N

N

The Inductive Constraint Programming Loop
Christian Bessiere, Luc de Raedt, Tias Guns, Lars Kotthoff, Mirco Nanni,
Siegfried Nijssen, Barry O’Sullivan, Anastasia Paparrizou, Dino Pedreschi,

Helmut Simonis

» To cite this version:

Christian Bessiere, Luc de Raedt, Tias Guns, Lars Kotthoff, Mirco Nanni, et al.. The Inductive
Constraint Programming Loop. Christian Bessiere; Luc De Raedt; Lars Kotthoff; Siegfried Nijssen;
Barry O’Sullivan; Dino Pedreschi. Data Mining and Constraint Programming - Foundations of a Cross-
Disciplinary Approach, LNCS (10101), Springer, pp.303-309, 2016, 978-3-319-50136-9. 10.1007/978-
3-319-50137-6_ 12 . hal-02310649

HAL Id: hal-02310649
https://hal.science/hal-02310649
Submitted on 10 Oct 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02310649
https://hal.archives-ouvertes.fr

Extended Abstract:
The Inductive Constraint Programming Loop

Christian Bessiere!, Luc De Raedt?, Tias Guns?, Lars Kotthoff?,
Mirco Nanni?, Siegfried Nijssen?®, Barry O’Sullivan®, Anastasia
Paparrizou!, Dino Pedreschi?, and Helmut Simonis®

LCNRS, University of Montpellier, France
2DTAI, KU Leuven, Belgium
3Insight, University College Cork, Ireland
4University of Pisa, Italy
>Universiteit Leiden, The Netherlands

Abstract

Constraint programming is used for a variety of real-world optimiza-
tion problems, such as planning, scheduling and resource allocation prob-
lems. At the same time, one continuously gathers vast amounts of data
about these problems. Current constraint programming software does not
exploit such data to update schedules, resources and plans. We propose
a new framework, that we call the Inductive Constraint Programming
(ICON) loop. In this approach data is gathered and analyzed systemati-
cally in order to dynamically revise and adapt constraints and optimiza-
tion criteria. Inductive Constraint Programming aims at bridging the gap
between the areas of data mining and machine learning on the one hand,
and constraint programming on the other hand.

This chapter is an extended abstract of

Christian Bessiere, Luc De Raedt, Tias Guns, Lars Kotthoff, Mirco
Nanni, Siegfried Nijssen, Barry O’Sullivan, Anastasia Paparrizou,
Dino Pedreschi, Helmut Simonis. The Inductive Constraint Pro-
gramming Loop. CoRR, abs/1510.03317, 2015.
http://arxiv.org/abs/1510.03317

1 Introduction

Machine Learning/Data Mining (ML/DM) and Constraint Programming (CP)
are central to many application problems. ML is concerned with learning func-
tions/patterns characterizing some training data whereas CP is concerned with

finding solutions to problems subject to constraints and possibly an optimization
function.

The problem with current technology is that the problems of data analy-
sis and constraint satisfaction/optimization have almost always been studied
independently and in isolation. Indeed, there exist a wide variety of success-
ful approaches to analysing data in the field of ML, DM and statistics, and
at the same time, advanced techniques for addressing constraint satisfaction
and optimization problems have been developed in the CP community. Over
the past decade a limited number of isolated studies on specific cases has indi-
cated that significant benefits can be obtained by connecting these two fields
[EF01, XHHLO08, DGN08, BHO09, KBC10, CJSS12|, but so far a truly general,
integrated and cross-disciplinary approach is missing.

CP technology is used to solve many types of constraint satisfaction and
optimization problems, such as in power companies generating and distributing
electricity, in hospitals planning their surgeries, and in public transportation
companies scheduling buses. Despite the availability of effective and scalable
solvers, current approaches are still unsatisfactory. The reason is that when us-
ing CP technology to solve these applications, the constraints and criteria, that
is, the model, must be specified statically. However, in reality often this model
needs to be revised over time. The revision can be needed to reflect changes
in the environment due to external events that impact the problem. The revi-
sion can also be needed because the execution of the solution generated by the
model has modified the characteristics of the problem. Finally the revision can
be needed simply because the original model did not capture correctly the prob-
lem. Observing the impact of the solution allows us to correct or improve the
model. Therefore, there is an urgent need for improving and revising a model
over time based on data that is continuously gathered about the performance
of the solutions and the environment they are used in. The CP community has
extended the basic constraint satisfaction and optimization problems to better
tackle changing environments. The dynamic constraint satisfaction approach
([DD88]) allows the addition/retraction of constraints from the initial model.
This approach does not predict the changes from data, but rather the addi-
tion/retraction of constraints is performed by the user. The online/stochastic
constraint programming approach ([BH04, Wal02]) offers a framework to deal
with unknown future events, such as customer requests. It builds a finite set
of future scenarios, e.g. using sampling from a known distribution, and the
optimization problem is then defined over each of the scenarios. The framework
does not capture ways of using data, other than for the prediction of possible
scenarios of events.

