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Accurate real-time simulations and forecasting of phase-revolved ocean surface waves
require nonlinear effects, both geometrical and kinematic, to be accurately represented.
For this purpose, wave models based on a Lagrangian steepness expansion have proved
particularly efficient, as compared to those based on Eulerian expansions, as they feature
higher-order nonlinearities at a reduced numerical cost. However, while they can accu-
rately model the instantaneous nonlinear wave shape, Lagrangian models developed to
date cannot accurately predict the time-evolution of even simple periodic waves. Here, we
propose a novel and simple method to perform a Lagrangian expansion of surface waves
to second-order in wave steepness, based on the dynamical system relating particle lo-
cations and the Eulerian velocity field. We show that a simple redefinition of reference
particles allows to correct the time-evolution of surface waves, through a modified non-
linear dispersion relationship. The resulting expressions of free surface particle locations
can then be made numerically efficient by only retaining the most significant contribu-
tions to second-order terms, i.e., Stokes drift and mean vertical level. This results in a
hybrid model, referred to as “Improved Choppy Wave Model” (ICWM) [with respect
to Nouguier et al.’s (2009) ’Choppy Wave’ Model for nonlinear gravity waves. J. Geo-
phys. Res.: Oceans 114 (C9)], whose performance is numerically assessed for long-crested
waves, both periodic and irregular. To do so, ICWM results are compared to those of
models based on a High-Order Spectral method and classical second-order Lagrangian
expansions. For irregular waves, two generic types of narrow- and broad-banded wave
spectra are considered, for which ICWM is shown to significantly improve wave forecast
accuracy as compared to other Lagrangian models; hence, ICWM is well-suited to pro-
vide accurate and efficient short-term ocean wave forecast (e.g., over a few peak periods).
This aspect will be the object of future work.

1. Introduction

A wide variety of ocean engineering or oceanographic applications require real-time
data on phase-resolved ocean surface waves, typically for mildly- to strongly-nonlinear
irregular sea-states (in terms of a total wave steepness ε). For instance both real-time
ocean waves as well as their short term forecast are required for predicting and controlling
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the motion of vessels (Perez 2006; Dannenberg et al. 2010), or wave power harvesting de-
vices, e.g., in order to optimize loading/offloading operations, seakeeping/stability (e.g.,
for small unmanned surface vehicles) (Grilli et al. 2011; Nouguier et al. 2014), or wave
energy capturing (Babarit & Clément 2006).

Real-time, phase-resolved, ocean waves can be reconstructed over some area surround-
ing a vessel or structure of interest by fitting a wave model to a large data set of measured
surface elevations, acquired for instance with: (i) a X-band radar (Nieto Borge et al. 2004;
Dankert & Rosenthal 2004; Hilmer & Thornhill 2014; Qi et al. 2016; Naaijen et al. 2018);
or (ii) a LIDAR camera (Belmont et al. 2007; Nouguier et al. 2014). LIDAR cameras
operate in the visible light (e.g., green laser of µm wavelength) and make direct (geo-
referenced) measurements of the ocean surface; hence, they have the potential to finely
sample the ocean surface and thus resolve higher frequency waves. By contrast, X-band
radars operate in the micro-wave regime (typically at a ∼3 cm wavelength) and invert
surface elevations by way of a modulation transfer function (MTF), which relates slope
modulations of a resonant Bragg wavelength (∼1.5 cm) to characteristics of longer grav-
ity waves. Although greatly improved in recent years, X-band radars are still limited to
resolving gravity waves with wavelengths of a few tens of meter (e.g., 30 m) or longer in
the sea state (Hilmer & Thornhill 2014). Both X-band radar and LIDAR data measured
by an instrument located on board the considered structure or vessel are acquired at
grazing incidence. Hence, measured free surface data both has a geometrically decreasing
density with distance and suffers from gaps due to wave shadowing effects. The latter
typically do not penalize the inversion of X-band radar data, which uses a ‘shadowing
mask’ that in fact benefits the inversion. For LIDAR cameras, shadowing effects can
be alleviated by using spatio-temporal data, in the form of high frequency snapshots of
measured surface elevations (Nouguier et al. 2014).

Such a spatio-temporal reconstruction method was proposed by Grilli et al. (2011) and
Nouguier et al. (2014) who applied it to synthetic data, of the type that would be acquired
by a Flash LIDARTM camera (ASC 2018), which can take high-density (up to 128 by 128
simultaneous measurement points) and high-frequency (about 10 Hz) snapshots of the
ocean surface. These authors pointed out that, given enough components (in a Fourier
sense), a linear ocean surface reconstruction (‘nowcast’) was always accurate. However,
even for moderate nonlinearity, the linear propagation of this surface was increasingly in
error as time increased, due to a modified dispersion relation. Hence, a nonlinear wave
model should be used, even to issue a short-term forecast (e.g., 15-20 s).

In this realm, since it was first proposed by Dommermuth & Yue (1987) and West et al.
(1987), the High-Order Spectral (HOS) method has been extensively used for the time-
domain simulation of nonlinear irregular sea states, including their reconstruction and
propagation on the basis of individual measurements at wave gauges (Ducrozet et al.
2007; Bonnefoy et al. 2009; Blondel-Couprie et al. 2013; Qi et al. 2018a). The recent
paper by Qi et al. (2018a) in fact provides a complete review of such work to date, as
well as a discussion of the important aspects of the a priori identification of a relevant
space-time prediction zone as a function of the measurement zone Qi et al. (2018b).
In operational situations, however, even considering the recently increasing performance
and compactness of computing hardware (e.g., General Purpose Graphical Processing
Units (GPGPU)), the nonlinear inversion required at each time to perform a nonlinear
ocean surface reconstruction and propagation with the HOS method may be prohibitive
to use in real time.

For issuing real-time predictions based on a set of surface measurements, it is thus
desirable to perform both the reconstruction and propagation of nonlinear ocean sur-
faces using a more efficient nonlinear wave model. An interesting approach to simulate
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nonlinear wave properties at lower computational cost is to use Lagrangian wave mod-
els (see, e.g., Clamond (2007) for a detailed overview). Gerstner (1809) developed a
first-order two-dimensional (2D) Lagrangian model for periodic ocean waves, referred
to as ‘trochoidal wave theory’, and showed that his model could predict higher-order
wave properties (in terms of wave steepness ε = ak, with a = H/2 the wave amplitude,
k = 2π/λ the wavenumber, and λ the wavelength) such as surface slope, at a lower-order
of development. [Note that Gerstner’s theory is rotational, but this is irrelevant here since
we are only concerned by the ocean surface geometry.] Besides this interesting property,
Lagrangian models take the form of a computationally efficient explicit time stepping
scheme, in which surface elevations at the next time level are easily predicted based on
current time. The advantage of using Lagrangian wave models to more realistically sim-
ulate irregular waves in severe sea states, and in particular wave asymmetry, was first
noted by Lindgren & Åberg (2009) (see also Lindgren (2009, 2010, 2015)). To efficiently
propagate nonlinear and irregular ocean surfaces in space and time, Nouguier et al.
(2009) developed the ‘Choppy Wave Model’ (CWM), which extended Gerstner’s theory
to three-dimensional (3D) non-periodic waves, and showed that it correctly approximates
second-order wave properties for narrow-banded spectra, such as asymmetry in wave el-
evation and surface slope. To further improve nonlinear wave properties Nouguier et al.
(2015) developed a complete second-order Lagrangian wave model, as an extension of
CWM, referred to hereafter as CWM2; they showed that this model correctly accounted
for third-order wave properties, but with a much increased computational cost as com-
pared to CWM.

