the solution of the Cauchy problem. We will prove that the op-
timal exponential rate of convergence of the solution to the unique stationary
solution is determined by the spectral gap of the linearized problem around the
minimizer of the free energy. The key issue is to consider an adapted notion of
scalar product.

Keywords: Nernst-Planck equation; large time asymptotic; free energy;
Fisher information; spectral gap.
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1. INTRODUCTION

At the end of nineteenth century, Nernst and Planck introduced a sys-
tem of equations for representing the evolution of charged particles sub-
ject to electrostatic forces. The original model is exposed in [22, 24]: elec-
trically charged particles diffuse under the action of a drift caused by an
electrostatic potential. Nowadays we use this system in various frame-
works like, for instance, phenomenological models for electrolytic be-
haviour in membranes. The original model is the non-confined Nernst-
Planck system. If we take into account a mean-field Poisson coupling, in
dimension d = 2, the system takes the form

∂u
∂t =∆u +∇· (u∇v)

v =G2 ∗u
u(0, x) = n0 ≥ 0

x ∈R2 , t > 0, (1)

where G2(x) =− 1
2π log |x| denotes the Green function of the Laplacian in

R2. We shall call this model the Poisson-Nernst-Planck system, which was
also considered by Debye and Hückel in [12] and is sometimes called the
Debye-Hückel system in the literature. Up to a sign change in the mean-
field term, the model is similar to the Keller-Segel model, which is going
to be a source of inspiration (see [9, 10, 11] for more details) for the study
of the large time behaviour and this is a reason why we consider the two-
dimensional case of the model.
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Now let us introduce the notion of confinement. In the whole space,
particles repel themselves and a well-known runaway phenomenon oc-
curs: solutions locally vanish while the mass escapes at infinity. This
can be prevented using a container (a bounded domain, with convenient
boundary conditions) with walls, or a confinement potential. Actually,
it is possible to obtain the bounded domain case as a limit of a whole
space case with an external potential of confinement taking larger and
larger values outside of the domain. Here we shall consider the Poisson-
Nernst-Planck system with confinement in Rd , where the dimension is
d = 2 or d = 2. The density function n solves

∂n
∂t =∆n +∇· (n∇c)+∇· (n∇φ)

c =Gd ∗n
n(0, x) = n0 ≥ 0,

∫
Rd n(0, x)d x = M > 0

x ∈Rd , t > 0. (2)

The convolution kernel Gd is the Green function of the Laplacian in Rd ,
namely

G2(x) =− 1

2π
log |x| for any x ∈R2 and G3(x) = 1

4π |x| for any x ∈R3 .

In other words, we ask that c solves the Poisson equation

−∆c = n x ∈Rd ,

while φ is a given external potential. In the special case of d = 2 and
φ(x) = µ

2 |x|2 for some µ> 0, if we use the change of variables

u(t , x) = R−d n(τ,ξ) , v(t , x) = c(τ,ξ) ,

ξ= x

R
, τ= logR , R = R(t ) :=√

1+2µ t , (3)

then we observe that (n,c) solves (2) if and only if (u, v) solves (1). Study-
ing the convergence rates of the solutions of (2) amounts to study the
intermediate asymptotics of the solutions of (1) when runaway occurs.
Obviously, the mass of a solution of (2) is conserved, and we shall write
that

∫
Rd n(t , x)d x = M for any t ≥ 0. The mass of a solution of (1) is also

conserved, but one can prove that, for a solution of (1), the mass con-
tained in any given compact set in R2 decays to zero.

From here on, we shall assume that M > 0 is fixed. Now let us turn our
attention to the conditions on the confinement potential. From now on,
we shall assume that φ ∈ W1,∞

loc (Rd ) is such that ∇φ ∈ W1,∞(Rd ) and

liminf
|x|→+∞

φ(x)

log |x| > d , (C1)
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and also that the bounded measure e−φd x admits a spectral gap (or Poincaré)
inequality, i.e., that there exists a positive constantΛφ such that∫

Rd
|∇u|2 e−φd x ≥Λφ

∫
Rd

|u|2 e−φd x

∀u ∈ H1(Rd ;e−φd x) such that
∫
Rd

u e−φd x = 0. (C2)

Based on Persson’s lemma, a sufficient condition is obtained by request-
ing that

σφ := lim
r→+∞ infess

x∈B c
r

(
1

4
|∇φ|2 − 1

2
∆xφ

)
> 0 and lim

r→+∞ infess
x∈B c

r

|∇φ| > 0.

(C3)
Let us refer to [1] for details and further references. We learn from [3, 7]
that the stationary solutions (n∞,c∞) of (2) are obtained as solutions of
the Poisson-Boltzmann equation

−∆c∞ = n∞ = M
e−c∞−φ∫

Rd e−c∞−φd x
. (4)

Under Assumption (C1) and the additional condition

liminf
|x|→+∞

φ(x)

log |x| > 4+ M

2π
if d = 2, (C4)

we know (see [1, Lemma 5] and earlier references therein) that the unique
solution of (4) is obtained as a minimizer of the free energy F defined by

F [n] :=
∫
Rd

n logn d x +
∫
Rd

nφd x + 1

2

∫
Rd

n (−∆)−1n d x . (5)

Further details are given in Section 2. A simple consequence of the mini-
mization procedure is that

F [n]−F [n∞] ≥ 0 ∀n ∈ L1
+(Rd )

with the convention that F [n] can take the value +∞ if, for instance
n logn is not integrable. For sake of brevity, we shall say that φ is a con-
finement potential satisfying Assumption (C) if (C1), (C3) and (C4) hold.

Our goal is to study the asymptotic behaviour of a solution of (2) with
initial datum n0 at t = 0 such that F [n0] is finite. It is a standard ob-
servation that the free energy F [n(t , ·)] of a solution of (2) is monotone
non-increasing along the flows and obeys to

d

d t
F [n(t , ·)] =−I [n(t , ·)] (6)
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where the Fisher information I is defined by

I [n] :=
∫
Rd

n
∣∣∇(logn + c +φ)

∣∣2 d x .

