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Abstract 
Additive Manufacturing (AM) through a Laser Powder Bed Fusion (LPBF) process consists in building objects layer by 
layer, by deposing energy in metallic powder with a laser along a chosen path. Despite huge advantages, such as the 
freedom in the design, this manufacturing process causes defects in the resulting object. Choosing the laser path is of high 
significance, since it is tightly related to both the manufacturing speed and the temperature distribution in each layer. The 
design of the laser path is often based on optimizing parameters of existing patterns and combining them. A different 
approach is proposed here. Without presupposing any specific pattern, our method is based on shape optimization theory 
and a descent algorithm is drafted to adapt the path to the manufacturing requirements. 
Keywords: Shape Optimization, Additive Manufacturing, Selective Laser Melting, Laser Powder Bed Fusion, Laser Path 

1. Introduction  

The LPBF process consists in building objects layer by layer, according to the following scheme: metallic powder is 
regularly distributed and then a laser, moving along a planned trajectory, brings energy to melt the metal. The cooling 
brings the solidification and post-processes are finally applied. This method presents many advantages: complex designs 
can be manufactured and an adjusted producing is facilitated, getting free from the constraints of mass-production [3]. 
However, some very strict rules can’t be forgotten. Indeed, some supports have to be anticipated depending on the 
manufacturing angles, post-processes are mandatory to empty the object from the powder trapped in, to increase the item’s 
features or to remove residual stresses created by the process. These mechanical drawbacks are the focal point of this 
work. Indeed, the energy deposition by the laser induces more than a simple melting of the powder. It also creates 
expansion, residual constraints, surface tension in the melting pool [1,4,5,8,9]. Adapting the laser path is a track to 
improve the final properties of the solid. Among the many existing strategies [5,9], most of them are based on a few 
amount of patterns only. The objective of this work is to develop strategies without presupposing any pattern, using shape 
optimization tools, focusing mainly on reducing the thermic expansion. Section 2 first establishes the physical model, and 
then, Section 3 sets the representation of the trajectory chosen as well as the optimization tools. Numerical results are 
shown in Section 4 before mentioning, in Section 5, the perspectives of this work. 

2. Model presentation of the LPBF process 

2.1 The model’s scales 
To build a layer, the powder is first melted creating a liquid state, the melting pool, and involving a gas phase. Then, from 
the cooling, this melted metal solidifies. Thus, many phenomena, related to physics or mechanics are involved and an 
accurate model is required (Fig. 1). Two different scales are set apart [4,8]: 

- a microscopic scale, taking into accounts the melting pool and thus the liquid and gaseous states. In this model, the 
characteristics of the material depend non linearly on the temperature. Moreover, an advanced study of the fluid mechanics 
phenomena is realized. The evaporation of material and the surface tension, including normal and tangential stresses, are 
considered, and the defaults induced by the process are well highlighted. However, the huge number of variables, 
equations, as well as their non linearity make the use of optimization algorithms at this scale computationally too 
expensive. 

- a macroscopic scale, “forgetting” the melting pool and thus roughly keeping only two states: powder and solid. The 



change of states is considered as an abrupt change in the material properties and only three thermal phenomena are taken 
into accounts: conduction, convection and radiation. The interaction between the heat source and the powder is simplified. 
This approach does not allow for an accurate quantification of the different phenomena. However, it is enough to highlight 
the thermal expansion and the appearance of residual stresses during the manufacturing, both of them implying important 
defaults in the object and resulting into early damage and fatigue. The computational cost of this scale is from far lower 
than the microscopic scale, allowing for optimization algorithms to be used. 