Grilli et al. (2011) and Nouguier et al. (2014) applied the CWM to simulated LIDAR
data and showed that it could accurately reconstruct and propagate nonlinear sea-states
of moderate steepness for a short time (a few peak spectral periods Tp). For larger times
or wave steepness, however, our recent numerical comparisons with a third-order refer-
ence HOS solution show that errors increase to unacceptable levels during propagation.
Increasing phase shifts in the reconstructed sea state were identified as the main rea-
sons for these large errors, which resulted from errors in wave phase velocity. Indeed, at
Lagrangian first-order, or Eulerian second-order, phase velocity is identical to the linear
celerity, c0 = ω/k = g/ω (in deep water, with g the gravitational acceleration, k the
wavenumber, and ω the wave angular frequency).

In this paper, considering we are mainly concerned with an accurate geometrical de-
scription of nonlinear ocean surfaces, as well as their propagation, we propose an im-
provement to the CWM that adequately corrects for this nonlinear wave celerity error
by adding a ‘Stokes drift’ term to the linear celerity. Our proposed theoretical approach
allows to obtain, from standard second-order Eulerian results and with few additional
calculations, the second-order Lagrangian expansion of particle locations on the ocean
surface; such results were already derived from first principles by several authors, al-
beit through very complex calculations (Pierson (1961, 1962); Nouguier et al. (2015)).
By following the trajectory of such particles, the free surface geometry can easily be
reconstructed. The key aspect of our approach is that it provides a higher-order of ap-
proximation of the free surface than the second-order Eulerian expansion, as it features
some higher-order Eulerian components (Nouguier et al. 2015). We combine this sim-
plified Lagrangian approach with an improved choice of the reference particle location,
which makes it possible to correct some discrepancies with the nonlinear wave dispersion
relationship.

We first develop and validate this improved model in 2D, hereafter referred to as
’Improved Choppy Wave Model’ (ICWM). For periodic waves we show that it is fully
consistent with the nonlinear time evolution at Eulerian third-order; for irregular waves
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Figure 1. Sketch illustrating the Lagrangian trajectory (red dashed line) of a water particle
initially located at (x0, z0) (•), on the free surface of a 2D (long-crested) nonlinear periodic wave
(solid line; generated with the second-order ‘Choppy’ wave theory Eqs. (2.3)) of height H = 2a,
wavelength λ, steepness ε = ka = 0.3, and propagating left-to-right with celerity c = ω/k (with
k = 2π/λ the wavenumber; in deep water, if a = 3 m, the wave period T = 2π/ω = 6.35 s). After
t = 3T , the particle has moved forward by Us0t (•) and its mean horizontal location during this
motion is Us0t/2 (blue chained line). Consistent with Choppy wave theory, the mean water level
(MWL) has been shifted upwards by εa/2.

we show that it brings a significant improvement in the non-linear time evolution while
having the same computational complexity as the CWM. We show that, as time increases,
the second-order CWM2 Lagrangian interaction terms which are discarded in the ICWM
become increasingly negligible for propagating irregular waves. We perform validation
tests for both narrow- and broad-banded spectra and compare errors of the linear, CWM,
CWM2 and ICWM models with respect to a fully nonlinear HOS model solution. We
also present the CWM2 analytical extension to 3D in the Appendix, although numerical
applications and validations of the latter will be left out for future work.

In the following, in Section 2, we first discuss an apparent paradox that leads to differ-
ent expressions of the third-order Lagrangian and Eulerian wave celerities. This paradox
is resolved in Section 3 for 2D periodic waves, leading to corrected Lagrangian evolu-
tion equations used in the ICWM. Section 4 generalizes this formulation to 2D irregular
waves; its relevance and accuracy are numerically assessed in Section 5 by considering
two generic wave spectra. The case of 3D irregular waves is left in the Appendix for
conciseness of the core of the paper.

2. An apparent Stokes drift paradox

Nonlinear ocean waves induce a time-averaged mass transport velocity in their di-
rection of propagation, referred to as Stokes drift and hereafter denoted in deep water
by Us = Us0 exp (2kz) (Fig. 1), where Us0 denotes the Stokes drift on the free surface.
For two-dimensional (2D) (i.e., long-crested) periodic waves, Us can be computed by
time-averaging over the wave period T = 2π/ω (or space-averaging over the wavelength)
either the horizontal Eulerian velocity U(x, z, t) at a fixed x location, or the Lagrangian
velocity U(X(t), Z(t), t), following the trajectory (X(t), Z(t)) of a water particle of ini-
tial location (x0, z0). Both results should be identical (see Clamond (2007) for a detailed
discussion). The mean Lagrangian mass transport velocity UL can then be calculated as
the depth-averaged of the Stokes drift Us, which will be less than Us0 (Monismith et al.
2007).

Pierson (1961, 1962) and Nouguier et al. (2009, 2015) derived Lagrangian equations
for deep-water periodic waves, as a perturbation expansion in order of wave steepness ε.



An improved Lagrangian model 5

To second-order they found the trajectories of a particle of initial location (x0, z0) as:

X(t) = x0 − a sin(kx0 − ωt)ekz0 + Us0 e2kz0t,

Z(t) = z0 +
1

2
ka2 + a cos(kx0 − ωt)ekz0

(2.1)

with ω2 = gk, the deep water dispersion relationship,

Us0 = ka2ω = ε2c0 (2.2)

and c0 = ω/k =
√
g/k the linear deep water phase velocity (or celerity). In Eq. (2.1), the

zeroth-order solution is the particle at rest at its initial location (x0, z0), the first-order
solution is the classical Gerstner (1809) trochoidal wave theory, and the second-order
correction is limited to the effect of the Stokes drift over time t, Ust.

The corresponding free surface geometry is implicitly described by the trajectories of
particles located on the mean water level (MWL), at z0 = 0 (Fig. 1):

X(t) = x0 − a sin(kx0 − ωt) + Us0t,

Z(t) =
1

2
ka2 + a cos(kx0 − ωt)

(2.3)

Due to Stokes drift, these are ‘open’ trajectories, i.e., after each wave period, water
particles do not travel back to their initial location, but instead have a forward horizontal
displacement Us0T on the free surface. Clamond (2007) shows (his Fig. 1) that when
corrected by this mass transport the particle trajectories describe closed trajectories.

After some simple algebra, an explicit relationship, Z(t) = ηL(X(t), t) can be itera-
tively obtained, which yields:

kηL(x, t) = (ε−3

8
ε3) cos k(x−cLt)+

1

2
ε2 cos 2k(x−cLt)+

3

8
ε3 cos 3k(x−cLt)+O(ε4), (2.4)

with the modified dispersion relationship:

cL = c0(1 + ε2) (2.5)

At t = 0, Eq. (2.4) is fully consistent† with a third-order Stokes expansion. This is
expected from Lagrangian wave equations, which typically provide an order of approx-
imation higher by one as compared to the corresponding Eulerian equations. However,
the nonlinear Lagrangian dispersion relationship Eq. (2.5) found here is different from
the third-order Eulerian solution (e.g., Fenton (1985)):

cE = c0(1 +
1

2
ε2) (2.6)

Thus, the correction to the linear wave celerity predicted by the Lagrangian solution
at second-order is twice the correction predicted by the third-order Eulerian solution.
This discrepancy was already noted by Pierson (1961), but he could not resolve the
contradiction and only stated that “there probably is a residual vorticity field at third-
order in the Lagrangian solution that may account for the difference”. As we will show, it
turns out that the vorticity is not the reason for this discrepancy, which is only apparent
and results from the choice made of the reference location of the Lagrangian particles as
time increases.