Our main result is that, as t →+∞, F [n(t , ·)] is bounded by I [n(t , ·)] up
to a multiplicative constant which shows that n(t , ·) converges to n∞ at
an exponential rate. The precise result is not written in terms of the free
energy but in terms of a weighted L2 norm and goes as follows.

Theorem 1.1. Let d = 2 or 3 and consider a potential φ satisfying (C). As-
sume that n solves (2) with initial datum n(0, ·) = n0 ∈ L2+(n−1∞ d x),

∫
Rd n0 d x =

M, and F [n0] <∞. Then there exist two positive constants C and Λ such
that ∫

Rd

∣∣n(t , .)−n∞
∣∣2 n−1

∞ d x ≤C e−Λ t ∀ t ≥ 0.

In section 4, we will characterizeΛ as the spectral gap of the linearized
operator associated with (2) and observe, as a special case, that Λ= 2µ if
d = 2 and φ= µ

2 |x|2, for some µ> 0.
Beyond free energy and entropy methods, the study of the large time

asymptotics of the Poisson-Nernst-Planck system involves various tools
of nonlinear analysis. Proving an exponential rate of convergence is in-
teresting for studies of Poisson-Nernst-Planck systems by methods of sci-
entific computing. Specific methods are needed for the numerical com-
putation of the solutions, see [4, 23]. In [21], Liu and Wang implement at
the level of the free energy a finite difference method to compute the nu-
merical solution in a bounded domain. Concerning rates of convergence
from a more theoretical point of view, let us mention that the existence of
special solutions and self-similar solutions is considered in [5, 6, 17]. We
refer to [26] for a discussion of the evolution problem from the point of
view of physics.

Variants of the Poisson-Nernst-Planck system with nonlinear diffusions
have been considered, for which the sharp rate of convergence is still
unknown. Some papers rely on the use of distances related to the L2-
Wasserstein distance, see [14, 18, 28]. Exponential decay rates should be
natural in view of the expected gradient flow structure of the system in
this framework. The simpler case of linear diffusions on a bounded do-
main of Rd with d ≥ 3 was studied in [7]: the convergence to the station-
ary solution occurs at an exponential rate. As already mentioned, an-
other related model is the Keller-Segel system in dimension 2. Regularity
and asymptotic estimates for this system were discussed in [9, 11] and
are a source of inspiration for the present study, in particular concerning
the scalar product and the coercivity estimates. For completeness, let us
mention that similar ideas have been recently developed in [19] for the
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study of a McKean-Vlasov model model of flocking, which also involves a
non-local coupling.

This paper is organized as follows. In Section 2 we prove that the min-
imizer of the free energy F is the stationary solution (n∞,c∞) and it at-
tracts any solution of (2) as t →+∞. In Section 3, we show that the rela-
tive entropy and the relative Fisher information provide us with two qua-
dratic forms which are related by the linearized evolution operator and
prove the spectral gap property of this operator. And in Section 4, we give
the proof of Theorem 1.1 and give some additional results.

2. MIMINIZERS OF THE FREE ENERGY AND CONVERGENCE TO THE

STATIONARY SOLUTION

The main goal of this section is to prove that the minimizer of the free
energy F is the stationary solution (n∞,c∞) considered in the introduc-
tion and that it attracts any solution of (2) as t →+∞.

2.1. Minimizers of the free energy and stationary solutions.

Lemma 2.1. Let d = 2 or d = 3 and assume that the potential φ satis-
fies (C). On the set

X :=
{

f ∈ L1
+(Rd ) :

∫
Rd

f (x)d x = M , f log f ∈ L1(Rd ), f φ ∈ L1(Rd )
}

,

the free energy F is semi-bounded from below.

Proof. According to Assumptionn (C1), we know that e−φ ∈ L1(Rd ). Set
ρ(x) :=λe−φ, such that

∫
Rd ρ(x)d x = M . Since the function x log x is con-

vex, we obtain that
∫
Rd f log f d x ≥ ∫

Rd f logρd x by Jensen’s inequality.
So

F [ f ] ≥
∫
Rd

f logρd x +
∫
Rd

f φd x + 1

2

∫
Rd

f (−∆)−1 f d x

= M logλ+ 1

2

∫
Rd

f (−∆)−1 f d x .

If d = 3,
∫
Rd f (−∆)−1 f d x ≥ 0 because the Green function G3(x) is non-

negative. If d = 2, the result has been established in [? , Corollary 1.2] as
a consequence of Assumption (C4). �

Lemma 2.2. Let d = 2 or d = 3 and assume that the potential φ satis-
fies (C). There exists a unique minimizer n∞ of F in X .
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Proof. Standard minimization methods show that a minimizing sequence
admits, up to the extraction of a subsequence, a limit which is a mini-
mizer. From the proof above, F is lower bounded and satisfies the co-
ercivity inequality. For a fixed minimizer n∞, it should satisfy the Euler-
Lagrange equation

logn∞+φ+ c∞ =λ , c∞ = (−∆)−1n∞ ,

for some Lagrange multiplierλ associated with the mass constraint, which
means that (n∞,c∞) solve (4). By direct computation, with c = (−∆)−1n,
we observe that

F [n]−F [n∞] =
∫
Rd

n log

(
n

n∞

)
d x + 1

2

∫
Rd

(n −n∞) (c − c∞)d x .

Since
∫
Rd n d x = ∫

Rd n∞ d x = M , we obtain from Jensen’s inequality that∫
Rd

n log

(
n

n∞

)
d x ≥ 0

and, according to [9],∫
Rd

(n −n∞)(c − c∞)d x =
∫
Rd

|∇(c − c∞)|2 d x ≥ 0.

Hence F [n]−F [n∞] ≥ 0 for any n ∈ X , with equality if and only if n =
n∞. This means that the minimizer of F is unique. �

We may notice that n∞ is radially symmetric if φ is radially symmetric,
as a consequence of the uniqueness result of Lemma 2.2.

