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Abstract

The propagation of magnetostatic forward volume waves excited by a constricted coplanar waveg-

uide is studied via inductive spectroscopy techniques. A series of devices consisting of pairs of

sub-micrometer size antennae is used to perform a discrete mapping of the spin wave amplitude

in the plane of a 30-nm thin YIG film. We found that the spin wave propagation remains well

focused in a beam shape of width comparable to the constriction length and that the amplitude

within the constriction displays oscillations, two features which are explained in terms of near-field

Fresnel diffraction theory.
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The emerging field of magnonics [1, 2] has sparked a renewed interest in non-uniform

magnetization dynamics. Spin-waves are now considered as a very promising information

carrier for performing basic logic operations [3–7], or implementing novel computation archi-

tectures [8, 9]. A key advantage of spin-waves is that their dispersion can be easily tailored

in a wide band of the microwave spectrum, particularly in the so-called magnetostatic wave

regime for which the magnetic dipolar interaction plays the dominant role. Recently, it has

been demonstrated that the propagation of spin waves in ferromagnetic thin film could be

shaped using several concepts borrowed from optics [10]. A special attention has been set

on understanding their refraction and reflection effects [11–14], and also on generating and

manipulating spin-wave beams. The latter is of particular importance in order to exploit

the potential of multi-beam interference.

So far, three different mechanisms have been investigated to shape spin-wave beams: (i)

the so-called caustic effect [15–20] associated with the very strong anisotropy of in-plane

magnetostatic wave dispersions; (ii) the confinement by the strongly inhomogeneous in-

ternal magnetic fields existing at strip edges [10], in magnetic domain-walls [21], or close

to nano-contact spin torque nanoscillators [22, 23]; (iii) the coupling to specially designed

constricted microwave antennae providing a suitable non-uniform magnetic pumping field

profile [24, 25]. The last method appears the most versatile, being able to produce a co-

herent spin wave beam in a homogeneous magnetic layer without any special requirement

on its magnetic configuration. It was first proposed theoretically by Gruszecki et al. via

micromagnetic simulation [24], and was recently verified experimentally by Körner et al. via

time resolved magneto-optical imaging of magnetostatic surface wave beams generated in

a relatively thick NiFe film [25]. In this letter, we show experimentally that the spin wave

beam generated by a constricted coplanar waveguide (CPW) follows closely a near-field

diffraction pattern. To this objective, we resort to all-electrical measurements performed in

a configuration providing isotropic spin-wave propagation (thin Yttrium Iron Garnet film

magnetized out-of-plane) and analyze them using elementary Fresnel diffraction modeling.

The spin wave antennae are designed in such a way that the constricted region of the

CPW reproduces as closely as possible the case of an isolated rectangular slit. We first focus

on the geometry-A of spin-wave antennae shown in Fig. 1-(a),(b). It consists of a pair of

identical shorted CPWs, whose constriction is shaped symmetrically with a gradual bend
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in order to have two narrow sections of CPW facing each other. The constricted region

of the CPW consists of a central track of width wS = 400nm and two ground tracks of

width wG = 200nm with a gap of 200 nm. The generated spinwaves have a wavelength of

the order of the distance between the center of the ground tracks, i.e. λ ' 1µm , which

remains much smaller than the constriction length. We adopted a much sharper constric-

tion than in the geometries study by Gruszecki et al. [24], and Körner et al. [25], with

a factor of ten between the widths of the constricted section I and the non-constricted

section II. This allows us to fully separate the peaks associated with the excitation of spin

waves in the two sections, as illustrated in Fig. 1-(c) which shows the corresponding Fourier

transforms of the current density (assumed to be uniform in each CPW track). For section

I, one distinguishes a main peak centered at kI = 5.92 rad.µm−1 with a full width at half

maximum ∆kI = 4.15 rad.µm−1, and for section II a main peak at kII = 0.59 rad.µm−1 with

∆kII = 0.41 rad.µm−1.