† This was already noted by Nouguier et al. (2009) in equation (63) but with a misprint in
the sign of the cos 2kx factor.
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3. Corrected Lagrangian evolution equations for periodic waves

3.1. Choice of reference particle location

To ensure that a Lagrangian perturbation expansion in order of steepness, such as Eq.
(2.3), converges, particles must undertake “small” displacements with respect to their
reference location. Hence, using the zeroth-order solution (x0, z0) as a particle reference
location is increasingly in error, as the secular term Ust due to Stokes drift eventually
transports particles far away from their initial location.

More specifically, as the focus of this study is the free surface geometry and kinematics,
let us consider the trajectory of a free surface particle in a periodic wave over one periods
T . The horizontal position of the particle has shifted with respect to its initial location
by, X(T )−X(0) = Us0T , i.e., proportionally to the free surface value of the Stokes drift.
However, based on Eq. (2.3), the mean horizontal location of the particle:

1

T

∫ T

0

X(t) dt = x0 +
1

2
Us0 T, (3.1)

has only moved horizontally by half this distance. Hence, the barycenter of the trajectory
propagates at only half the speed of the free surface Stokes drift. Therefore, the maximum
excursion of the particle location with respect to its barycenter is on the order of 1

2Us0T ,
while the maximum excursion of the particle with respect to its location at rest is twice
as much. This result implies that the initial particle position is not an appropriate choice
of a reference location. As we will see in the following section, to accurately simulate
the Eulerian phase velocity at third-order, the Lagrangian evolution equations should be
revised by performing a perturbation expansion about a moving reference location at a
translation speed which will be optimized.

3.2. A simple derivation of the Lagrangian solution

For a periodic wave, rather than solving the complete dynamical Lagrangian equations
as was done in Pierson (1961) and Nouguier et al. (2015), a simple Lagrangian solution
can be derived for the particle motion based on the standard Eulerian velocity field
(U(x, z, t),W (x, z, t)), by solving:

◦
X (t) = U(X(t), Z(t), t)
◦
Z (t) = W (X(t), Z(t), t)

(3.2)

where the dot superscripts denote time derivatives. Following the standard procedure,
we describe the particle location by its fluctuations with respect to its resting location,
(x0, z0),

X(t) = x0 + x(t),

Z(t) = z0 + z(t).
(3.3)

Assuming small fluctuations, we may then perform a first-order Taylor series expansion
of the Eulerian velocity around the resting location, which yields:

◦
X (t) =

◦
x (t) = U(x0, z0, t) + x(t)

∂U

∂x
(x0, z0, t) + z(t)

∂U

∂z
(x0, z0, t) +Rx,

◦
Z (t) =

◦
z (t) = W (x0, z0, t) + x(t)

∂W

∂x
(x0, z0, t) + z(t)

∂W

∂z
(x0, z0, t) +Rz,

(3.4)
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where Rx,Rz denote truncation errors, which will be quantified later. The second-order
Eulerian velocity field in deep water reads (e.g., Dean & Dalrymple (1991)):

kU(x, z, t) = εωekz cos(kx− ωt) +O(ε3) = kU1 +O(ε3)

kW (x, z, t) = εωekz sin(kx− ωt) +O(ε3) = kW1 +O(ε3).
(3.5)

Note that the dominant terms are first-order in steepness and the next terms are non-
zero only at third-order. Anticipating that the dimensionless fluctuations (kx(t), kz(t))
are also of first-order in steepness, it follows that the products in Eq. (3.4) are of O(ε2)
and the errorsRx andRz are of O(ε3). Hence, the first-order contributions to the particle
motion satisfy:

k
◦
x1 (t) = εωekz0 cos(kx0 − ωt)

k
◦
z1 (t) = εωekz0 sin(kx0 − ωt)

(3.6)

which yields,

x1(t) = −aekz0 sin(kx0 − ωt)
z1(t) = aekz0 cos(kx0 − ωt).

(3.7)

The governing equation for the next order in particle motion (x2, z2) is found by
inserting Eq. (3.7) into Eq. (3.4) and retaining the second-order terms in steepness:

◦
x2 (t) = U2(x0, z0, t) + x1(t)

∂U1

∂x
(x0, z0, t) + z1(t)

∂U1

∂z
(x0, z0, t)

◦
z2 (t) = W2(x0, z0, t) + x1(t)

∂W1

∂x
(x0, z0, t) + z1(t)

∂W1

∂z
(x0, z0, t)

(3.8)

Since, in deep water U2 = W2 = 0, as seen in Eq. (3.5), this equation simplifies to:

◦
x2 (t) = Us0e2kz0

◦
z2 (t) = 0,

(3.9)

whose solution is:

x2(t) = Us0e2kz0t

z2(t) = 0,
(3.10)

Note that, assuming that the initial particle trajectory (at t = 0) is centered about its
resting location (x0, z0), the integration constants in Eqs. (3.7) and (3.10) were set to
zero. Summarizing our results so far we have:

kX(t) = kx0 − ε sin(kx0 − ωt) ekz0 + kUs0 e2kz0t+O(ε3)

kZ(t) = kz0 + ε cos(kx0 − ωt) ekz0 +O(ε3)
(3.11)

Now in view of the secular term kUs0 e2kz0t, the horizontal fluctuation will become
arbitrarily large as time increases and cause the perturbation expansion to break down.
The magnitude of the horizontal particle fluctuation over a given time interval [0, t] can
be quantified by the mean square distance to the reference location:

〈x2〉t =
1

t

∫ t

0

x2(t′)dt′ (3.12)

For a large number n of completed cycles we find (with (n− 1)T 6 t < nT ):

〈x2〉t ' 〈x2〉nT '
1

3
(nT )2U2

s0 e4kz0 , (3.13)
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where we have neglected the bounded terms. Based on this equation, the choice of the
initial resting location of the particle (x0, z0) as a reference location is clearly not optimal
since the particle increasingly drifts away from it with each passing cycle. Hence we
propose to correct this reference location in order to minimize the influence of the secular
term in the horizontal motion of the particle. To do so, the perturbation expansion Eq.
(3.3) is recast using a reference location (x, z) as a linear function of the Stokes drift
that takes place over the time interval under consideration, i.e., x = x0 + αUs0e2kz0nT .
Proceeding with calculations in a way similar to Eqs. (3.4-3.11), we obtain the expression
of the second-order fluctuation (x(t), z(t)) with respect to this new reference position,
which is valid for all time in the interval [0, nT ]:

kX(t) = k(x+ x(t)) = kx− ε sin(kx− ωt) ekz + kUs0 (t− αnT ) e2kz +O(ε3)

kZ(t) = k(z + z(t)) = kz + ε cos(kx− ωt) ekz +O(ε3),
(3.14)

where the integration constant −αnT in the secular term ensures the consistency at t = 0
with the original expansion Eq. (3.11). The optimal value of α can now be selected such
as to minimize the mean square fluctuation 〈x2〉nT , which yields α = 1

2 and:

〈x2〉nT '
1

12
(nT )2U2

s0 e4kz0 (3.15)

With this parametrization, the horizontal reference location is finally found to be the
average particle motion over the completed cycles:

x = x0 +
1

2
Us0e2kz0nT =

1

nT

∫ nT

0

X(t) dt (3.16)

Note that, with the induced correction, the reference location is recalculated at each new
cycle of particle motion, that is (n− 1)T 6 t < nT in eq. (3.16) above. For the reference
vertical location, we select:

z0 = z0 +
1

2
k−1ε2 (3.17)

which ensures that the corresponding Eulerian surface is vertically centered, as can be
seen from Eqs. (2.3) and (2.4).