2.2 Presentation of the model considered for path optimization 
We aim in this article at optimizing the laser path in order to build the object while controlling the thermal expansion. A 
macroscopic scale would thus provide the information required without leading to costly resolutions of the physics [1,4,8]. 
Since the thermal stress can be expressed as Eq.1: 

         𝜎"# = 𝐶(𝑇 − 𝑇)*)")𝐼-,                                      (1) 

with 𝐶 depending on the thermal expansion coefficient and on the elastic properties of the material, 𝑇)*)" the initial 
temperature and 𝑑 the dimension of the problem, the thermal expansion can be controlled in a first step by constraining 
the maximal temperature in the item during the manufacturing. Due to the unbalanced effects between conduction on the 
one hand and convection and radiation on the other hand, once enough layers have been built, convection and radiation 
are ignored. Thus, the model equations come down to heat equation with conduction within the domain 𝐷, absorption of 
energy where the laser beam is applied (on the top layer) and Dirichlet boundary condition on the bottom layer, where the 
temperature is maintained to a chosen temperature 𝑇)*)" (Fig. 2). In this model, only powder and solid are considered. 
The physical characteristics such that the density 𝜌, the specific heat 𝑐, the conduction 𝜆, are considered as in Eq.2 [1]: 

       𝐴(𝑡, 𝑥) = 𝐴789)-𝜒789)-(𝑡, 𝑥) + 𝐴<8=->?(1 − 𝜒789)-(𝑡, 𝑥)),                     (2) 

with 𝜒789)- the characteristic function of the solid. Moreover, it is assumed that the working domain 𝐷 is surrounded 
by an adiabatic material (the working domain is in fact surrounded by powder, which conductivity is very low. The real 
value of this conductivity is thus considered in the working domain 𝐷 and taken equal to 0 outside). The source is 
considered to be a Gaussian beam [4,8], matching Eq.3, with 𝑃"8" the source power, 𝐴	the absorption coefficient, 𝑟D 
the beam radius and 𝑟(𝑋, 𝑡)	the distance to the source’s center. To simplify this formulation, an effective power 𝑃 and a 
coefficient 𝛿 are introduced. 

        𝑞 𝑡, 𝑋 = HIJKJ
L?M

N exp −𝐴 ? R," N

?M
N = 𝑃exp(−𝛿𝑟 𝑋, 𝑡 S),           (3)	 

 The resultant equation is Eq.4: 

     

𝜌 𝑡, 𝑋 𝑐 𝑡, 𝑋 𝜕"𝑇 𝑡, 𝑋 − 𝛻R ⋅ (𝜆 𝑡, 𝑋 𝛻R𝑇 𝑡, 𝑋 ) = 0 𝑖𝑛	𝐷× 0, 𝑡[ ,
𝜆 𝑡, 𝑋 𝛻*𝑇 𝑡, 𝑋 = 𝑞 𝑡, 𝑋 𝑜𝑛	𝜕𝐷"8<× 0, 𝑡[ ,
𝜆 𝑡, 𝑋 𝛻*𝑇 𝑡, 𝑋 = 0
𝑇 𝑡, 𝑋 = 𝑇)*)" 𝑋
𝑇 0, 𝑋 = 	𝑇)*)" 𝑋

𝑜𝑛	𝜕𝐷7)->× 0, 𝑡[ ,
𝑜𝑛	𝜕𝐷D8""8]× 0, 𝑡[ ,

𝑖𝑛	𝐷.

        (4) 

Two huge simplifications are then applied to this model, to ease the computation and allow for a setting of the path 
optimization with shape optimization methods: the representation is first reduced to two dimensions and the computations 
are run in the layer plane, and then, only the steady case is considered. It is clear that the resulting model does not 
correspond to the reality but they still provide some intuition about the optimized trajectories and allow for a validation 
of the method. Removing these two simplifications is part of the future work perspectives (see Section 5). 

