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Abstract

Within the context of Digital Image Correlation (DIC), the optimal treatment of color images

is considered. The mathematical bases of a weighted 3-field image correlation are first intro-

duced, which are relevant for RGB encoded images. In this framework, noise characterization

methods are developed as noise properties dictate the best suited metric to compare images.

Consistent ways to process an image from elementary Bayer matrices are derived. Last, a case

study on uncertainty quantification is performed.
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1 Introduction

The analysis of displacement fields of structures during mechanical tests is a key element for

validating and identifying numerical models. One of the most commonly used methods to

measure displacements is Digital Image Correlation (DIC [1, 2]), which gives access to full-

fields. These displacement fields may be sought on various kinematic bases [3], which can be

tailored to the underlying mechanics of the problem. Thus, this method can be used to perform

complex measurements with a priori knowledge of the phenomena to be accounted for (e.g.,

crack initiation and propagation [4]).

For scientific applications, monochrome cameras are used in most cases [1]. At each pixel of

the sensor, a brightness level is recorded. In standard laboratory conditions, a speckle pattern

consisting of black and white paints is applied on the studied surface, which makes the use
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of monochrome cameras sufficient. Since the use of these cameras is mostly restricted to the

scientific world, the diversity of the cameras available on the market is limited. Conversely,

digital color cameras are widely distributed among the public with a large range of choices.

High-quality and high-definition color cameras are today available at low cost compared to

scientific cameras. It is therefore legitimate to question the best use of their performance. In

the literature, digital color cameras have been used for various applications such as modal

measurements [5], 3D shape deformation detection [6, 7], hybrid stereocorrelation using in-

frared and visible light cameras [8, 9]. In these works the interest of using a color camera was

not always addressed. The resulting color fields were transformed into a single grayscale field

(generally without specifying the transformation used).

From this amount of (color) data, different options are available to perform DIC analyses. One

easy choice consists in combining the color information into a single, or “gray,” equivalent

level, and further use a classical DIC methodology [5]. Generally, the color fields (i.e., sin-

gle gray level field transition) is not even mentioned in publications. Alternatively, the three

color fields (for RGB color encoding) can be exploited [10]. It will depend on the data quality

and diversity available from the image. For a gray scale image, the data stored on the three

color filters are similar. Thus, performing DIC with only one channel can be considered suffi-

cient. Yet some information is lost, and hence this treatment cannot be “optimal.” For colored

structures, working with all color components may benefit from all the stored data. However,

particular attention must be paid to the noise features of each color.

Many standard color cameras are equipped with the so-called Color Filter Array (CFA) tech-

nology. It is assumed that the color fields are continuous and mostly smooth. Thus, the color

components are not acquired at every pixel location; they are sampled on a regular array. At

each pixel location, a single color component is stored, whereas other ones are calculated

thanks to interpolation schemes from neighboring pixels. One of the most utilized architecture

is known as the Bayer pattern [11], which ensures to mimic the physiology of the human eye.

There are twice as many green elements as red or blue are used to fit with human retina sensor

features.

Recent publications have addressed the question of usefulness of color cameras for DIC appli-

cations [12, 10, 13]. The influence of several parameters was studied in the literature regarding

the use of commercial color cameras, namely, the utility of a color speckle, the demosaicing
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algorithm used and the transformation of color fields (from three fields into a single grayscale

field).

More remotely related to color, let us mention the case of DIC performed on electron backscat-

tered diffraction (EBSD) maps. In such a case, at each pixel, a crystal orientation information

is available, or equivalently, three Euler angles, which can be loosely compared to the three

primary colors. However, dealing with crystal orientations, the notion of “distance” between

two crystal orientations has an objective meaning, that can easily be handled with a quaternion

formalism, leading to an extension of DIC to register EBSD maps as proposed in Ref. [14].

Similarly, the “distance” between two RGB images at corresponding pixels has to be defined

for digital color image correlation.

Since the beginning of imaging, the definition of color metrics has been the subject of intense

research. For instance, the CIE 1931 color spaces [15, 16] were the first quantitative links

between distributions of wavelengths in the electromagnetic visible spectrum, and physiolog-

ically perceived colors in human vision. Nowadays, these metrics aim to more accurately

represent the perceptions of color differences in the human eye in order to develop the most

effective sensors and filters for digital color cameras [17, 18, 19]. For color- DIC, such con-

siderations of human perception have no legitimacy. Instead, it is here proposed to use noise

as dictating the most appropriate metric.