For the free surface particles (z0 = 0), which are those of interest in this work, this
finally yields:

kX(t) = kx0 − ε sin(kx0 +
1

2
kUs0 nT − ωt) + kUs0 t+O(ε3)

kZ(t) =
1

2
ε2 + ε cos(kx0 +

1

2
kUs0 nT − ωt) +O(ε3),

(3.18)

Since kUs0 |t− nT | 6 kTUs0 = O(ε2), Eq. (3.18) can be recast in a simpler way, within
a third-order truncation error:

kX(t) = kx0 − ε sin(kx0 − ω̃ t) + kUs0 t

kZ(t) =
1

2
ε2 + ε cos(kx0 − ω̃ t)

(3.19)

for any time t > 0, in which the modified angular frequency is defined as:

ω̃ = ω − 1

2
kUs0. (3.20)

This equation, which is consistent with the original Choppy wave model at t = 0, yields
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the correct value of the Stokes drift on the free surface:

1

t

∫ t

0

◦
X (t′) dt′ = Us0 (3.21)

and is consistent with the third-order Stokes wave dispersion relationship Eq. (2.6), as
seen by comparing it with Eqs. (2.3)-(2.4).

As seen above the proposed correction of a “moving” horizontal reference location xn
leads to a modified dispersion relationship, which is in fact simply related to the “speed”
of any reference particle. It can indeed be easily checked, by performing calculations
similar to above, that selecting a reference particle on the free surface that translates
at a fraction α of the Stokes drift, that is xn = x0 + nαUs0T leads to a propagation
speed cL = c0(1 + (1−α)ε2). The selected value α = 1

2 yields results consistent with the
nonlinear dispersion relationship predicted by third-order Eulerian theory. However, this
value was not found by requiring a priori compliance to the latter, but through a more
general optimization criterion, ensuring that the mean square fluctuation of horizontal
particle motions along their trajectory be minimal. When considering Eq. (3.14), the
perturbation expansion could appear to be an artificial redistribution of the second-order
terms in O(ε2), between the secular term and the moving reference location. However,
the difference is hidden in the O(ε3) term, which can also grow arbitrarily due to any

combination of the form x2
∂U1

∂x
or x2

∂W1

∂x
in the dynamical Lagrangian Eq. (3.2).

4. Generalization to two-dimensional irregular waves

4.1. Derivation of the Lagrangian solution

The case of irregular waves can be derived in a similar way. We again seek to express
the particle locations (X(t), Z(t)) as a perturbation expansion around some reference
location (x, z):

X(t) = x+ x1(t) + x2(t),

Z(t) = z + z1(t) + z2(t)
(4.1)

up to second-order in total wave steepness ε, where again the mean location (x, z) does
not necessarily coincide with the particle resting location (x0, z0).

Assuming a 2D sea state represented by an energy density spectrum S(ω), of peak
spectral period Tp = 2π/ωp, linear irregular wave elevations can be defined in deep
water as the superposition of periodic components (or harmonics) of increasing angular
frequencies ωi (i = 1, ..., N) separated by a frequency step ∆ω:

η1(x, t) =

N∑
i=1

ai cosψi, (4.2)

of amplitudes ai =
√

2S(ωi)∆ω and phase functions ψi = kix−ωit−ϕi, with ki = ω2
i /g

and ϕi ∈ [0, 2π] the component wavenumbers and random phases, respectively. For this
wave field, the total steepness is defined as ε =

∑
i aiki and, according to standard

spectral wave theory, the sea state’s significant wave height is defined as Hs = 4
√
mo,

where mo =
∫∞
0
S(ω) dω ' ∆ω

∑
i Si is the zeroth-moment or area of the spectrum.
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The linear velocity field corresponding to Eq. (4.2) is given by:

U (1)(x, z, t) =

N∑
i=1

aiωie
kiz cosψi

W (1)(x, z, t) =

N∑
i=1

aiωie
kiz sinψi

(4.3)

For irregular waves, however, unlike the periodic wave case of Eq. (3.5), second-order
terms (U (2),W (2)) appear in the velocity field, whose expressions were derived by Longuet-
Higgins (1963) (based on the velocity potential given on p 466). Assuming long-crested
waves, the second-order velocity potential reads:

φ(2)(x, z, t) =
∑
i,j

2aiajωiωj
(ωi − ωj)

(ωi − ωj)2 − g |ki − kj |
e|ki−kj |z sin(ψi − ψj), (4.4)

which after some algebra can be recast more simply as:

φ(2)(x, z, t) = −
∑
i<j

aiajωje
(kj−ki)z sin(ψj − ψi), (4.5)

leading to:

U (2)(x, z, t) =
∂φ(2)

∂x
(x, z, t) = −

∑
i<j

aiajωj

(ω2
j − ω2

i )

g
e(kj−ki)z cos(ψj − ψi)

W (2)(x, z, t) =
∂φ(2)

∂z
(x, z, t) = −

∑
i<j

aiajωj

(ω2
j − ω2

i )

g
e(kj−ki)z sin(ψj − ψi)

(4.6)

Following the procedure used for periodic waves, we perform a Taylor series expansion
of the velocity field around the reference location of the considered particle (x, z) (to
be defined later) and eliminate third-order and higher-order terms in steepness, which
yields:

◦
x (t) = U (1)(x, z, t) + U (2)(x, z, t) + x(t)

∂U (1)

∂x
(x, z, t) + z(t)

∂U (1)

∂z
(x, z, t) +O(ε3)

◦
z (t) = W (1)(x, z, t) +W (2)(x, z, t) + x(t)

∂W (1)

∂x
(x, z, t) + z(t)

∂W (1)

∂z
(x, z, t) +O(ε3)

(4.7)

Inserting the expressions of U (1) and W (1) in this set of equations yields the first-order
time derivatives of the particles locations as:

◦
x1 (t) =

N∑
i=1

aiωie
kiz cosψi,

◦
z1 (t) =

N∑
i=1

aiωie
kiz sinψi

(4.8)

where ψi = kix − ωit − ϕi. The integration of the first-order particle trajectories is
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straightforward:

x1(t) = −
N∑
i=1

aie
kiz sinψi,

z1(t) =

N∑
i=1

aie
kiz cosψi,

(4.9)

with zero integration constants as these quantities are already of zero average. Next,
inserting the expressions of U (2),W (2) from Eq. (4.6) and Eq. (4.9) into Eq. (4.7) yields:

◦
x2 (t) =

∑
i<j

aiaj
g

cosψij

[
−ωj(ω

2
j − ω2

i )e(kj−ki)z + (ω3
j + ω3

i )e(kj+ki)z
]

+

N∑
i=1

a2i kiωie
2kiz

◦
z2 (t) =

∑
i<j

aiaj
g

sinψij

[
−ωj(ω

2
j − ω2

i )e(kj−ki)z + (ω3
j − ω3

i )e(kj+ki)z
]

(4.10)

where ψij = ψj − ψi.

The integration of the time derivatives of the second-order terms must be done more
carefully, as it leads to singular expressions. When integrating from some initial time,
say t = 0, we find:

x2(t) =
∑
i<j

aiaj
g

(
ωj(ωj + ωi)e

(kj−ki)z −
(ω3

j + ω3
i )

(ωj − ωi)
e(kj+ki)z

)(
sinψij − sinψij |t=0

)
+

N∑
i=1

a2i kiωie
2kizt+ Cx

z2(t) =
∑
i<j

aiaj
g

(
−ωj(ωj + ωi)e

(kj−ki)z +
(ω3

j − ω3
i )

(ωj − ωi)
e(kj+ki)z

)
cosψij + Cz,

(4.11)

within some integration constants (Cx, Cz). Note that the difference of sine terms in
the summation for x2(t) balances the 1/(ωj − ωi) singularity in the kernel, which would
otherwise lead to a divergent summation with a decreasing frequency step.