In the LPBF process, the (Oz)-axis is the building direction, and each layer is in the (Oxy)-surface. The working domain 
can thus be considered as 𝐷 = 𝛴×(−𝐿, 0), with 𝛴 the layer plane. The two dimensional model is drawn from the three 
dimensional one by focusing on only one layer. Whereas we had 𝑋 = 𝑥, 𝑦, 𝑧  in Eq.4, we now consider 𝑋′ = 𝑥, 𝑦 . T 
source term, previously applied on the top layer, is now a volumic source of heat in the surface 𝛴. Let’s forget about the 



physical parameters and set 𝛥e = 	 𝜕fS + 𝜕gS such that 𝛥𝑇 = 𝛥e𝑇 + 𝜕hS. An integration along the (Oz)-axis, between (– 𝐿) 
and 0, gives, assuming that 𝛥′𝑇 and 𝜕"𝑇 don’t depend on 𝑧: 

  𝜌𝑐𝜕"𝑇 + 𝜆𝛥𝑇𝑑𝑧 = 	 𝜌𝑐𝜕"𝑇 + 𝜆𝛥e𝑇𝑑𝑧
j
kl

j
kl + 	 𝜕hS𝑇𝑑𝑧 =	

j
kl 𝜌𝑐𝐿𝜕"𝑇 + 𝐿𝜆𝛥e𝑇 + 𝜆 𝜕h𝑇 kl

j ,           (5) 

Assume now that, to model the conduction through the (Oz)-axis, there is a Fourier boundary condition, with coefficient 
𝛽, on the surface characterized by 𝑧 = −𝐿 . Since 𝛽 is related to the conduction in the (Oz)-axis, it could be taken as 
𝛽 = noKpqr

st
, with 𝛥𝑍 a characteristic length. The model chosen for the heat equation in two dimensions is given by Eq.5: 

      
𝜌 𝑡, 𝑋′ 𝑐 𝑡, 𝑋′ 𝜕"𝑇 𝑡, 𝑋′ − 𝛻Rv ⋅ (𝜆 𝑡, 𝑋e 𝛻Rv𝑇 𝑡, 𝑋e ) + noKpqr

st.l
𝑇 𝑡, 𝑋e 	= w

l
𝑞(𝑡, 𝑋′) 𝑖𝑛	𝛴× 0, 𝑡[ ,

𝜆 𝑡, 𝑋′ 𝛻*𝑇 𝑡, 𝑋′ = 0 𝑜𝑛	𝜕𝛴× 0, 𝑡[ ,
𝑇 0, 𝑋′ = 	𝑇)*)"(𝑋′) 𝑖𝑛	𝛴.

   (6) 

In the steady model, the source is no longer moving. Instead, we decide to apply the laser on the whole trajectory, 
introducing a steady source 𝑄 (𝑄 = 𝑃y𝜒z, with 𝑃y	a linear power divided by a characteristic length and 𝜒z the Dirac 
mass for the path 𝛤). This model includes the mathematical difficulties brought by the optimization process. It is thus a 
very useful first step to set the optimization problem. However, it does not represent the physics correctly and must be 
kept as a “toy model”. All the coefficients will be arbitrarily fixed and won’t match any real parameter. Choosing the 
conductivity 𝜆(𝑋′) to be the powder’s conductivity, the resulting equation is Eq.5: 

     
−𝛻Rv ⋅ (𝜆<8=->?𝛻Rv	𝑇	 𝑋′ ) +

noKpqr
st.l

𝑇 𝑋′ 	= w
l
𝑄 𝑋′ = I|

l
𝜒z(𝑋′) 𝑖𝑛	𝛴,

𝛻*𝑇 𝑋′ = 0 𝑜𝑛	𝜕𝛴,
𝑇 𝑋′ = 	𝑇	 𝑋′ + 𝑇)*)" 𝑖𝑛	𝛴.