We learn from the proof of [9, Lemma 23] that

max
|x|→∞

∣∣∣∣c∞+ M

2π
log |x|

∣∣∣∣<∞ if d = 2, max
|x|→∞

∣∣∣∣c∞− M

4π |x|
∣∣∣∣<∞ if d = 3,

and deduce from (4) that, as |x|→∞,

n∞ ∼ |x| M
2π e−φ if d = 2, n∞ ∼ e− M

4π |x|−φ if d = 3. (7)

Proposition 2.1. Let d = 2 or d = 3 and assume that the potential φ satis-
fies (C). Then the solutions (n∞,c∞) of (4) are such that c∞ is bounded if
d = 3 and ‖∇c∞‖Lq (R2) is bounded for any q ∈ (2,+∞] if d = 2.

Proof. From (7) and (C4), we know that n∞ is bounded outside of a large
centered ball of radius R > 0. Let us assume that |x| ≤ R and recall that

c∞(x) = κ3

∫
R3

e−c∞(y)−φ(y)

|x − y | d y if d = 3, with κ3 = M

4π
∫
R3 e−c∞−φd x

,

|∇c∞(x)| ≤ κ2

∫
R2

e−c∞(y)−φ(y)

|x − y | d y if d = 2, with κ2 = M

2π
∫
R2 e−c∞−φd x

.
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In dimension d = 3, it is enough to observe that c∞ = (−∆)−1n∞ ≤ 0 and
deduce the bound

0 ≤ c∞(x) ≤ κ3

∫
R3

e−φ(y)

|x − y | d y .

In dimension d = 2, we deduce from (7) and (C) that for R > 0 large
enough, there exists a constant κ> 0 such that

n∞(x) ≤ n∞(x)1|x|<R +κ1|x|≥R |x|−4 ,

which allows us to write

c∞(x) ≥− M

2π
log(2R)− κ

2π

∫
|y |≥R

log |x − y |
|y |4 d y

for any x ∈ R2 such that |x| ≤ R. Reinjecting this estimate in the expres-
sion of |∇c∞(x)| completes the proof. The bound on ‖∇c∞‖Lq (R2) follows
by observing that |∇c∞(x)| ∼ |x|−1 as |x|→+∞. �

2.2. Uniform bounds on the solution of (2). We establish bounds on the
solution n(t , ·) of (2) which are independent of t .

Lemma 2.3. Let d = 2 or d = 3 and assume that the potential φ satis-
fies (C). For any solution n of (2), there exists a constant C > 0 and a time
T > 0 such that

‖n(t , ·)‖Lp ≤C ∀ t ≥ T , ∀p ∈ (1,+∞] .

Proof. For any integer k, set n0,k = min(n0,k), then n0,k ∈ Lp (Rd ) for any
p ≥ 1. The solution n(t , ·) of the equation (2) with initial data n0,k is
in Lp (Rd ) for any t > 0 by the Maximum Principle. Since, by assump-
tion, |∇φ| satisfies a Lipschitz condition, there exists a constant C > 0
such that ∆φ≤C , and we have the estimate

1

p −1

d

d t

∫
Rd

n(t , x)p d x =−p
∫
Rd

|∇n|2 np−2 d x−
∫
Rd

np+1 d x+
∫
Rd

np∆φd x

≤−
∫
Rd

np+1 d x +C
∫
Rd

np d x .

Using Hölder’s inequality
(∫
Rd n d x

) 1
p
(∫
Rd np+1 d x

) p−1
p ≥ ∫

Rd np d x, we ob-
tain that ∫

Rd
np+1 d x ≥ M− 1

p−1

(∫
Rd

np d x

) p
p−1

With z(t , ·) = ∫
Rd n(t , ·)p d x, the problem reduces to the differential in-

equality
1

p −1
z ′ ≤−M− 1

p−1 z
p

p−1 +C z
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using
∫
Rd n0,k d x ≤ M . It is elementary to prove that

z(t ) ≤ (2C )p−1 M ∀ t ≥ 4C

and conclude that the bound

‖n(t , ·)‖Lp (Rd ) ≤ (2C )
p−1

p M
1
p

has a uniform upper bound in the limit as p →+∞. See [10] for further
details on a similar estimate. �

Corollary 2.1. Let d = 2 or d = 3 and assume that the potential φ satis-
fies (C). For any solution n of (2) with initial datum n0 ∈ L1+(Rd ) such that
F [n0] <+∞, there exists a constant C > 0 and a time T > 0 such that

‖∇c(t , ·)‖Lq (Rd ) ≤C ∀ t ≥ T , ∀q ∈ (2,+∞] .

Proof. The method is inspired from [11, Section 3]. If h = (−∆)−1ρ, then

|∇h(x)| ≤ 1

|Sd−1|
∫
Rd

ρ(y)

|x − y |d−1
d x

can be estimated by splitting the integral into two parts corresponding
to |x − y | ≤ 1 and |x − y | > 1. By applying twice Hölder’s inequality, we
deduce from

1

|Sd−1|
∫
‖x−y |<1

ρ(y)

|x − y |d−1
d y ≤ d

d
d+1 |Sd−1|− 1

d+1 ‖ρ‖Ld+1(R3)

1

|Sd−1|
∫
‖x−y |≥1

ρ(y)

|x − y |d−1
d y ≤ 1

|Sd−1| ‖ρ‖L1(Rd )

that

‖∇((−∆)−1ρ)‖L∞(Rd ) ≤ ‖ρ‖L1(Rd ) +d
d

d+1 |Sd−1|− 1
d+1 ‖ρ‖Ld+1(Rd ) (8)

for any ρ ∈ L1 ∩ Ld+1(Rd ). Applying it with ρ = n(t , ·) and c = (−∆)−1n
and using Minkowski’s inequality ‖∇c(t , ·)‖Lq (Rd ) ≤ ‖∇c(t , ·)−∇c∞‖Lq (Rd )+
‖∇c∞‖Lq (Rd ), the result follows from the estimate ‖∇c(t , ·)−∇c∞‖2

L2(Rd )
≤

2F [n0] together with Proposition 2.1 and Lemma 2.3. �

2.3. Convergence to stationary solutions. The next step is to establish
the convergence without rate of the solution of (2) to the stationary solu-
tion. For later purpose, let us recall the Aubin-Lions compactness lemma.
A simple statement goes as follows (see [16] for more details).