We fabricated five spin-wave transducers of geometry−A with separation distanceD= {4, 6, 8, 10, 12}µm

and constriction length lexc = 5µm, which we used for preliminary characterization and val-

idation of the spin-wave transduction in continuous layer. The antennae were fabricated

by e-beam lithography and lift-off of 5nmTi / 80nmAu directly on top of 30nm thin

sputtered YIG (Y3 Fe5 O12) films deposited on gadolinium gallium garnet by magnetron

sputtering and post-annealed [26–28]. The fabricated device is then placed in the center of

the lower pole of an electromagnet fitting in a home-made probe station, and we proceed

to the propagative spin-wave spectroscopy measurement [29, 30] while applying an external

magnetic field H large enough to magnetize the film out of the plane. This corresponds to

the so-called magnetostatic forward volume wave (MSFVW) configuration, for which the

isotropic dispersion relation does not favor any propagation direction. This is in strong

contrast with the situation of in-plane magnetized films, for which the spin-wave dispersion

is strongly anisotropic with a maximal group velocity in the so-called magnetostatic surface

wave configuration. For practical reasons, most studies of nanomagnonics, including recent

ones in YIG have been done in this last configuration [31, 32]. In the present case, we

simplify the analogy with optics by employing the isotropic MSFVW configuration, and

take directly advantage of the low damping and low magnetization of the YIG films.

The microwave spectra were acquired using a vector network analyzer (AgilentE8342B,

10MHz - 50GHz) at low input power (−20 dBm), 100Hz bandwidth, and in a single sweep
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FIG. 1. (a) Geometry-A spin-wave antennae with a separation distance D= 12µm. (b) Scanning

electron microscope image of the same device zoomed in the region of the constriction. (c) Fourier

transform of the current distribution for the two sections I and II, and MSFVW dispersion relation

for µ0Hext = 308mT . (c) Self- and mutual inductance spectra obtained at µ0Hext = 308mT for

three devices of geometry-A with separation distance D= 4µm, D= 8µm, and D= 12µm.

mode in order to limit the possible temperature drift of the electromagnet. We always per-

form two measurements: a first one at a resonant field (Hres), followed by a second one at

a reference field (Href ) for which no resonance occurs within the frequency range swept. In

this manner, we retrieve the variation of inductance ∆Lij =Lij(Hres) − Lij(Href ) due to

spin wave excitation [32]; ∆L11 the self-inductance measured on antenna 1, and ∆L21 the
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mutual inductance characterizing the transduction of spin wave excited by antennae 1 and

detected by antennae 2. Figure 1-(d) shows typical spectra obtained with identical antennae

of geometry-A at Hext = 308mT , for three different separation distances (4, 8, and 12µm).

We can identify from the reflection spectra three main peaks which are attributed to the

different parts of the CPW. Namely, the lowest frequency peak corresponds to the quasi-

uniform resonance (k= 0) of the wide section of the CPW where the 150µm pitch coplanar

probe are contacted. The second peak corresponds to the non-constricted region II of the

CPW, and the last peak to the constricted region I. For the mutual inductance spectra,

we observe oscillations only underneath the last peak confirming that only the constricted

region of the CPW contributes to the spin wave transduction between antennae. These

oscillations are attributed to the phase delay kD accumulated by the spin-waves during its

propagation between the two antennas, and therefore are more numerous the longer the

separation distance between antennae. The level of amplitude of the mutual inductance

spectra is comparable to the one found when performing simulation of MSFVW transduc-

tion [29, 33] on a stripe of width equal to the length of the constricted region. This suggests

already that the excitation of the spin wave from this type of constriction should remain

fairly focused.

To validate our spin wave transduction technique when applied to a continuous magnetic

layer, we first analyze the microwave spectra measured for different fields and different dis-

tances between the antennas. In particular, we can take advantage of the three section of our

waveguides to perform k-resolved ferromagnetic resonance (FMR). As shown in Fig. 2-(a), we

track the peak position in function of applied field respectively for k= 0, kII , and kI . Fitting

it to the MSFVW dispersion relation [34] for five different devices, we obtain an average value

for the gyromagnetic ration γ/2π= 28.26 ± 0.07GHz.T−1 and the effective magnetization