In general, exploiting gathered data to modify and adjust any aspect of a
model is difficult and labor intensive with state-of-the-art solvers. As a conse-
quence, the data that is being gathered today in order to monitor the quality of
the produced solutions and to help evaluating the effect of possible adjustments
to the constraints or optimization criteria, is not fully exploited when changes in
a schedule or plan are needed. Hence, schedules and plans that are produced are
often suboptimal. This, in turn, leads to a waste of resources. Instead of using

data passively, data should be actively analysed in order to discover and update
the underlying regularities, constraints and criteria that govern the data.

In this chapter, we propose and formalize the new framework of inductive
constraint programming. This framework is based on what we call the Induc-
tive Constraint Programming (ICON) loop, which is an interaction between a
machine learning component (ML) and a constraint programming component
(CP). The ML component observes the world and extracts patterns. The CP
component solves a constraint satisfaction or optimization problem using these
patterns; its solution is applied to the world. We assume the world changes
over time, possibly due to the impact of applying our solution. This process is
repeated in a loop. Inductive constraint programming will serve the long-term
vision of easier-to-use and more effective tools for resource optimization and
task scheduling.

An introduction to Constraint Programming and Data Mining was already
given earlier in this book; the focus of this chapter is on introducing the formal-
ism behind the loop. Extensive examples of the loop can subsequently be found
in the subsequent chapters.

2 Inductive Constraint Programming Loop

The inductive constraint programming loop will cope with changes in the world
by iteratively solving a learning problem and a constraint problem. The loop is
composed of several components that interact with each other through writing
and reading operations. A visualization of the loop is given in Figure 1. We
introduce each of the elements in the loop in turn.

CP Component. An important element of the CP component is the con-
straint network. A constraint network N = (X, D, C, f) is composed of: a set
X of variables taking values in domain D. These variables are subject to con-
straints in the set C'. The optional evaluation function f takes as input an
assignment on X and returns a cost for it. A solution (optionally best solu-
tion) of NV is an assignment in D satisfying all the constraints in C' (optionally
minimizing f).

A solver Xsolve takes as input a constraint network and returns a solu-
tion/best solution or failure in case no solution satisfying all the constraints
exists.

The CP component is composed of the constraint network N = (X, D, C, f),
the constraint solver Xsolve, and a Solutions repository. Xsolve generates solu-
tions of N, or good/best solutions of N according to f, that it writes in the
Solutions repository. In case Xsolve is not able to produce any solution to be
applied to the world, the CP component notifies the ML, component by sending
information about the failure.

More details about CP can be found in the first chapter of this book.

1
l | CP-to-ML | !

Apply-to-WorId

ML
L=(E,H,t,loss)

Figure 1: The Inductive Constraint Programming loop

ML Component. A learning problem L = (E, H,t,loss) is composed of a set
E of examples, a hypothesis space H, the target function ¢ that one wants to
learn, and a loss function loss(FE, h,t) that measures the quality of a hypothesis
h € H w.r.t. dataset E and the target hypothesis t. The goal is to find a
hypothesis that minimizes the loss.

For example, given real-valued data £ C R? and real-valued labels identified
by target function ¢, where Ve € E : t(e) € R, the goal of linear regression
is to learn a linear function he : £ — R with coefficients ¢ that minimizes
the sum of squared errors between the predicted value and the observed value:
10ss(E, he,t) = Y ocp |he(€) —t(e)]* = Y ocp e - ¢ —t(e)|?. Many other loss
functions and hypothesis spaces have been defined in the literature.

The ML component is composed of the learning problem L = (E, H,t,loss),
the learner XLearn, and a Patterns repository. XLearn learns hypotheses ¢ (typ-
ically one) and writes them in the Patterns repository.

More information about data mining and machine learning can be found in
the second chapter of this book.

World. The World component is composed of a world W, an evaluation func-
tion eval_world, and a Observations repository. The world W can have its own

independent behavior, dynamically changing under the effect of time and the
effect of applying solutions of the Solutions repository. The solutions are evalu-
ated by the eval_world function and this feedback is stored in the Observations
repository.

Now that we have defined the basis of the inductive constraint programming
loop, we need to define the way the CP component, the ML component and the
world interact with each other. They interact through a set of reading/writing
functions.