4.2. The second-order ‘Choppy Wave Model’

When the reference particle location is selected as that of the surface at rest, (x = x0, z =
z0), Eq. (4.9) recovers the first-order Lagrangian solution of Pierson (1961). When applied
to the free surface particles (z0 = 0), this recovers the ’Choppy Wave Model’ (CWM)
Nouguier et al. (2009). For the same choice of reference particle location and setting
Cx = Cz = 0, Eqs. (4.9) and (4.11) coincide with the second-order expressions derived

by Pierson (1961) for x2(t) − x2(0). Finally, with Cx = 0 and Cz = 1
2

∑N
i=1 a

2
i ki the

equations coincide with the expansion derived by Nouguier et al. (2015) for the same
quantity. By analogy with the first-order case, this latter version of the second-order
expansion specified on the free surface (z0 = 0) will be referred to as ’second-order
Choppy Wave Model’, abbreviated to ’CWM2’ in the following.

After some algebraic simplifications that occur for z0 = 0 and using the linear disper-
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sion relationship, the complete CWM2 expansion reads:

X(t) = x0 −
N∑
i=1

ai sinψ0
i +

∑
i<j

aiajB
x
ij

(
sinψ0

ij − sinψ0
ij |t=0

)
+ Us0t

Z(t) =
1

2

N∑
i=1

a2i ki +

N∑
i=1

ai cosψ0
i +

∑
i<j

aiajB
z
ij cosψ0

ij ,

(4.12)

where ψ0
i = kix0 − ωit− ϕi and ψ0

ij = ψ0
j − ψ0

i . Here Us0 is the total Stokes drift of the
irregular wave field on the free surface, defined as:

Us0 =

N∑
i=1

a2i kiωi (4.13)

and,

Bx
ij = ki

ωi + ωj

ωi − ωj

Bz
ij = ki.

(4.14)

As compared to the CWM1, the CWM2 includes wave interaction terms for both the
horizontal and vertical position, represented by the double summations in Eq. (4.12). As
was shown in Nouguier et al. (2015), only the wave interaction terms in Z(t) are necessary
to make this solution fully consistent with the second-order Eulerian expansion, while
the wave interaction terms in X(t) contributes only to third- and higher-order Eulerian
expansion and, furthermore, are found numerically unstable. These double summations
do not allow for an efficient numerical implementation of the CWM2 model as they
require O(Nx×N) computations at every time step, where Nx is the number of particle
positions (corresponding to the grid of surface particles at rest) and N the number of
wave frequencies. On the contrary, the CWM1 model can be solved (Nouguier et al.
2009) by a mere Fast Fourier Transform (FFT) which reduces the computational cost at
every time step to O(N logN). However, it will be shown later that the wave interaction
terms have a negligible impact on the performance of the model for predicting the wave
evolution in time. Hence, a numerically efficient version of the CWM2 model will be
obtained by neglecting these interaction terms (that is keeping in the second-order terms
only the Stokes drift and the mean vertical level correction).

4.3. The improved ’Choppy Wave Model’

As in the periodic wave case, the reference particle location (x, z) will be optimized by
requiring that it correspond to the mean particle location over a growing number of
cycles. For irregular waves, the free surface is aperiodic but, for a sufficiently long time
tmax = nTp � Tp (with n a large integer number), it can be assumed that the harmonics
in Eqs. (4.9) and (4.11) nearly have a zero average. Hence, calculating the mean particle
location to second-order over the time interval [0, tmax] and requiring that it be zero
yields the Eq. (4.11) constants:

Cx = −1

2
n

N∑
i=1

a2i kiωie
2kizTp

Cz = 0

(4.15)

Note that the integration constant Cx must be updated as the number of peak periods
increases. As in the periodic wave case the free surface (z0 = 0) reference particle location
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is optimized after n peak periods (xn, zn) by requiring that the MSL of the Lagrangian
surface ηL be zero. As we will see, this implies:

zn = z =
1

2

N∑
i=1

a2i ki, (4.16)

which is similar to Eq. (3.17) for regular waves.

Next the locus of surface particles (obtained with Eq. (4.16)) is derived, which im-
plicitly defines an Eulerian surface Z(t) = ηL(X(t)). Based on Eq. (4.9), the first-order
displacement with respect to the reference position (x, z) reads:

x1(t) = −
N∑
i=1

ai sinψi = −D1(x, t)

z1(t) =

N∑
i=1

ai cosψi = η1(x, t),

(4.17)

where η1 is the linear surface elevation from Eq. (4.2) and D1 is its Hilbert Transform.
At second-order, Eq. (4.11) combined with Eq. (4.15) yields:

x2(t) =
∑
i<j

aiajB
x
ij

(
sinψij − sinψij |t=0

)
+ Us0(t− 1

2
nTp)

z2(t) =
∑
i<j

aiajB
z
ij cosψij ,

(4.18)

where the Stokes drift Us0 is defined in Eq. (4.13) and the kernels are given in Eq. (4.14).
By comparing the modified second-order expansion (4.18) with the original CWM2, we
see that the mean horizontal position xn is related to the position at rest through xn =
x0 + 1

2nUs0Tp. Therefore, for large n, x can be replaced by x0 + 1
2Us0t in Eqs. (4.17) and

(4.18), which amounts to replacing ψi by ψ̃i = kix0 − ω̃it− ϕi and ψij by ψ̃ij = ψ̃j − ψ̃i

in Eqs. (4.17) and (4.18), with the modified angular frequency:

ω̃j = ωj −
1

2
kjUs0 (4.19)

The double summations in the expressions of x2 and z2, in Eqs. (4.17) and (4.18),
which represent interaction terms between various harmonics, cannot efficiently be com-
puted (i.e., by a FFT). However, even though their absolute value is on the same order
of magnitude as the secular and constant terms in these equations, their fluctuating con-
tributions to the free surface motion average out over a large time and, hence, can be
neglected.

Consequently, Eqs. (4.1), (4.17) and (4.18) yield the simplified expressions:

X(t) = x0 − D̃1(x0, t) + Us0t

Z(t) = η̃1(x0, t) +
1

2

N∑
i=1

a2i ki,
(4.20)

where η̃1 is a linear surface with modified angular frequency and D̃1 is its Hilbert Trans-
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form:

η̃1(x, t) =

N∑
j=1

aj cos(kjx− ω̃jt− ϕj),

D̃1(x, t) = −
N∑
j=1

aj sin(kjx− ω̃jt− ϕj)

(4.21)

An explicit but approximate formulation of the free surface elevation Z = ηL(X, t)
can be obtained at second-order by inverting the relationship between X and x0 and
performing a Taylor series expansion in the expression of Z(t):

x0 ' X + D̃1(X − Us0t, t)− Us0t

Z(t) ' η̃1(X − Ust, t) + D̃1(X − Us0t, t)
∂η̃1
∂x

(X − Us0t, t) +
1

2

N∑
i=1

a2i ki
(4.22)

Hence, based on Eq. (4.22) the nonlinear surface is defined as:

ηL(x, t) =
1

2

N∑
i=1

a2i ki + η̃1(x− Us0t, t)− D̃1(x− Us0t, t)
∂η̃1
∂x

(X − Us0t, t) + ... (4.23)

or more explicitly as:

ηL(x, t) =
1

2

N∑
i=1

a2i ki +

N∑
j=1

aj cos(kj(x− cjt)− ϕj) (4.24)

−
∑
i,j

aiajkj sin(ki(x− cit)− ϕi) sin(kj(x− cjt)− ϕj) + ...

where cj is the linear phase velocity of each component, c0j , modified by the Stokes drift:

cj = c0j +
1

2
Us, (4.25)

with c0j = ωj/kj . Note that the resulting free surface is well centered about the horizontal
plane (〈ηL(x, t)〉 = 0), which justifies the choice in Eq. (4.16) of the reference vertical
value.