µ0Meff = 136± 2mT . Furthermore, we can estimate independently the saturation magneti-

zation Ms by plotting the field-dependence of the difference f 2
res(kI)-f

2
res(kII) = γ2µ2

0(Hext -

Meff )Ms(kI−kII)t/4π (where t is the YIG film thickness) as shown in Fig. 2-(b), from which

we find a nice linear dependence and the average value µ0Ms = 196±8mT . Next, we use the

observed decay of the amplitude of the mutual-inductance as a function of the distance as

shown in Fig. 2-(c) to extract the characteristic attenuation length of the spin wave. For each

applied field, we observe a clear linear dependence of ln(|∆L21|) on the antenna separation

D, which is consistent with an exponential decay |L21| ∝ e−D/Latt). This constitutes another
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FIG. 2. (a) Field dependence of the resonance peaks k= 0, kII , and kI . (b) Difference of the square

of the resonance frequencies f2(kI) - f2(kII). Separation distance dependence of (c) ln(∆L21), and

(d) the inverse of the oscillation period of ∆L21. Frequency dependence of: (e) the ratio of the

group velocity to the attenuation length, (f) the attenuation length, and (g) the group velocity.

evidence for a proper focusing of the spin wave excitation. Obviously, a diffused emission

of opening angle θ would reduce the amplitude by an additional factor ldet/(D θ), which

is not observed here. Then, from the period of oscillation fosc of the mutual inductance

spectra, we can estimate the group velocity vg according to vg = foscD [29]. Fig. 2-(d) shows

clear linear dependence of 1/fosc with D for the different applied fields. Finally, we perform

a linear fit of the frequency dependence of the ratio vg/Latt [35],and identify the slope to

2παeff [cf. Fig. 2-(e)], which gives us a value of the effective damping αeff = 7.5±0.2 10−4 in

good agreement with previous measurements on similar films [36, 37]. We obtain fairly good

agreements with the theoretical group velocity and attenuation length estimated from the

MSFVW dispersion relation [dotted lines in Fig. 2(f,g)], which validate the implementation

of the spin wave transduction technique to continuous layers for this geometry of CPW.

We now turn to the main result of this work, which is the evolution of the ampli-

tude ∆L21 between several pairs of antennae at various separation distances D, and with
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various shift s with respect to their axis in order to map in a discrete manner the spin-

wave emission from a constriction. We fabricated two series of pairs of non-identical

spin-wave antennae with a long excitation antenna (lexc = 10µm), and a shorter detection

antenna of (ldet = 2µm) in order to refine the spatial resolution of the mapping. The first

series consists of the symmetrical geometry-A as shown in Fig. 3-(a), for which we fabri-

cated six devices having the same separation distance D= 5µm, and only one-sided shift

s= {0, 1, 2, 3, 4, 6}µm. For the second series, geometry-B shown in Fig. 3-(b), which con-

sists of an asymmetrical constriction short-circuited right at its end and also with a steeper

bend, we fabricated eighteen devices covering two separation distances D= {8, 12}µm, and

nine shift s= {−8,−6,−4,−2, 0, 2, 4, 6, 8}µm. Fig. 3-(c) shows the shift dependence of the

peak amplitude |∆L21|max for geometry-A at various applied field (see typical examples of

mutual-inductance spectra in the supplementary materials [38]). We observe an oscillation

of the amplitude within the width of the constriction and a clear drop of amplitude for the

device s= 6µm, which lays just entirely outside of the constriction. Similar observations

are made with geometry-B shown in Fig. 3-(d) although the drop of amplitude outside the

constriction is slower for negative shifts due to the non-symmetrical shape of the antennae.

Indeed, the shorted ends of the constrictions, which come close to each other for positive s

[see Fig. 3(b)], radiate much less spin-wave power out of the constriction than the broader

convex CPW access, which come close to each other for negative s.

To describe these features of spin-wave emission from a constricted CPW, we propose

to implement the common equations of optics used in the case of the Fresnel diffraction

from a rectangular slit [39]. This choice is particularly relevant for the range of wavelength

considered, for which the Fresnel radius RF remains much smaller than the length of the

constriction (e.g. the largest dimension of the aperture): RF =
√
λD << lexc. We simplify

the problem by considering that each track of the CPW [j= {G−, S,G+}, see sketch in

Fig. 3-(e)] acts a single rectangular source of coherent, circular, and monochromatic waves,

of wavelength λ=
2π

kI
. We also account for the spin wave attenuation with an exponential

decay factor (e−r/Latt), where Latt is field- (or frequency-) dependent with a value given in

Fig. 2-(f). The normalized spin-wave amplitude m̃Fresnel(D, s) at a distance D and a shift s
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FIG. 3. (a) Geometry-A device for the mapping of spin wave with a separation distance D= 5µm

and a shift s=−5µm. (b) geometry-B with a separation distance D= 12µm and a shift s= +8µm.