           (7) 

                     

  Figure 1. LPBF process            Figure 2. Three dimensional simplified model   

3. Shape optimization through front tracking methods 

3.1 Shape optimization 
Shape differentiation’s theory, introduced by Hadamard, and widely developed since, can be used for optimization, and 
consists in deforming a reference domain 𝛺j in the direction of a vector field 𝜃 [1,2,7]. The admissible shapes are then  

        𝛺 = (𝐼- + 𝜃)(𝛺j) = 𝑥 + 𝜃 𝑥 		𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	𝑥 ∈ 𝛺j ,       (8) 

and the definition of shape differentiability is the following: 
Definition: Let 𝛺j an open bounded domain. A function 𝐽: 𝛺 → ℝ is differentiable at 𝛺j with respect to the shape if 
the application :	𝜃 → 𝐽 𝐼- + 𝜃 𝛺j  is Fréchet-differentiable at 0 on 𝒞w ℝ-, ℝ-  and  
       𝐽 𝐼- + 𝜃 𝛺j = 	𝐽 𝛺j + 𝐷𝐽 𝛺j 𝜃 + 𝑜 𝜃 ,         (9) 

with 𝐷𝐽 𝛺j 𝜃 	linear form on  𝒞w ℝ-, ℝ-  and  𝑙𝑖𝑚�→j
|8 � |
�

= 0. 

The following theorem yields the general form of the derivative for a two dimensional curve:  
 
Proposition: Let 𝛤j be a regular oriented curve in ℝS and set A and B its end points. The tangent, 𝜏, is defined with 
respect to the orientation of the curve and the normal, 𝑛, so that at each point, 𝜏, 𝑛  is an orthonormal basis of ℝS. 



Let 𝑓 ∈ 𝑊S,w ℝS  and J such that 𝐽 𝛤 = 𝑓 𝑠 𝑑𝑠z . Then, J is differentiable at 𝛤j and, for all 𝜃 ∈ 𝒞w(ℝS, ℝS), with 
𝜅 the curve’s curvature, 

    𝐽e 𝛤j 𝜃 = 𝛻*𝑓 + 𝜅𝑓 𝑠 𝜃 𝑠 ⋅ 𝑛 𝑠 𝑑𝑠 + 	𝑓 𝐵 𝜃 𝐵 ⋅ 𝜏 𝐵 	– 	𝑓 𝐴 𝜃 𝐴 ⋅ 𝜏 𝐴 .z�
      (10) 

 
3.2 Trajectory model 
We wish to adapt shape optimization theory to the design of laser beam paths. The problem of representing a curve or 
contour in a domain 𝐷 comes into many different fields (shape optimization, fluid mechanics, computer vision, …) and 
has been widely studied [11,12]. Among the many approaches, we highlight the main ones: Lagrangian methods, in which 
the mesh is adapted to the contour at each iteration, Eulerian methods, aimed at keeping the same computational mesh at 
all time (from which the Marker and Cell (MAC), Volume of Fluid and level set methods are drawn) and mixed approach. 
Front tracking methods have been chosen here, with the manipulation of two different meshes: one for the working domain, 
that will be called “mesh” in the following, and one for the contour, referred to as “discretized path”. Equations are 
designed to adapt the values from the mesh to the discretized path [12]. In the present work, the path is discretized using 
segments and is thus represented by a broken line. The shape derivative computed and regularized [1,2,7] in the 
continuous context can be discretized and each node of the discretized path is then advected. To keep a correct description, 
the resulting line is re-discretized: each segment’s size of the discretized path is controlled (Fig.3). This re-discretization 
consists in removing points in case of an excessively small segment and adding points if the distance overtakes a fixed 
one. In this study, points are added equidistantly but other means could be used (Legendre methods to increase the 
accuracy of the approximation of functions on the domain for example). This technique displays different benefits. There 
is no need to re-mesh the whole domain at each iteration and on the other hand, it drives the fact that the trajectory is 
oriented and very easy to handle, allowing complex shapes. Loops for example, would be very hard to be dealt with using 
level set or MAC methods whereas they turn up to be simple with front tracking ones. Eventually, the topology is fully 
controlled (Fig.4).  

