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Abstract A reed-like instrument having two quasi-harmonic resonances, represented by a
4-dimensional dynamical system, is studied using the continuation and bifurcation software
AUTO. Bifurcation diagrams are explored with respect to the blowing pressure, with focus on
amplitude and frequency evolutions along the different solution branches.

Wind musical instruments are nonlinear dynamical systems with a large diversity of oscil-
lating behaviours. Among these, musicians know how to control their instrument in order to
select periodic oscillating regimes, which correspond to notes when their frequency is properly
adjusted. Understanding the conditions required to obtain the desired oscillating regime, in
terms both of control by the musician and of the acoustic properties of the instrument is an
interesting and intricate problem of nonlinear dynamics. In this study we focus on reed instru-
ments. The use of the AUTO continuation package allows to revisit and extend the analytical
approach proposed in [1].

Reed musical instruments can be described in terms of conceptually separate linear and
nonlinear mechanisms: a localized nonlinear element (the valve effect due to the reed) excites a
linear, passive acoustical multimode element (the musical instrument usually represented in the
frequency domain by its input impedance). The linear element in turn influences the operation
of the nonlinear element. The reed musical instruments are self-sustained oscillators. They
generate an oscillating acoustical pressure (the note played) from a static overpressure in the
player’s mouth (the blowing pressure).

A reed instrument having N acoustical modes can be described as a 2N-dimensional au-
tonomous nonlinear dynamical system [2]. For instance a reed-like instrument having two
quasi-harmonic resonances, represented by a 4-dimensional dynamical system, is considered in
this study, in order to be able to use the AUTO continuation method. The modulus of the
corresponding acoustic input impedance of the resonator is shown in figure 1. The acoustic
input impedance is defined in the frequency domain by the ratio between the pressure and the
volume flow at the input of the instrument, so that :

P(w) = Z(w)U(w), where w is the angular frequency. (1)

On the other hand, the reed-valve nonlinear behaviour can be modelled by the following poly-
nomial nonlinearity in the time domain, where the volume flow u(t) is defined as a function of
the acoustic pressure p(t) [2]:

u = ug + Ap + Bp* + Cp?, (2)



where ug is the mean volume flow and A, B and C are real numbers that depend on the control
of the musician.
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Figure 1: Modulus of the dimensionless input impedance of the resonator with respect to
frequency. The two resonances are quasi-harmonic: first resonance frequency 229Hz (left red
vertical line), second resonance frequency 463.5H z slightly higher than the octave 458 H z (right
red vertical line), corresponding to an inharmonicity of 0.012.

Bifurcation diagrams are explored with respect to the blowing pressure, with focus on
amplitude and frequency evolutions along the different solution branches (see examples on
figure 2). The ratio between the two acoustic resonance frequencies of the instrument (also
called inharmonicity) appears to be of crucial importance.
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Figure 2: Bifurcation diagrams corresponding to the case of an input instrument with a 15! peak
50% larger than the 2" one, like in figure 1. The ratio between the two resonance frequencies is
2.024, inharmonicity 0.012 (left) or 2.072, inharmonicity 0.036 (right). Top plots represent the
amplitude of the periodic oscillation branches with respect to the blowing pressure. Bottom
plots represent the frequency of the corresponding periodic solutions with respect to the blowing
pressure. Green (red) lines correspond to periodic oscillations resulting from the instability of
the first (second) acoustic resonance and are called 15" and 2"¢ registers respectively. Blue lines
correspond to periodic oscillations of the 1% register resulting from the period doubling of the
274 register.

The oral presentation will show how some of these results can be interpreted in terms of
the ease of playing of the reed instrument.
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