Evolution of the measured mutual inductance amplitude with the antennae shift s for: (c) geometry-

A mapping devices, and (d) geometry-B antennae separated by D= 8µm, and D= 12µm. The

dotted lines are the calculated spin-wave amplitude from the Fresnel diffraction model with the

corresponding Latt. The symbols are the measured amplitude for the different devices.

emitted by the track j of the CPW is written as:

m̃j(D, s) =
∫ l/2

−l/2
dy

∫ wj/2

−wj/2
dx

1
√
rj
e−rj/Latte−ikrj (1)

Where rj =
√

(D − xj)2 + (s− y)2 is the distance between an element of surface dxdy of

the source centered at (xj, y) and a detection point of coordinates (D, s); l is the antennae

length and wj the width of the CPW track. Now, the complete amplitude of the Fresnel

diffracted spin-wave m̃CPW results from the linear combination of the three branches of the
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FIG. 4. Color mappings of the simulated Fresnel spin-wave amplitude for (a) Latt = 10µm, and (b)

Latt = 10µm (for an infinitely small probe). (c) and (d) Corresponding color mappings taking into

account the finite probe size ldet = 2µm. The vertical dotted lines indicate sections of amplitude

< m̃CPW (D, s) > at D= 5, 8, 12µm,

CPW:

m̃CPW (D, s) = −m̃G−(D +
λ

2
, s) + m̃S(D, s)− m̃G+(D − λ

2
, s) (2)

Where the negative signs accounts for the opposite phase of the excitation in the ground

lines with respect to the central line.

Fig. 4 shows color mappings of the spin-wave amplitude in the (D, s) plane calculated

from Eq. (2) for two different attenuation lengths Latt =10µm and Latt =20µm. We repre-

sented the cases of an infinitely small probe in Fig. 4-(a)-(b), and also, in order to compare

our measurement with this Fresnel diffraction model, we took into account in Fig. 4-(c)-(d)

the non-punctual aspect of the detection antenna by averaging the amplitude over the probe

antenna extension (ldet =2µm). This near-field diffraction patterns reproduces the main
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features of our measurement, which are on one hand a directional emission that remains

focused in a beam shape of width similar to the CPW length, and on the other hand, some

oscillations of the amplitude within the beam width that depend mostly on the distance

D. Finally, we compare the measured amplitudes with the calculated ones <m̃CPW (s,D)>

[dotted lines in Fig. 3-(c),(d)] for the specific distances D, and with the corresponding values

of attenuation length obtained in Fig. 2-(f). We find a remarkable agreement between this

Fresnel diffraction model of spin waves emitted from an antenna of finite extension and

our measurements in the two different geometries of waveguide, which constitutes a direct

demonstration of the focused nature of spin wave beams in constricted CPW.

In summary, we first demonstrated the possibility of performing spin-wave spectroscopy

in thin magnetic films without the need to structure a spin-wave guide, only by using suffi-

ciently sharp constrictions in CPWs. We firstly showed that the signal amplitudes measured

for pairs of identical antennae shifted gradually along the beam direction follow precisely

an exponential decay, which suggests that the emission remains well-focused. Secondly, via

a series of devices consisting of pairs of non-identical antennae covering different location of

the 2D-plane, we performed a discrete mapping of the spin-wave amplitude for two different

geometries conceived in such a way to reproduce the case of an optical rectangular slit. We

found that the spin wave amplitude oscillates within the constriction zone, while it decays

rapidly outside of it, which is notably well-explained with a Fresnel diffraction model of

circular waves. These findings draw a deeper parallel between the excitation of spin-waves

from sub-micrometric antennae and the basic concepts of optics, and therefore pave the

way for future studies of spin wave beam interference, which could find applications for spin

wave logic devices.
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