                                           

       Figure 3. Curve advection                           Figure 4. Front tracking method 

4. Numerical results under steadiness hypothesis 

4.1 Problem description 
Two constraints have been considered. First of all, the aim of the LPBF process is to build an object and thus, the whole 
item must have changed from powder to solid during the manufacturing. In the steady context, this results in the following 
constraint, with 𝑇� the phase change temperature and ∀𝑋 ∈ ℝ, 𝑋� = max	(𝑋, 0): 

        𝐶� 𝛤 = 	 𝑇� − 𝑇 𝑥
� S

𝑑𝑥� .                                (11) 

The second constraint aims at controlling the thermal expansion and thus affects the maximum temperature. A maximal 
admissible temperature 𝑇� is defined and the second constraint is: 

        𝐶� 𝛤 = 	 𝑇 𝑥 − 𝑇� � S𝑑𝑥.�                                  (12) 

Finally, the length of the manifold 𝛤	is optimized under the two previous constraints and the state equation Eq.6. 

4.2 Numerical results 
Some numerical tests have been run to validate the method. We consider here a working domain 	𝐷 =
−10𝑐𝑚, 10𝑐𝑚 × −10𝑐𝑚, 10𝑐𝑚 . The domain is discretized with a triangular mesh having 3200 elements (the 



characteristic length of an element is 0.07). The accuracy of the discretized path is defined by the distance 𝛥𝑃 between 
two nodes and we have 0.02 ≤ 𝛥𝑃 ≤ 	0.06. The source term is a P0 function. Indeed, for each element of the mesh, the 
length of the path crossing the triangle has been computed and scaled. This P0 function is multiplied by a power, P. In 
this simulation, the conductivity has been chosen as [1] 𝜆789)- = 15𝑊.𝑚kw. 𝐾kw, 𝜆<8=->? = 0.25𝑊.𝑚kw. 𝐾kwand the 
phase change temperature 𝑇� = 1700	𝐾,which correspond to the value for a maraging steel. As for the other values, they 
have been arbitrarily chosen so that the optimization is possible, and we set 𝛥𝑍 = 1	𝑚, 𝐿 = 10	𝑐𝑚, 𝑃y 	= 700	𝑊.𝑚kS, 
𝑇)*)" = 500𝐾. The maximum temperature is 𝑇� = 2000	𝐾. The finite element computations are run with Freefem 
software [6] and an Augmented Lagrangian algorithm is chosen. The line evolution is shown on Fig.5 whereas Fig.6 
presents the evolution of the length and constraints with respect to the iterations.  

 

       Figure 5. Evolution of the line and temperatures (K) 

 

       Figure 6. Evolution of the length and constraints 

 

Figure 7. Final path, after a second optimization 

At the end of this first optimization, the constraints are not fully satisfied. The algorithm is run again, changing slightly 
the regularization of the shape derivative, being initialized by the final iteration shown in Fig.5. The final path is shown 
by Fig.7. The constraints are then satisfied (𝐶  < 0.001 and 𝐶� < 0.001) and the length is optimized, validating the 
method. It is important to remark that the result presented by Fig. 5 is a local optimum of the problem. Thus, choosing an 



other initialization may lead to a different solution path.  

5. Conclusion 

This work allows for a validation of the use of shape optimization tools to optimize the laser path in the steady case. This 
illustrates the interest of this method for path optimization and calls for further investigations. A first option consists in a 
deeper study of the steady case. Indeed, it allows for a very fast computation of the heat and induces a very easy 
optimization process. The design of the path could be improved in this model by understanding better the dependence of 
the results from the optimization parameters, by adding an optimization variable such as the source power. One could also 
think of getting free from the two dimensional assumption, getting a 3D model and optimizing the path on many layers, 
thus collecting information on the dependence in the vertical axis. Finally, more constraints such as a control of the 
temperature gradient within the solid would improve the result, bringing them closer to the physical reality. 

Another generalization is of course to consider the unsteady model. The optimization process will get more complex but 
the interpretation of the results will be immediate. These results will be some good basis to develop more intuition and 
design new patterns that could then be implemented in the industry.  
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