An inductive constraint programming loop is composed of a world (W, eval_world),
a CP component (N, Xsolve), and an ML component (L, XLearn). The loop uses
the following channels of communication:

e function World-to-ML reads data and evaluations from the Observations
repository and updates the learning problem L, that will be used by XLearn
to learn a hypothesis h;

e function CP-to-ML is used to send feedback from the previous iteration of
the CP component to the ML component, e.g. when Xsolve cannot find
any satisfactory solution to be applied to the world;

e function World-to-CP reads data from the Observations repository that can
be used to directly update the constraint network N used by Xsolve;

e function ML-to-CP reads patterns from the Patterns repository and up-
dates the constraint network N used by Xsolve to produce solutions;

e function Apply-to-World takes solutions in the Solutions repository and
applies them to the world, if possible.

The following pseudo code demonstrates how these communication channels
are used in the inductive constraint programming loop:

Algorithm 1 Pseudo code of a loop cycle using the components.

function cYCLE(Observations, optional Solutions)
repeat
L, <+ World-to-ML(Observations)
L, < CP-to-ML(Solutions)
L < constructL(L,, L)
Patterns < applyXlearn(L)

N, < World-to-CP(Observations)
N, < ML-to-CP(Patterns)
N < constructN(N,, N,)
Solutions «+ applyXsolve(N)
until Apply-to-World(Solutions)
end function

Initially, World-to-ML is used to gather training data to the ML component.
These data can be feedback from previous executions of solutions of the CP

component on the world. The solution of the previous cycle can also directly
be used as well, through CP-to-ML. This is especially useful if the previous
solution could not be applied to the world, for example because the learned
patterns lead to an inconsistency. Using the output of World-to-ML and CP-
to-ML, the learning problem L can then be constructed, specific to the learner
at hand. Next, the learner is applied to L and patterns are obtained. These
patterns can be weights of an objective function, constraints, or any other type
of structural information that is part of the CP problem.

A similar process then happens for the CP component, the network is con-
structed using the output of World-to-CP and ML-to-CP, after which the solving
method is used and solutions are obtained.

These solutions are then applied to the world using Apply-to-World. As
mentioned before, it may be that the found solution (or non-solution) is not
applicable to the world. In that case, a new iteration of the loop is started
immediately which bypasses the world. Otherwise the solutions are applied to
the world, after which a new cycle with new observations can be started.

We can observe that there is no direct link between the ML component and
the world. Our framework is indeed devoted to solving combinatorial problems
such as scheduling and routing, revising them based on feedback from the world;
it does not aim to only classify or predict events in the world.

3 Illustrative Example

To illustrate the inductive constraint programming loop we will use a scheduling
setting that occurs in hospitals. This setting includes an ML component, a CP
component and a world component.

We will first describe the CP component. In this component we focus on
a task scheduling problem. The treatment of a patient typically involves the
execution of various tasks on this patient, such as executing scans, taking blood
tests, operating on the patient, physiotherapeutic sessions, and so on. These
tasks need to be executed in a well-defined order, and require the use of the
resources of the hospital for a certain amount of time. The overall scheduling
problem is how to schedule these tasks in the shortest amount of time possible,
using the limited resources of the hospital.

Important parameters of this scheduling problem hence include the resources
available in the hospital and the tasks that need to be executed. For each task,
it is important which resources need to be used, how many such resources are
needed, and for how long they need to be used.

Whereas for many patients it is clear which procedures need to be followed
before the patient can be discharged from the hospital, this is not the case
for the duration of these tasks: depending on parameters such as age or health
conditions, a certain task may take much longer for one patient than for another
patient.

The goal of the ML component is to address this challenge: its role is to
predict how long a task is estimated to take for a patient. This involves solving

a regression problem as identified earlier: for each given task for a patient, the
properties of the task and the patient, together with similar historic data and
the resulting durations, are used to predict the task duration, which is a real
number.

The world component executes the schedules; it produces data about pa-
tients and observations concerning the true durations of tasks.

Clearly, as the tasks are executed in the hospital, the predicted durations
may differ from the actual durations. Furthermore, new patients and hence new
tasks arrive. This means that the hospital needs to schedule tasks on a regular
basis. The patient data that is collected during each such iteration can here be
used to improve the quality of the predicted task durations. This makes it a
good example of the inductive constraint programming loop. Within this loop,
we can distinguish the following components and functions:

e function World-to-ML reads historical patient data and historical task du-
rations for these patients; furthermore, it reads the patients that are cur-
rently in the hospital and the tasks that need to be executed for these
patients;

e the ML component predicts the durations for the tasks that need to be
executed, using the historical data;

e function ML-to-CP reads the learned durations and updates the CP net-
work accordingly;

e function World-to-CP reads the tasks that need to be executed from the
world, as well as the resources available in the hospital;

e the CP component solves the updated scheduling problem;
e function Apply-to-World applies the resulting schedule in the world.