The solution (4.19-4.21), hereafter referred to as ICWM, constitutes an improved for-
mulation of the Choppy Wave model, which should preserve its high numerical efficiency.
Even though second-order interaction terms have been discarded in this model, it retains
second-order contributions that are dominant in the time evolution of a wave packet.
These are 1) a modified angular frequency (resulting in a modified dispersion relation-
ship); 2) the Stokes drift; and 3) the correction of the mean water level bias (see also
Clamond (2007) and his discussion of Gerstner’s theory in Appendix). Note that, given
spectral amplitudes aj and initial phases ϕj , a Lagrangian surface (X(t), Z(t)) can be
efficiently generated with ICWM, at every time step and over a spatial grid x0, with the
computational cost of 2 FFTs.

5. Assessment of the 2D-ICWM for periodic or irregular waves

The accuracy and efficiency of the proposed improved second-order Lagrangian model
(ICWM), to perform the time updating of nonlinear surface waves, are numerically as-
sessed by comparing results to those of a fully nonlinear model based on a High-Order
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Spectral method (HOS). In this comparison, we also include the complete original second-
order Lagrangian model (CWM2, Eq. (4.12)), where the wave interaction terms in X(t)
have been discarded. Finally, for completeness, we also compare results to those of a
model based on linear wave theory (LWT).

There are at least three conceptual difficulties when comparing the time evolution of
phased-resolved Lagrangian and HOS surfaces, namely:

(a) the selection of sampling points: Lagrangian and Eulerian surfaces are not evalu-
ated on the same grids;

(b) non-stationary statistics: because of non-linear interactions, the wave spectrum is
evolving in time and thus cannot be prescribed except at initial time;

(c) the selection of initial phases for an irregular surface: these should be identical in
all methods, but cannot in practice be strictly so.

These issues will be further elaborated on below and partial solutions will be imple-
mented in order to achieve a meaningful comparison between the different methods and
model results.

5.1. Reference Dataset and Error Definition

A synthetic reference nonlinear ocean surface is first generated using the open source
code ‘HOS-ocean’ (Ducrozet et al. 2016), which can accurately simulate the propaga-
tion of nonlinear waves over large spatio-temporal domains, up to a specified order in
wave steepness, albeit at greater computational cost. Since its initial development by
Dommermuth & Yue (1987) and West et al. (1987), the HOS method has been exten-
sively validated and used in various applications, such as the simulation of freak waves
(Ducrozet et al. 2007), the implementation of a numerical wave tank (Bonnefoy et al.
2009), or ocean wave field reconstructions based on measurements (Blondel-Couprie et al.
2013; Qi et al. 2018a). HOS-ocean solves the fully nonlinear potential flow problem as a
function of time, in terms of N complex amplitudes Ai (t), for many wave components i,
which are then used to reconstruct the ocean surface at an arbitrary point (x, t), as (in
2D):

ηHOS (x, t) = Re

 N∑
j=1

Aj (t) eikjx

 . (5.1)

In the following applications, we use a fifth-order HOS method with 32 grid points per
peak wavelength λp, which was verified to provide converged results in terms of order of
nonlinearity as well as discretization.

(a) We compare the time evolution of the relative root-mean-square (RMS) differ-
ence between the Lagrangian surface ηLAG (which can be generated either with CWM2
or ICWM) and the HOS surface elevation ηHOS at the same points. Given that the
Lagrangian surface is implicitly defined by the surface particle locations, it is much eas-
ier to perform this comparison on the Lagrangian grid (that is, the ensemble of points
(X(t), Z(t))) rather than the Eulerian grid (x, ηLAG(x)) which requires an explicit for-
mulation of the Lagrangian surface (which can only be attained in an approximate way).

The RMS difference between a free surface representation and the HOS solution is
thus defined as:

εLAG (t) =
1

rmsh

(
1

L

∫ L

0

{
Z (t)− ηHOS(X(t), t)

}2

dX(t)

)1/2

(5.2)

where L is the computational domain length and the normalization constant ‘rmsh’ is
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defined as:

rmsh =

(
1

L

∫ L

0

η2HOS(x, 0) dx

)1/2

=

(
1

2

N∑
i=1

|Ai(0)|2
)1/2

(5.3)

and represents the RMS elevation of the initial surface, which we also express as a function
of spectral amplitudes Ai(0).

(b) Given the initial wave spectrum of an irregular surface, the corresponding free
surface elevation in the HOS model follows a modified energy density spectrum, due to
nonlinear wave-wave interactions and the redistribution of energy that occurs during wave
propagation. Hence free surface statistics are not stationary and thus not fully controlled
during the nonlinear time evolution. By contrast, CWM surfaces, which are based on
a spatial transformation of a linear surface, with a prescribed underlying spectrum, in
principle have stationary statistics (that is, their wave spectrum should not evolve in time,
even though it can be modified by the bound waves). Hence, a meaningful comparison
between time-evolving surfaces in different models can only be performed within smaller
time intervals, within which statistics (essentially the energy density spectrum) can be
assumed to be stationary. A measure of differences between the initial spectrum and the
evolving spectrum of HOS surfaces is given by the RMS difference:

εspec (t) =

(∑N
i=1 (|Ai(t)| − |Ai(0)|)2

)1/2
(∑N

i=1 |Ai(0)|2
)1/2 (5.4)

This measure thus provides a lower threshold to the error of Lagrangian methods εLAG (t)
(defined by Eq. (5.2)), which therefore provides a relevant indicator of the method per-
formance only if, εspec (t) << εLAG (t). In practice, for the typical wave spectra under
consideration, we found that this is the case for an evolution time smaller than about 20
to 40 Tp, depending on wave steepness.

(c) Given an energy density spectrum, phases must be provided for each wave compo-
nent to generate an initial free surface, which is then propagated in the various models.
A rigorous comparison of time-evolving surfaces should thus be based on identical sets
of (random or deterministic) initial phases. However, such phases can only be prescribed
for linear surfaces but not for Lagrangian or HOS surfaces, which undergo a nonlin-
ear transformation. To mitigate possible discrepancies arising from the choice of initial
phases, the HOS model is initialized with an explicit nonlinear solution, which is close to
the Lagrangian solution (Perignon et al. 2010; Perignon 2011), namely the second-order
Eulerian Stokes solution for irregular wave fields as detailed in Longuet-Higgins (1963).
The same underlying linear surface can be used to generate Lagrangian surfaces in the
second-order expansions (CWM2, ICWM), through a geometrical transformation based
on the Hilbert Transform.

5.2. Periodic Waves

Let us first consider a strongly nonlinear periodic wave of steepness H/λ ' 0.08 and
period T , where H = 2a is the wave height and λ the wavelength; for linear deep water
waves, T =

√
2πλ/g. This steepness is over half the deep water limiting steepness and

corresponds to ka ' 0.25, which is in the domain of applicability of the Lagrangian
approach (Pierson 1961). For periodic waves, free surfaces represented in the various
models can be easily synchronized at initial time, using the same phase as that of the
fundamental component of the HOS solution. A domain of length equal to one wavelength
is used to evaluate the error.
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(a)

(b)

Figure 2. Comparison of results computed for a periodic wave of steepness H/λ ' 8%, with the
HOS ( ), linear ( ), CWM2 ( ), and ICWM ( ) models: (a) Error as a function of time
with respect to the HOS solution; (b) normalized free surface elevations after approximately four
periods of propagation.

