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Abstract. This extended abstract is a companion of the one called A Taylor series based continuation method for solutions
of Ordinary Differential Equations. It is shown how a quadratic framework allows to solve a large class of dynamical
systems. A brief introduction on the continuation method is followed by an explanation on the quadratic rewriting of systems
of equations. A few types of dynamical systems that can be treated using this framework are finally given.

Introduction

This paper emphasizes how a quadratic framework can handle a wide range of applications for the continuation

of dynamical systems. The continuation method used, the so-called Asymptotic Numerical Method (ANM) that

has first been described in [2], relies on a high-order Taylor series representation of the solution-branch. This

technique has already proven its efficiency for a lot of applications in enginering, mechanics or acoustics for

example. While some implementations relying on automatic differentiation do exist, see [1] for example, the

choice is made here to work with a quadratic framework. A generic implementation of this latest approach which

minimizes problem-dependent implementation has been developed [3]. A simplified scheme of it is represented

in figure 1. It is based on the numerical continuation of algebraic systems of the form

R(V ) = 0 (1)

where V ∈ R
n+1 and R(V ) ∈ R

n is an analytic function of its argument. This system is always written in a

quadratic format as a prerequisite of the method. Again, this formalism is not a constraint that we suffer but a

choice that allows to treat a very wide range of problems as shown in [5]. The system (1) can then be written

R̃(Ṽ ) = C + L(Ṽ ) +Q(Ṽ , Ṽ ) = 0 (2)

where Ṽ ∈ R
N+1, N ≥ n and C , L and Q are respectively a constant, a linear and a quadratic operator. This

step can be tough and some hints are given in the second section. Again, the key idea of the ANM is to compute

a high-order Taylor series development of the solution-branch. Let consider that Ṽ0 is a regular solution of the

system (2). Let Ṽ1 be a tangent vector at Ṽ0. The classical arc-length parameter a = Ṽ t

1 (Ṽ0 − Ṽ ) is introduced

and the solution-branch around Ṽ = Ṽ0 is written as a power series with respect to a

Ṽ (a) = Ṽ0 + aṼ1 + a2Ṽ2 + a3Ṽ3 + · · · (3)

The quadratic framework

The quadratic rewriting of the system allows to compute the terms in the development of the series explicitly with

discrete convolution for the non-linear terms (see [3] for some details about this section). If the solutions seeked

are periodic functions of time expanded in Fourier series as it is the case in this paper, the product of two variables

in the frequency domain is similarly represented by an explicit discrete convolution. Another huge advantage of

the quadratic rewriting is that the exact Jacobian matrix of the system (2) is known explicitly if the constant, linear

and quadratic operators are known, and can be derived automatically from these operators.

Rational variables

The equations with inversions y = 1

x
or monomials of degree more than two y = x3 can be rewritten either

implicitly yx = 1 or with the use of auxiliary variables

{

y − xr = 0
r − x2 = 0

respectively as detailed in [3].

Transcendental functions

Transcendental non-linearities like y = exp(x) require a specific treatment. The idea is to write the differential

form of this equation in a quadratic format. For this simple example, the differential form is dy = exp(x)dx. It

is easy to recast it using y = exp(x) to obtain dy = ydx. Apart for the term of the series (3) at order 0 that shall

still be computed using y = exp(x), all the terms of higher order can be computed with the differentiated form

which is quadratic. More details are given about these type of computation in the book [4].

Classes of systems that can be treated

The quadratic rewriting described in the previous section allows to treat a very wide range of dynamical systems

with the same continuation tool. For clarity this section is reduced to periodic solutions of dynamical systems,

but in the companion extended abstract, the case of static solutions, quasi-periodic solutions and transients will be

treated. For now, there are 5 different types of differential equations that have been treated.

The Ordinary Differential Equations (ODE), Differential-Algebraic Equations (DAE) and Implicit Differential

Equations (IDE) are illustrated through the same example of the pendulum, using three different formulations of

the problem.



Equations (E) Unknowns (X)

Type of the unknowns: 
Algebraic, Function of the time

Quadratic recast  of 
the equations (Eq)

If X(t) is periodic, quasi-periodic, or 
discretized on time samples  

(Eq) is projected 

on a suitable basis of representation: 
by Harmonic Balance Method (HBM), 

collocation, etc 

A quadratic algebraic system 
(Eq,alg) is obtained.

The continuation of this quadratic algebraic system (Eq,alg) is performed 

using the Asymptotic Numerical Method.

Figure 1: This scheme describes from a general perspective the implementation of the Asymptotic Numerical Method used in this work.

ODE : second order polar coordinates

This is the very classical equation of motion of the pendulum.

θ̈ + sin(θ) = 0 (4)

DAE : second order Cartesian coordinates

This projection on fixed axis of the equations of the motion leads to an algebraic equation to constrain the length

of the pendulum. In addition, the tension of the string T appears in the equations.






ẍ+ Tx = 0
ÿ + Ty − 1 = 0
x2 + y2 − 1 = 0

(5)

IDE : conservation of the energy

The pendulum is a conservative mechanical system meaning that its energy h is a constant of the motion. It leads

to this implicit differential equation:

1

2
θ̇2 + 1− cos(θ) = h (6)

Other types of systems

In addition to these three widespread types of systems, some very recent works have shown that equations with

fractional derivatives [6] or time-delayed variables could also be treated using the quadratic rewriting presented

in this paper.

Conclusion

The full paper corresponding to this extended abstract and to the companion extended abstract will show how to

take advantage from a quadratic rewriting to carry out the continuation of solutions of a large class of dynamical

systems. The method requires very few effort to switch between the different types of systems. Its implementation

is freely available online on a dedicated website http://manlab.lma.cnrs-mrs.fr/.
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