Lemma 2.4. (Aubin-Lions Lemma) Take T > 0, p ∈ (1,∞), and let ( fk )k∈N
be a bounded sequence of functions in Lp (0,T ; H), where H is a Banach
space. If ( fk )k∈N is bounded in Lp (0,T ;V ), where V is compactly imbedded
in H and if (∂ fk /∂t )k∈N is bounded in Lp (0,T ;V ′) uniformly with respect
to k ∈N, where V ′ is the dual space of V , then ( fk )k∈N is relatively compact
in Lp (0,T ; H).
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With this result in hand, we are in a position to prove the following
result.

Proposition 2.2. Suppose that d = 2 or 3. Let n be the solution of (2) and
assume that the potential φ satisfies (C). Then for any p ∈ [1,∞) and any
q ∈ [2,∞), we have

lim
t→∞‖n(t , ·)−n∞‖Lp (Rd ) = 0 and lim

t→∞‖∇c(t , ·)−∇c∞‖Lq (Rd ) = 0.

Proof. Since F [n(t , .)] is nonnegative and decreasing, by (6) we know that

lim
t→∞

∫ ∞

t
I [n(s, .)]d s = 0. (9)

This means that the sequence (nk ,ck )k∈N, defined by nk (t , ·) = n(t +k, ·),
ck = (−∆)−1nk , is such that ∇nk+nk∇ck+nk∇φ strongly converges to 0 in
L2(R+×Rd ). By lemma 2.4, this shows that (nk )k∈N is relatively compact
and converges, up to the extraction of a subsequence, to a limit n. Up
to the extraction of an additional subsequence, (ck )k∈N converges to c =
(−∆)−1n so that we may pass to the limit in the quadratic term and know
that

∇n +n∇c +n∇φ= 0, −∆c = n .

Since mass is conserved by passing to the limit, we conclude that n = n∞
and c = c∞. The limit is uniquely defined, so it is actually the whole fam-
ily (n(t , ·))t>0 which converges as t →+∞ to n∞ and limt→+∞F [n(t , ·)] =
F [n∞], then proving by the Csiszár-Kullback inequality that limt→∞ ‖n(t , ·)−
n∞‖L1(Rd ) = 0 (see [? ]) and limt→∞ ‖∇c(t , ·)−∇c∞‖L2(Rd ) = 0. The result
for any p ∈ [1,∞) and any q ∈ [2,∞) follows by Hölder interpolation. �

2.4. Uniform convergence in L∞ norm in the harmonic potential case.
The issue of the convergence of n(t , ·) to n∞ and of ∇c(t , ·) to ∇c∞ in
L∞(Rd ) was left open in Section 2.3. As in the case of the Keller-Segel
model, see [10], better results can be achieved in the case of the harmonic
potential.

Proposition 2.3. Set d = 2, φ = µ
2 |x|2, for some µ > 0. Then for any solu-

tion n of (2) is such that

lim
t→+∞‖n(t , .)−n∞‖L∞(Rd ) = 0.

Proof. The main tool is the Duhamel formula: see [11] for more details.
We have

n(t , x) =
∫
R2

K (t , x, y)n0(y)d y−
∫ t

0

∫
R2

∇K (t − s, x, y) ·n(s, y)∇c(s, y)d y d s
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where K (t , x, y) is the Green function of the Fokker-Planck equation

∂n

∂t
=∆n +µ∇(nx)

which is

K (t , x, y) := µ

2π (1−e−2t )
e
−µ|x−e−t y |2

2(1−e−2t )

and from the semi-group property we get that

n(t +1, x) =
∫
R2

K (t , x, y)n(t , y)d y

−
∫ t+1

t

∫
R2

∇K (t +1− s, x, y) ·n(s, y)∇c(s, y)d y d s . (10)

Notice that the stationary solution n∞ is a fixed-point of the evolution
map, that is,

n∞(x) =
∫
R2

K (t , x, y)n∞(y)d y

−
∫ t+1

t

∫
R2

∇K (t +1− s, x, y) ·n∞(y)∇c∞(y)d yd s . (11)

Buy doing the difference between (10) and (11), we have

n(t +1, x)−n∞(x)

=
∫
R2

K (t , x, y)
(
n(t , y)−n∞(y)

)
d y

−
∫ t+1

t

∫
R2

∇K (t +1− s, x, y)
(
n(s, y)∇c(s, y)d y −n∞(y)∇c∞(y)

)
d s .

Hence

‖n(t +1, x)−n∞(x)‖L∞(R2) ≤ ‖K (t , x, y)‖L∞(R2
x ;Lr (R2

y )) ‖n(t , x)−n∞‖L1(R2)

+
∫ 1

0
‖∇K (s, x, y)‖L∞(R2

x ;Lr (R2
y )) d s R(t )

where 1
p + 1

q + 1
r = 2 with p ∈ (2,∞), q ∈ [2,∞), r ∈ (1,2), and

R(t ) := sup
s∈(t ,t+1)

(
‖n(s, ·)‖Lp (R2) ‖∇c(s, ·)−∇c∞‖Lq (R2)

+‖∇c∞‖Lq (R2) ‖n(s, ·)−n∞‖Lp (R2)

)
. (12)

Notice that

∇K = µ2 (e−t y −x)

2π (1−e−2t )
e
−µ |x−e−t y |2

2(1−e−2t )
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allows us to compute

‖∇K ‖Lr (R2
y ) =

µ2

2π (1−e−2t )

(∫
R2

|x|r e
− µr |x|2

2(e2t −1) d x

) 1
r

= κ(r )e3t
(

e2t −1

µ

)− 3
2+ 1

r

where κ(r ) =
(∫ ∞

0 xr e− 1
2 x2

d x
) 1

r
. So ‖∇K ‖Lr (R2

y ) is integrable in t ∈ (0,1) if

and only if 1 ≤ r < 2. From Proposition 2.2, R(t ) converges to 0, which
completes the proof. �

3. COERCIVITY RESULT OF QUADRATIC FORMS

In this section, we study the quadratic forms associated with the free
energy F and the Fisher information I when we Taylor expand these
functionals around the stationary solution (n∞,c∞) defined by (4). Let us
consider a smooth perturbation n = f n∞ of n∞ such that

∫
Rd f n∞ d x = 0

and suppose that g c∞ := (−∆)−1( f n∞). We define

Q1[ f ] := lim
ε→0

2

ε2
F [n∞ (1+ε f )] =

∫
Rd

f 2 n∞ d x +
∫
Rd

|∇(g c∞)|2 d x ,

Q2[ f ] := lim
ε→0

2

ε2
I [n∞ (1+ε f )] =

∫
Rd

|∇( f + g c∞)|2 n∞ d x .