In this example, the function CP-to-ML is not used; it could be used, for instance,
if there is a preference to schedule nurses and doctors in similar teams or with
similar load or time-breaks from day-to-day.

Both components can be formalized using a CP language, such as the Mini-
Zinc language mentioned earlier.

The scheduling model and the machine learning model together define both
components of the inductive constraint programming loop. We here demon-
strated how a declarative, unified language could be used to model both the
learning problem and the solving problem. While a single language for both the
learning and solving is an appealing prospect, it is not a requirement for the
applicability of the inductive constraint programming loop.

4 Conclusion

The key idea in the inductive constraint programming (ICON) loop is that the
CP and ML components interact with each other and with the world in order to

adapt the solutions to changes in the world. This is an essential need in problems
that change under the effect of time, or problems that are influenced by the
application of a previous solution. It is also very effective for problems that are
only partially specified and where the ML component learns from observation
of applying a partial solution, e.g. in the case of constraint acquisition.

The subsequent chapters will provide a number of examples of the use of the

ICON loop.

References

[BBP15]

[BCOPO7]

[BHO04]

[BHO09)]

[CJSS12]

[DD8S]

[DGNOS]

A. Balafrej, C. Bessiere, and A. Paparrizou. Multi-armed bandits
for adaptive constraint propagation. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence (1J-
CAI 2015), pages 290-296, Buenos Aires, Argentina, 2015. AAAI
Press.

C. Bessiere, R. Coletta, B O’Sullivan, and M. Paulin. Query-driven
constraint acquisition. In Proceedings of the Twentieth International
Joint Conference on Artificial Intelligence (IJCAI'07), pages 44-49,
Hyderabad, India, 2007.

R. Bent and P. Van Hentenryck. Online stochastic and robust opti-
mization. In Proceedings of the 9th Asian Computing Science Con-
ference (ASIAN 04), pages 286-300, Chiang Mai, Thailand, 2004.
Springer.

C. Bessiere, E. Hebrard, and B. O’Sullivan. Minimising decision
tree size as combinatorial optimisation. In Proceedings of the 15th
International Conference on Principles and Practice of Constraint
Programming (CP 2009), pages 173-187, Lisbon, Portugal, 2009.
Springer.

E. Coquery, S. Jabbour, L. Sais, and Y. Salhi. A sat-based approach
for discovering frequent, closed and maximal patterns in a sequence.
In Proceedings of the 20th European Conference on Artificial Intelli-
gence (ECAI 2012), pages 258263, Montpellier, France, 2012. I0S
Press.

R. Dechter and A. Dechter. Belief maintenance in dynamic con-
straint networks. In Proceedings of the 7th National Conference on
Artificial Intelligence (AAAI-88), pages 37-42, St. Paul, MN, 1988.
AAAI Press / The MIT Press.

L. De Raedt, T. Guns, and S. Nijssen. Constraint programming
for itemset mining. In Proceedings of the 14th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining
(KDD), pages 204-212, Las Vegas, Nevada, 2008. ACM.

[EFO01]

[HKMO14]

[KBC10]

[MS14]

[TR13]

[Wal02]

[XHHLOS]

S.L. Epstein and E.C. Freuder. Collaborative learning for constraint
solving. In Proceedings of the 7th International Conference on Prin-
ciples and Practice of Constraint Programming (CP 2001), pages
46-60, Paphos, Cyprus, 2001. Springer.

B. Hurley, L. Kotthoff, Y. Malitsky, and B. O’Sullivan. Proteus:
A hierarchical portfolio of solvers and transformations. In Proceed-
ings of the 11th International Conference on Integration of AI and
OR Techniques in Constraint Programming (CPAIOR 2014), pages
301-317, Cork, Ireland, 2014. Springer.

M. Khiari, P. Boizumault, and B. Crémilleux. Constraint program-
ming for mining n-ary patterns. In Proceedings of the 16th Inter-
national Conference on Principles and Practice of Constraint Pro-
gramming (CP 2010), pages 552-567, St. Andrews, Scotland, 2010.
Springer.

K. Marriott and P.J. Stuckey. A minizinc tutorial.
http://www.minizinc.org/downloads/doc-latest/minizinc-tute.pdf,
2014.

T. Tulabandhula and C. Rudin. Machine learning with operational
costs. Journal of Machine Learning Research, 14:1989-2028, 2013.

T. Walsh. Stochastic constraint programming. In Proceedings of the
15th Eureopean Conference on Artificial Intelligence (ECAI’2002),
pages 111-115, Lyon, France, 2002. IOS Press.

L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Satzilla:
Portfolio-based algorithm selection for SAT. J. Artif. Intell. Res.
(JAIR), 32:565-606, 2008.