Fig. 2a shows that, at t = 0, the CWM2 and ICWM surface elevations are identical
since time dependent terms vanish. Both solutions also match quite well the HOS solution
(very small errors can be seen in the figure), and much better than the linear solution,
whose error is εLAG(0) ' 0.15, due to an inaccurate wave shape. In Fig. 2a, the errors
for the CWM2 and linear model follow a parallel growth: while the linear wave does not
experience nonlinear phase velocity corrections, CWM2 is penalized by an overestimated
nonlinear correction (close to twice the correct value, as discussed in Section 2). By
contrast, for ICWM, the improved estimate of the nonlinear phase shift allows for errors
to remain very small throughout the four-period propagation time considered here. At
this stage, Fig. 2b shows a very marked phase shift of the linear and CWM2 model results
with respect to the HOS reference solution, whereas no measurable shift is seen for the
ICWM solution.

5.3. Irregular Waves

The performance of the improved Lagrangian formulation is now assessed for irregular
waves generated on the basis of a specified energy density spectrum S(ω) (see Fig. 3).
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Figure 3. Energy density spectrum as a function of the dimensionless angular frequency ω/ωp,
for a narrow (Gauss, solid line) or broad-banded (JS, red dashed line) spectrum. The character-
istic steepness is Hs/λp ' 6% and 4% for each case, respectively.

Similar to the periodic wave case, we investigate the time evolution of the error of the
CWM2, ICWM, and linear solution, with respect to the HOS reference solution. Given
a sea state of parameters (Hs, Tp), the influence of energy spreading around the peak
spectral frequency on the performance of the various wave models is investigated by
considering two different spectra: (i) a narrow-banded Gaussian spectrum:

S(ω) = α
1√

2πσ2
e−

(ω−ωp)2

2σ2 , (5.5)

of standard deviation σ/ωp = 0.08, where ωp = 2π/Tp denotes the peak angular fre-
quency, and (ii) a JONSWAP (JS) spectrum with peakedness parameter γ = 1:

S(ω) = α
g2

ω5
e−

5
4 (
ωp
ω )4 (5.6)

(i.e., similar to the Pierson-Moskowitz (PM) spectrum of a fully developed sea, but with
fetch-dependent peak frequency). In both cases, parameter α is found based on a specified
Hs value, from the standard definition:∫ ∞

0

S(ω)dω =
H2

s

16
(5.7)

In the applications, we use Tp = 10 s with Hs = 9 m for the Gaussian spectrum and Hs =
6 m for the JS spectrum. This yields characteristic deep water steepnesses Hs/λp ' 6%
and 4%, respectively, with λp = 2π/kp denoting the peak spectral wavelength (note that
the corresponding PM spectrum would have Tp = 12.3 s, i.e., the JS spectrum used here
represents a fetch limited sea). The corresponding spectra are shown in Fig. 3.

For irregular waves, a larger number of dominant waves than in the periodic case must
be modeled in the computational domain, in order to achieve convergence of the integral
error of Eq. (5.2); here we use a spatial domain spanning eight peak wavelengths, i.e.,
L = 8λp. At t = 0, the linear and CWM free surfaces are constructed from the linear
spectral information using the same set of random phases. For the HOS model, however,
unlike periodic waves, linear information cannot be retrieved (except at initialization time
t = 0) due to the implicit nonlinear components. Moreover, using linear information to
initialize the HOS nonlinear propagation would lead to unstable calculations of higher-
order terms (Dommermuth 2000). Hence, to allow for a deterministic comparison between
models, the HOS was initialized solver with a nonlinear irregular wave field, here, a
second-order Stokes wave solution, following the method detailed in Perignon et al. (2010)
and Perignon (2011).
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Figure 4 shows the comparison of normalized surface elevations computed in the dif-
ferent models at t = 4Tp, for the two types of spectra. For the wave train extracted from
a Gaussian spectrum, Fig. 4a shows that the ICWM model prediction remains very ac-
curate after 4Tp. With the other models, for which wave celerity is inaccurate, waves are
either delayed (linear solution) or too fast (CWM2), with respect to the HOS reference
solution. Similar observations can be made in Fig. 4b, although in a less obvious way,
for waves extracted from a JS spectrum: after 4Tp of propagation, the overall locations
of dominant waves modeled with the ICWM model are consistent with the HOS solution
(although not their smaller fluctuations), whereas the linear and CWM2 solutions are
already desynchronized with it.

More specifically, Figure 5 shows the time evolution of relative errors computed with
Eq. (5.2) over the first 10 peak periods of propagation, for the two cases of Fig. 4. In
the Gaussian spectrum case, the ICWM model yields errors reduced by a factor of ∼ 2
with respect to the linear solution as well as a significant improvement with respect
to results of the CWM2 model. The overall error is larger in the JS spectrum case,
but the same qualitative observations hold true. To quantify the effect of second-order
interaction terms, which have been discarded in the ICWM model to obtain a numerically
efficient solution, the CWM2 model results with a corrected dispersion relationship (4.19)
have also been computed (referred to as “ICWM with interaction terms” in Fig. 5). As
seen in the figures, these terms only yield significant effects within the first peak period
of propagation (particularly in the Gaussian case) and become rapidly negligible with
respect to the correction due to the dispersion relationship (ICWM). The black lines
in Fig. 5 show the relative variation of the wave energy spectrum of the HOS reference
surface, which is verified to remain small with respect to the relative error between
methods. This confirms that the improved accuracy of ICWM for wave prediction is
essentially due to a corrected wave celerity rather than an accurate description of bound
waves.

We also checked the relative importance of the horizontal displacement term D̃1 in Eq.
(4.20) with respect to the wave celerity correction; to do so, we simulated the evolving
surface according to LWT (not shown here), but using the corrected nonlinear dispersion
relationship (i.e., Eq. (4.23) with D̃1 = 0), a model henceforth referred to as LWT-CDR.
At initial time, when it represents a purely linear surface, LWT-CDR yields a significantly
larger relative error than ICWM (as can be seen in Figs. 2 and 5 at t = 0). However,
after a few peak periods of propagation, we find that the LWT-CDR and ICWM solutions
yield comparable errors, showing once again that, as far as predicting surface elevations,
the dominant source of error is inaccuracies in wave celerity.

Note that numerical results are only shown in Fig. 5 for a single steepness for each
spectrum (6% or 4%), which in fact represents the largest value achievable with the HOS
model. At larger steepnesses, this model breaks down after a few periods due to the
occurrence of wave breaking in the simulated sea-state, which is not explicitly treated
in the version of HOS-ocean used in this study (Ducrozet et al. 2017). We performed a
more systematic numerical investigation of the effect of wave steepness, which showed as
could be expected that gradually increasing it both increases discrepancies between the
linear and nonlinear model results and yields larger errors as time increases. For small
steepness, the effect of interaction terms is negligible while the divergence of the linear
model is still signigicant in the long term.

An important final remark is that criterion (5.2), used to quantify the error with
respect to a rigorous model, is based on the RMS of surface elevations, which is mostly
impacted by long waves. However, when it comes to predicting or interpreting properties
of radar or LIDAR beams scattered by the sea surface, the accurate description of the
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(a)

(b)

Figure 4. Normalized surface elevations computed with: HOS ( ), linear ( ), CWM2 ( ),
and ICWM ( ) models, after t = 4Tp of propagation, for irregular wave trains with Tp = 10 s
extracted from a: (a) Gaussian spectrum with standard deviation σ/ωp = 0.08, Hs = 9 m, and
characteristic steepness Hs/λp ' 6%; and (b) a JS spectrum with peakedness parameter γ = 1
(similar to a PM spectrum), Hs = 6 m, and Hs/λp ' 4%. See Fig. 3 for spectral shapes.

free surface roughness at small scale becomes crucial. In this context, the improvement
of the ICWM over LWT or LWT-CDR models is not only related to its kinematical
correction (which was found to be dominant in the present numerical analyses), but also
to its geometrical correction of wave shape, which more significantly affects free surface
slopes. Additional work is in progress to evaluate the performance of the ICWM from
this “small scale roughness” point of view.