3.1. A spectral gap inequality. According to [1, Section 3.2], if the poten-
tial φ satisfies (C1), (C2) and (C3), then there exists a positive constant
C?, such that∫

Rd
|∇h|2 n∞ d x ≥C?

∫
Rd

h2 n∞ d x

∀ f ∈ H1(Rd n∞ d x) such that
∫
Rd

h n∞ d x = 0. (13)

Here n∞ is the stationary solution given by (4).

Proposition 3.1. Let d = 2 or d = 3 and assume that the potential φ sat-
isfies (C). Then for any f ∈ H1(Rd ,n∞ d x) such that

∫
Rd f n∞ d x = 0, we

have

Q2[ f ] ≥C?Q1[ f ] .

Proof. We apply (13) to h(x) = f (x)+ g c∞(x)− 1
M

∫
Rd g c∞ n∞ d x. Notice

that
∫
Rd h(x)n∞ d x = 0 from

∫
Rd f n∞ d x = 0 and

∫
Rd n∞(x)d x = M . So
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we obtain that

Q2[ f ] =
∫
Rd

|∇( f + g c∞)|2 n∞ d x

≥C?

∫
Rd

( f + g c∞)2 n∞ d x − C?

M

(∫
Rd

g c∞ n∞ d x

)2

=C?

∫
Rd

f ( f + g c∞)n∞ d x +C?

∫
Rd

g c∞( f + g c∞)n∞ d x

− C?

M

(∫
Rd

g c∞ n∞ d x

)2

=C?Q1[ f ]+C?

∫
Rd

f n∞ g c∞ d x +C?

∫
Rd

(g c∞)2 n∞ d x

− C?

M

(∫
Rd

g c∞ n∞ d x

)2

.

Let us study the term
∫
Rd f n∞ g c∞ d x. Obviously f n∞ is in L2(Rd ) be-

cause n∞ is bounded. Moreover, for any p ∈ (1,2), from Hölder’s inequal-
ity, we infer that∫

Rd
| f |p np

∞ d x ≤
(∫
Rd

f 2 d x

) p
2

(∫
Rd

n
2p

2−p
∞ d x

) 2−p
2

<∞

because n∞ ∈ L1 ∩ L∞(Rd ). When d = 3, we directly obtain from the
Hardy-Littlewood-Sobolev inequality that

∫
Rd f n∞ g c∞ d x is well defined

and equal to
∫
Rd |∇g c∞|2 d x. When d = 2, by log-Hölder interpolation,

| f n∞| log | f n∞| is integrable. From the logarithmic Hardy-Littlewood-
Sobolev inequality (see [? ]), we also know that

∫
Rd f n∞ g c∞ d x is well

defined and learn from [9] that the function ∇(g c∞) is bounded in L2(R2)
using the fact that

∫
Rd f n∞ d x = 0. In a word, this means that∫
Rd

f n∞ g c∞ d x =
∫
Rd

|∇g c∞|2 d x

for d = 2 or 3. Next, let us notice that

C?

∫
Rd

(g c∞)2 n∞ d x − C?

M

(∫
Rd

g c∞ n∞ d x

)2

= C?

M

∫
Rd

(g c∞)2 n∞ d x
∫
Rd

n∞ d x − C?

M

(∫
Rd

g c∞ n∞ d x

)2

is nonnegative by Hölder’s inequality. Altogether, we conclude that

Q2[ f ] ≥C?Q1[ f ]+C?

∫
Rd

|∇(g c∞)|2 d x ≥C?Q1[ f ] .

�
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3.2. Optimal spectral gap in a special case. As a conclusion, let us give
the optimal coercivity constant in the special case that the dimension d =
2 and the harmonic function φ= µ

2 |x|2,µ> 0,

Lemma 3.1. Suppose that d = 2, φ = µ
2 |x|2, where µ > 0. Then for any

f ∈ H1(R2,n∞ d x) such that
∫
R2 f n∞ d x = 0, we have

Q2[ f ] ≥µQ1[ f ] .

Proof. We establish the proof into three steps.

Step 1. Radially symmetric functions and cumulated densities. We first
consider the case of a spherically symmetric function f . The probelm is
reduced to solving an ordinary differential equation, for which we use a
reformulation in terms of cumulated densities. Let

Φ(s) := 1

2π

∫
B(0,

p
s)

n∞(x)d x , φ(s) := 1

2π

∫
B(0,

p
s)

( f n∞)(x)d x

and

Ψ(s) := 1

2π

∫
B(0,

p
s)

c∞(x)d x , ψ(s) := 1

2π

∫
B(0,

p
s)

(g c∞)(x)d x .

Notice that n∞ and c∞ are both radial, so they can be regarded as func-
tions of r = |x|. We can easily infer that

n∞(
p

s) = 2Φ′(s) , n′
∞(

p
s) = 4

p
sΦ′′(s)

and
c∞(

p
s) = 2Ψ′(s) , c ′∞(

p
s) = 4

p
sΨ′′(s) .