6. Discussion and conclusion

In this paper we derived and validated an improved and numerically efficient La-
grangian surface wave model, referred to as ’Improved Choppy Wave Model’ (ICWM),
derived by correcting a conceptual flaw in the classical Lagrangian expansion, namely an
inappropriate choice of the reference particle location that leads to increasing errors as
waves propagate. We presented a simplified approach for deriving Lagrangian solutions,
based on iteratively solving the dynamical system relating water particle locations to
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(a)

(b)

Figure 5. Time evolution of relative errors (Eq. (5.2)) for the two cases of Fig. 4 (a and b),
for the linear ( ), CWM2 ( ), ICWM ( ) and ICWM with interaction terms ( ) model
results. The black solid line shows the relative change (Eq. (5.4)) of the prescribed spectrum
during the HOS time evolution.

the Eulerian velocity field. Doing so, we could formally recover, in a much simpler way,
the classical second-order Lagrangian expansion (CWM2) derived in the literature based
on first-principles (Nouguier et al. 2015). One major difference with CWM2, however,
is that ICWM uses a modified, more accurate, dispersion relationship that accounts for
amplitude dispersion effects consistent with a third-order Eulerian expansion (Dean &
Dalrymple 1991). The numerically efficient version of the ICWM model was obtained
by discarding complex second-order interaction terms arising in the complete expansion,
but keeping the dominant second-order effects, namely Stokes drift and mean sea level
(MSL) correction. We showed that the neglected terms were not necessary to achieve
a good solution in the short term. The model accuracy and efficiency were numerically
assessed for 2D-surfaces, by performing a systematic comparison of different model so-
lutions (linear wave theory (LWT), CWM2 and ICWM) with that of a fully non linear
Higher-Order Spectral (HOS) model. We found that using ICWM led to a significant
improvement of phased-resolved wave propagation, up to a few dominant wave periods
of propagation, at a significantly reduced computational cost compared to using CWM2.
A model based on LWT, but using the same corrected dispersion relationship (CDR) as
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ICWM, referred to as LWT-CDR, achieved nearly the same accuracy as ICWM after a
few periods of propagation, confirming that the CDR is the most important factor for
obtaining an accurate solution. However, since the computational cost of using LWT-
CDR is about the same as ICWM, the latter model, which more accurately accounts for
the geometry of nonlinear waves, is still preferred.
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7. Appendix: Three-dimensional irregular waves

The generalization of the technique to three dimensions (3D) is straightforward, al-
though more algebra is involved. Below, we only provide the main steps in the calcula-
tions. The 3D linearized solution for the surface elevation reads:

η1(x, y, t) =

N∑
i=1

ai cosψi (7.1)

where ψi = ki · r − ωit − ϕi, r = (x, y), ki = (kix, kiy), ki = ‖ki‖ and ωi =
√
gki. The

corresponding linearized solution for the velocity field is given by:

U (1)(x, y, z, t) =

N∑
i=1

aiωi
kix
ki

ekiz cosψi

V (1)(x, y, z, t) =

N∑
i=1

aiωi
kiy
ki

ekiz cosψi

W (1)(x, y, z, t) =
N∑
i=1

aiωie
kiz sinψi

(7.2)

The expression of the second-order correction can again be found in Longuet-Higgins
(1963) (through the velocity potential given p 466):

φ(2)(x, y, z, t) =
∑
i,j

aiaj

(
A−ije

|ki−kj |z sin(ψi − ψj) +A+
ije
|ki+kj |z sin(ψi + ψj)

)
(7.3)

where,

A±ij =
ωiωj

kikj

(ωi ∓ ωj)(ki · kj ± kikj)
(ωi ∓ ωj)2 − g |ki ∓ kj |

(7.4)

Similar to the 2D case, the developments start from the dynamical system linking the
particle locations:

X(t) = x+ x1(t) + x2(t),

Y (t) = y + y1(t) + y2(t),

Z(t) = z + z1(t) + z2(t)

(7.5)

to the Eulerian velocity field (U, V,W ), in which a second-order Taylor series expansion
of the former around their mean locations (x, y, z) = (r, z) is expressed as:

◦
x (t) = U (1)(r, z, t) + U (2)(r, z, t) +

{
x(t)

∂U (1)

∂x
+ y(t)

∂U (1)

∂y
+ z(t)

∂U (1)

∂z

}
(r, z, t)

◦
y (t) = V (1)(r, z, t) + V (2)(r, z, t) +

{
x(t)

∂V (1)

∂x
+ y(t)

∂V (1)

∂y
+ z(t)

∂V (1)

∂z

}
(r, z, t)

◦
z (t) = W (1)(r, z, t) +W (2)(r, z, t) +

{
x(t)

∂W (1)

∂x
+ y(t)

∂W (1)

∂y
+ z(t)

∂W (1)

∂z

}
(r, z, t)

(7.6)

The first-order contribution can easily be identified and integrated:

x1(t) = −
N∑
i=1

ai
kix
ki

ekiz sinψi; y1(t) = −
N∑
i=1

ai
kiy
ki

ekiz sinψi; z1(t) =

N∑
i=1

aie
kiz cosψi.

(7.7)
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Again, the first-order solution given by Eqs. (7.5) and (7.7) is identical to the three-
dimensional CWM of Nouguier et al. (2009). Building on this solution, we easily obtain
the following expressions for the time derivatives of second-order fluctuations:

◦
x2 (t) =

∑
i,j

aiaj

(
A−ije

|ki−kj |z(kix − kjx) cos(ψi − ψj) +A+
ije
|ki+kj |z(kix + kjx)

cos(ψi + ψj)

)
+
∑
i,j

aiajkjxωje
(ki+kj)Z

(
ki · kj

kikj
sinψi sinψj + cosψi cosψj

)
◦
y2 (t) =

∑
i,j

aiaj

(
A−ije

|ki−kj |z(kiy − kjy) cos(ψi − ψj) +A+
ije
|ki+kj |z(kiy + kjy)

cos(ψi + ψj)

)
+
∑
i,j

aiajkjyωje
(ki+kj)Z

(
ki · kj

kikj
sinψi sinψj + cosψi cosψj

)
◦
z2 (t) =

∑
i,j

aiaj

(
A−ije

|ki−kj |z |ki − kj | sin(ψi − ψj) +A+
ije
|ki+kj |z |ki + kj |

sin(ψi + ψj)

)
+
∑
i,j

aiajkjωje
(ki+kj)Z

(
ki · kj

kikj
sinψi cosψj + cosψi sinψj

)
(7.8)

Integrating Eqs. (7.8) as was done in the 2D case, yields the complete 3D Lagrangian
solution (CWM2), which was already derived by Nouguier et al. (2015) and, hence, is not
detailed here. Instead, we concentrate on the numerically efficient second-order solution,
using a corrected dispersion relationship. Hence, excluding interaction terms from the
complete second-order formulation, we retain the free surface Stokes drift vector:

Us0 =

N∑
i=1

a2iωiki (7.9)

and, with a straightforward generalization of the technique used in 2D, we find the
modified angular frequency:

ω̃i = ωi −
1

2
ki · Us0 (7.10)

Based on Eqs. (7.9) and (7.10), the Lagrangian evolution of the surface elevation is given
by the 3D-ICWM as:

r(t) = r0 −
N∑
i=1

ai
ki

ki
sin ψ̃i + Us0t

Z(t) =

N∑
i=1

ai sin ψ̃i +
1

2

N∑
i=1

a2i ki,

ψ̃i = ki · r − ω̃it− ϕi

(7.11)

whose efficient numerical solution can be developed following the same procedure as used
in 2D, based on two-dimensional FFTs.