The Poisson equation −psc ′∞(
p

s) =Φ(s) can henceforth be rephrased as

−4 sΨ′′ =Φ (14)

while the equation for the density,

n′
∞(

p
s)+µpsn∞(

p
s)+n∞(

p
s)c ′∞(

p
s) = 0,

is now equivalent to

Φ′′+ µ

2
Φ′+2Φ′Ψ′′ = 0. (15)

After eliminating Ψ′′ from (14) and (15), we can get that Φ satisfies the
ordinary differential equation

Φ′′+ µ

2
Φ′− 1

2 s
ΦΦ′ = 0 (16)

with initial data Φ(0) = 0 and Φ′(0) = a. The solutions of the ODE are
parameterized in terms of a > 0.

Let us consider the linearized operator

L f := 1

n∞
∇· [ f n∞∇(g c∞)

]
.
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If f solves −L f =λ f , computations similar to the above ones show that

(n∞ f )(
p

s) = 2φ′(s) , (n∞ f ′)(
p

s) = 4
p

sφ′′(s)−2
n′∞
n∞

φ′(s)

which is equivalent to

(g c∞)(
p

s) = 2ψ′(s) , (g c∞)′(
p

s) = 4
p

sψ′′(s) . (17)

Using (17), we find that

−ps (g c∞)′(
p

s) =φ(s) ,
p

s
(
(n∞ f ′)(

p
s)+n∞(g c∞)′(

p
s)

)+λφ(s) = 0.

After eliminatingΨ and ψ, we get thatΦ and φ satisfy the equation

φ′′+ µ s −Φ
2 s

φ′+ λ−2Φ′

4 s
φ= 0. (18)

Next we check that φ = sΦ′(s) is a nonnegative solution of (18) with λ =
2µ. In fact, (18) is equivalent to

2 sφ′′+ (µ s −Φ)φ′+ (µ−Φ′)φ= 0

which is (
2(sφ′−φ)+ (µ s −Φ)φ

)′ = 0.

notice that when φ= sφ′,

2(sφ′−φ)+ (µ s −Φ)φ= s
(
2 sΦ′′+ (µ s −Φ)φ′)= 0.

Hence λ= 2µ is an eigenvalue of the linearized operator L f .

Step 2. Characterization of the radial ground state. Let us prove that
2µ is the lowest positive eigenvalue corresponding to a radial eigenfunc-
tion. Assume by contradiction that L admits an eigenvalue λ ∈ (0,2µ)
with eigenfunction f1 and define the corresponding function φ1 that sat-
isfy (18). Let us consider various cases depending on the zeros of φ.

• Assume that φ1 is always strictly positive or strictly negative in (0,∞).
Suppose without losing generality that φ1(s) > 0 in (0,∞). On the one
hand, if we multiply (18) written for the eigenvalue 2µ and for the eigen-
value λ respectively by φ1 and φ, we obtain that

φ1φ
′′− Φ

′′

Φ′ φ1φ
′+ 2µ−2Φ′

4 s
φ1φ= 0,

φφ′′
1 −

Φ′′

Φ′ φφ
′
1 +

λ−2Φ′

4 s
φφ1 = 0.

By subtracting the second identity from the first one, we have

φ′
1φ(s)−φ1φ

′(s)

Φ′(s)

∣∣∣∞
0
=

∫
(0,∞)

2µ−λ
4 s

φφ1 d s > 0. (19)
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On the other hand, define

h(s) := 1

2π

∫
B(0,

p
s)

f 2
1 n∞(r )dr .

From the cumulated mass formulation of Step 1, we find that

h′(s) = 1

2
f 2

1 n∞(
p

s) = 2Φ′(s)2

n∞(
p

s)

is in L1(0,∞). So, for some constant κ> 0, we have

φ1(s)2 =
(∫

(s,∞)
φ′

1(s)d s

)2

≤
(∫

(s,∞)

φ′
1(s)2

n∞(
p

s)
d s

) (∫
(s,∞)

n∞(
p

s)d s

)
≤ κ

∫
(s,∞)

s−
α
2 e− s

2 d s ≤ κe−µ s
4

when s is large enough. As a consequence, we known that

lim
s→∞φ1(s) = lim

s→∞φ(s) = lim
s→∞ sφ(s) = 0.

We also claim that
lim

s→∞ sφ′
1(s) = 0. (20)

In fact, for any large enough x1, x2, by integrating on (x1, x2), we have

φ′
1(x2)−φ′(x1)+ µ

2

(
φ1(x2)−φ1(x1)

)− Φ

2 s

(
φ1(x2)−φ1(x1)

)
−

∫ x2

x1

φ1
sφ′−Φ

2s2
d s +

∫
(x1.x2)

λ−Φ′

4 s
φ1 d s = 0.

Using again that φ1(s) ≤ κe−µ s
4 , we get that there exists a constant c2

which is independent of x1 and x2, such that |φ′
1(x2)−φ′

1(x1)| ≤ c2. So
φ′

1(s) is bounded. As a result, φ′′
1(s) is also bounded, with a bound c3.

If (20) is not true, then there exists a constant c1 and a strictly increas-
ing, diverging sequence (sk )k∈N such that sk φ

′
1(sk ) ≥ c1. For any interval

(sk ,∞), we have that
c1

sk
≤C

√
e−µ sk

4

which is impossible as k →∞. So from (20), we obtain that

lim
s→∞

φ′
1φ(s)−φ1φ

′(s)

Φ′(s)
= lim

s→∞ sφ′
1−φ1

(
1+ sφ′′

Φ′

)
= lim

s→∞ sφ′
1−φ1

(
1− µ s −Φ

2

)
= 0.

(21)
From (19), (21), we have

0 = φ′
1φ(s)−φ1φ

′(s)

Φ′(s)

∣∣∣∞
0
=

∫
(0,∞)

2µ−λ
4 s

φφ1 d s > 0

a contradiction.



16 XINGYU LI

• Assume that φ1 has a zero in (0,∞). By Sturm comparison theorem
(see [13]), we get that

φ(s) = sΦ′(s)

has a zero in (0,∞). It means that

n∞(
p

s) = 2Φ′(s)

has a zero between (0,∞). But according to the definition of n∞, it is
impossible. Hence we have shown that 2µ is the best constant.

Step 3. Spherical harmonics decomposition.
We now deal with the non-radial modes of L . Notice that n∞ and c∞

are radial functions: we can use a spherical harmonics decomposition
as in [11]. In dimension d = 2, we use radial coordinates and a Fourier
decomposition for the angular variables. On the k th mode we can write
the operator L corresponding to the radial functions f and g as

− f ′′− f ′

r
+ k2 f

r 2
+ (
µr + c ′∞

)(
f ′+ (g c∞)′

)−n∞ f =λ f ,

−(g c∞)′′− (g c∞)′

r
+ k2g c∞

r 2
= n∞ f ,

for any integer k ≥ 1, It is obvious that in non-radial functions, k = 1
realizes the infimum of the spectrum of L . We now check that when
k = 1, λ = µ and f = −n′∞/n∞ is an eigenstate. In fact, we can choose
g c∞ =−c ′∞, so that f =µr + c ′∞, and notice that

−c ′′∞− c ′∞
r

= n∞ , f ′+ f

r
= 2µ+ c ′′∞+ c ′∞

r
= 2µ−n∞ ,

for the first equation, and

− f ′′− f ′

r
+ k2 f

r 2
+ (
µr + c ′∞

)(
f ′+ (g c∞)′

)+n∞ f

=−
(

f ′+ f

r

)′
−n′

∞+µ(
µr + c ′∞

)=µ f

for the second equation, while

−(g c∞)′′− (g c∞)′

r
+ k2g c∞

r 2
=−

(
c ′′∞+ c ′∞

r

)
=−n′

∞ = n∞ f .

It is easy to prove that f is nonnegative and that f1(r ) := r f (r ) solves
−L f1 = (λ+µ) f1 among the radial functions: we are back to the Step
2and find that λ=µ.

Let us summarize: the spectral gap λ associated with the operator L

is achieved either among radial functions and λ = 2µ in this sense, or it
is achieved among the functions in one of the non-radial components
(in the sense of harmonics decomposition), which has to be the k = 1
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component, and in that case we have found that λ+µ= 2µ, that is λ=µ.
Obviously λ=µ is optimal, which completes the proof of Lemma 3.1. �

4. LINEARIZED EQUATION AND THE LARGE TIME BEHAVIOUR

This section is primarily devoted to the proof Theorem 1.1 but also col-
lects some additional results.

4.1. The scalar product and the linearized operator. We adapt the strat-
egy of [11]. Notice that〈

f1, f2
〉

:=
∫
Rd

f1 f2 n∞ d x +
∫
Rd

n∞ f1
(
Gd ∗ ( f2 n∞)

)
d x (22)

is a scalar product on the admissible set

A :=
{

f ∈ L2(Rd , n∞ d x) :
∫
Rd

f n∞ d x = 0
}

because Q1[ f ] = 〈
f , f

〉
. Now come back to the Poisson-Nernst-Planck

system with confinement (2). For any x ∈Rd and t ≥ 0, let us set

n(t , x) = n∞(x)
(
1+ f (t , x)

)
, c(t , x) = c∞

(
1+ g (t , x)

)
and rewrite the evolution problem in terms of f and g as

n∞
∂ f

∂t
=∆(n∞ f )+∇·(n∞ f ∇φ)+∇·(n∞∇(c∞ g )+n∞ f ∇c∞+n∞ f ∇(c∞ g )

)
.

After observing that

∆(n∞ f )+∇· (n∞ f ∇φ)+∇· (n∞ f ∇c∞) =∇· (n∞∇ f ) ,

it turns out that

n∞
∂ f

∂t
=∇· (n∞∇ f )+∇· (n∞∇(c∞ g )

)+∇· (n∞ f ∇(c∞ g )
)

.

Hence ( f , g ) solves
∂ f

∂t
−L f = 1

n∞
∇· [ f n∞∇(g c∞)

]
−∆(g c∞) = f n∞

x ∈Rd , t > 0 (23)

for any x ∈Rd , t ≥ 0, where the linear operator L is defined by

L f := 1

n∞
∇[

n∞∇(
f + g c∞

)]
.

Lemma 4.1. The linearized operator L is self-adjoint on A with the scalar
product defined in (22), which means that

〈
f1,L f2

〉 = 〈
L f1, f2

〉
for any

f1, f2 ∈A , and moreover,

−〈
f ,L f

〉=Q2[ f ]

for any f ∈A .
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Proof. Set g1c∞ = (−∆)−1( f1 n∞), g2 c∞ = (−∆)−1( f2 n∞). By direct com-
putation, we obtain that〈
L f1, f2

〉= ∫
Rd

f2∇· (n∞∇( f1 + g1 c∞)
)

d x +
∫
Rd

g2 c∞∇· (n∞∇( f1 + g1c∞)
)

d x

=−
∫
Rd

n∞∇( f1 + g1 c∞) ·∇( f2 + g2 c∞)d x ,

which proves the lemma. �

4.2. Proof of Theorem 1.1.

Proof. For the equations (23), we find that

d

d t
Q1[ f ] =−2Q2[ f ]−2λ(t ) with λ(t ) :=

∫
Rd

∇( f + g c∞) · f n∞∇(g c∞)d x .

According to the Cauchy-Schwarz inequality, we have that

(λ(t ))2 ≤Q2[ f ]
∫
Rd

f 2n∞ d x ‖∇(g c∞)‖2
L∞(Rd )

≤Q2[ f ]Q1[ f ]‖∇(g c∞)‖2
L∞(Rd )

.

So we obtain

d

d t
Q1[ f ] ≤−2

(
1− ‖∇(g c∞)‖L∞(Rd )√

C∗

)
Q2[ f ] ≤−2C∗

(
1− ‖∇(g c∞)‖L∞(Rd )√

C∗

)
Q1[ f ] .

We know from Proposition 2.2 that limt→+∞ ‖∇(g c∞)‖L∞(Rd ) = 0, which
proves that

lim sup
t→∞

e2(C∗−ε) Q1[ f (t , ·)] <∞
for any ε ∈ (0,C∗). It remains to prove that we can also obtain this esti-
mate with ε= 0.

Suppose that C∗ is the optimal constant without losing generality. Let
us give a more accurate estimate of λ(t ). If d = 2, according to (8) applied
to ρ = f n∞, we have

‖∇(g c∞)‖L∞ ≤C (‖ f n∞‖L1 +‖ f n∞‖L3 )

where

‖ f n∞‖L1 ≤
p

M ‖ f
p

n∞‖L2 , ‖ f n∞‖L3 ≤ ‖ f
p

n∞‖
2
3

L2 ‖ f n∞‖
1
3
L∞ ‖n∞‖

1
3
L∞ .

Notice that from ‖ f
p

n∞‖2
L2 ≤Q1[ f ], we deduce that

‖∇(g c∞)‖L∞ =O
(
Q1[ f (t , ·)]

) 1
3 (24)

which leads to

λ(t ) ≤O
(
Q1[ f (t , ·)]

4
3

)
as t →+∞ .
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As a result, we read from

d

d t
Q1[ f ] ≤−2C?Q1[ f ]+O

(
(Q1[ f ])

4
3

)
that

limsup
t→∞

e2C?t Q1[ f (t , ·)] <∞ .

When d = 3, we have the estimate

‖∇(g c∞)‖L∞ ≤C
(‖ f n∞‖L1 +‖ f n∞‖L4

)
and similarly obtain that

‖ f n∞‖L1 ≤
p

M ‖ f
p

n∞‖L2 , ‖ f n∞‖L4 ≤ ‖ f
p

n∞‖
1
2

L2 ‖ f n∞‖
1
2
L∞ ‖n∞‖

1
4
L∞ .

Using again ‖ f
p

n∞‖2
L2 ≤Q1[ f ], we have

‖∇(g c∞)‖L∞ =O
(
Q1[ f (t , ·)]

) 1
4 (25)

which allows us to write that

λ(t ) ≤O
(
Q1[ f (t , ·)]

5
4

)
as t →+∞ .

We conclude as above, which completes the proof of Theorem 1.1. �

4.3. Uniform rate of convergence. Let us give additional results on the
convergence in various norms of the solution of (2) to the stationary so-
lution.

Corollary 4.1. Under the assumptions of Theorem 1.1, if φ(x) = 1
2 |x|2, the

solution n of (2) is such that

‖n(t , ·)−n∞‖Lp =O
(
e− t

p

)
and ‖∇c(t , ·)−∇c∞‖Lq =O

(
e− t (q+2d)

(d+1) q

)
as t → +∞, for any p ∈ (1,∞) and any q ∈ (2,∞). Additionally, if d = 2,
then

‖n(t , ·)−n∞‖L∞ =O
(
e−λt

)
as t →+∞, for any λ< 1.

Proof. From the Cauchy-Schwarz inequality, we read that

‖n(t , ·)−n∞‖L1(Rd ) ≤
(
‖n∞‖L1(Rd )

∫
Rd

|n(t , ·)−n∞|2
n∞

d x

) 1
2

≤
p

C M e−t

for some C > 0 if t is taken large enough, and we also know also that

‖n(t , ·)−n∞‖Lp (Rd ) =O
(
e− t

p

)
(26)

for any p ∈ [1,∞). By definition of Q1[ f ], we have

‖∇c(t , ·)−∇c∞‖L2(Rd ) ≤
p

C e−t
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for some C > 0 if t is taken large enough, according to Lemma 3.1. More-
over, according to (24), (25) and Theorem 1.1, we obtain that

‖∇c(t , ·)−∇c∞‖L∞(Rd ) =O
(
e− t

d+1

)
. (27)

This proves that

‖∇c(t , ·)−∇c∞‖Lq (Rd ) =O

(
e− t (q+2d)

(d+1)q

)
for any q ∈ [2,∞) by interpolating between (26) and (27).

The proof of the case d = 2 is inspired by [11, Remark 5]. We reconsider
R(t ) defined in (12) in Section 2 with p = 7r

5r−4 , q = 7r
2r−3 . We obtain from

Corollary 4.1 that

‖n(t , ·)−n∞‖L∞(R2) =O
(
e− 5r−4

7r t
)

.

This is the first step of a proof by induction. If

‖n(t , ·)−n∞‖L∞(R2) =O
(
e−at ) ,

then one has

‖n(t , ·)−n∞‖L∞(R2) =O
(
e− 5r−4+(2r+4)a

7r t
)

.

By iterating this estimate infinitely many times, we finally have

‖n(t , ·)−n∞‖L∞(R2) =O
(
e−λt

)
for any λ< 1. The proof of the corollary is complete. �

4.4. Intermediate asymptotics of the Nernst-Planck equation with Pois-
son term. Let us come back to the equation (1). The self-similar solution
of (1) has the expression

u∞(x, t ) = 1

1+2t
n∞

(
1

2
log(1+2t ),

xp
1+2t

)
, (28)

v∞(x, t ) = c∞
(

1

2
log(1+2t ),

xp
1+2t

)
, (29)

where (n∞,c∞) are the stationary solutions of (2) given by (4) with the
harmonic potential φ(x) = 1

2 |x|2. Using Theorem 1.1 and Corollary 4.1,
we achieve a result on the intermediate asymptotics for the solutions of
the Nernst-Planck equation with Poisson term in absence of any external
potential of confinement.

Theorem 4.1. Assume that u solves (1) with initial datum u(0, ·) = n0 ∈
L2+(n−1∞ d x),

∫
Rd n0 d x = M, and F [n0] <∞. Let us consider the self-similar

solution defined by (28) and (29) of mass M. Then, as t →+∞, we have
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(i) for any p ∈ (1,∞) and any λ< 1,

‖u(t , ·)−u∞‖L1(R2) =O
(
(1+2t )−

1
2

)
,

‖u(t , ·)−u∞‖Lp (R2) =O

(
(1+2t )−

λ
2 −

d(p−1)
2p

)
,

(ii) for any q ∈ (2,∞) and any λ< 1,

‖∇v(t , ·)−∇v∞‖L2(R2) =O
(
(1+2t )−1+ d

4

)
,

‖∇v(t , ·)−∇v∞‖Lq (R2) =O
(
(1+2t )−

λ+1
2 + d

2q

)
.
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