The objective of this work is to introduce the mathematical foundations of an optimal DIC

method when color cameras are used. The quantification of acquisition noise, which is intrinsic

to the camera, is carried out, thereby leading to a unique (i.e., optimal) procedure to compare

the distance between images, a question that lies at the root of any DIC formulation. When

spatial correlations are present, it will be shown that an appropriate linear transformation at

a pre-processing stage can be used to unravel those correlations and restore a uniform white

noise for which the comparison metric is trivial. A case study of displacement uncertainty

quantification is performed when comparing different color image transformations.

2 DIC

This part aims to present the mathematical framework of optimal color DIC. In the following,

a global-DIC framework will be used, where the entire Region of Interest, ROI, is considered

at once with a finite element discretization of the displacement field. However, this choice has
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no consequence on the handling of colors as discussed hereafter. For local-DIC, it suffices to

consider that what is mentioned for the entire ROI holds for smaller interrogation windows

(e.g., “subsets”).

2.1 Monochrome DIC

First, DIC with monochrome images is based on registering an image f(x) defined as a “gray”

level f for all pixels in a region of interest x = [x, y] in the reference configuration, and a series

of pictures g(x) of deformed configurations. The objective is to measure the displacement field

u that obeys the brightness conservation up to the presence of noise η

f(x) = g(x+ u(x)) + η(x) (1)

In other words, the two images are said to be registered when their difference, the so-called

residual, ρ(x) = g(x+ u(x))− f(x), cannot be distinguished from noise.

It is quite usual to face a white Gaussian noise. Gaussian refers to the probability distribution

function that is a centered Gaussian, and thus only characterized by its standard deviation

σ(x). “White” means that the noise affecting two distinct pixels is uncorrelated, so that the

power spectrum of the pair correlation function is uniform over all wavevectors, akin to “white

light,” which has a uniform power density over all wavelengths. It is worth noting that noise

usually affects both reference and deformed images. However, when both noise fields are

uncorrelated, they can be grouped as one equivalent field as above written, with a double

variance as compared to each single-image noise field.

In the case of white and Gaussian noise, the probability of observing a residual ρ(x) at point

x reads

P (ρ(x)) =
1

σ(x)
√
2π

exp

(
− ρ(x)2

2σ(x)2

)
(2)

If η is “white,” the probability of obtaining a residual field ρ(x) over the ROI composed of Nx
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pixels is simply the product of the pixel-to-pixel probabilities

P (ρ) =
Nx∏
i=1

P (ρ(xi))

=
Nx∏
i=1

1

σ(xi)
√
2π

exp

(
− ρ(xi)

2

2σ(xi)2

)
=

(
Nx∏
i=1

1

σ(xi)
√
2π

)
exp

(
−

Nx∑
i=1

ρ(xi)
2

2σ(xi)2

) (3)

where the products or sums run over all pixel labels i, while xi refers to their location. Thus, the

maximum likelihood of this residual is achieved by minimizing the opposite of the argument

of the exponential, i.e., the quadratic pixel-to-pixel difference between both pictures, weighted

by the inverse noise variance

Q =
1

2

Nx∑
i=1

(
ρ(xi)

σ(xi)

)2

=
1

2

Nx∑
i=1

(
f(xi)− g(xi + u(xi))

σ(xi)

)2
(4)

Moreover, if the standard deviation of the noise is uniform throughout the considered ROI, the

maximum likelihood of image matching reduces to minimizing the quadratic pixel-to-pixel

difference

Q[u] =
1

2σ2

Nx∑
i=1

(f(xi)− g(xi + u(xi)))
2 (5)

This derivation proves that when white, Gaussian and uniform noise occurs, then the Euclidean

norm of the difference between the reference and the corrected deformed image is optimal (i.e.,

the least sensitive to noise) to register two grayscale images. Any other measurement of the

discrepancy between these images may be used successfully. However, the corresponding

uncertainty of the result cannot be smaller than with the above objective functional Q.

2.2 Color image registration
A color image is usually composed of three fields for each of the primary hues. The most

common technology is the Bayer filter consisting of four primary sensors organized as 2 × 2

subpixels. Each pixel contains two green, one red and one blue sensors [11]. Figure 1 shows

one possible sensor ordering, referred by the initial of the color of the matrix (top-bottom,

left-right). These pixels repeat themselves horizontally and vertically.
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Figure 1: Bayer pattern that can be used in color cameras

The reconstruction of the color fields on all elementary detectors from the Bayer matrix with

the use of demosaicing algorithms consists in the interpolation of fields. Generally, the set

of three color components is Red, Green and Blue (RGB). The stored data must be post-

processed and interpolated [20, 21, 22] to obtain three complete color channel planes. All

algorithms aim at enhancing contrasts and restoring human vision. Some works have been

devoted to understanding which demosaicing interpolation scheme is better suited for DIC

purposes [23, 10]. The main conclusion is that low order interpolation schemes perform better.

The algorithm that provides better results in terms of error and uncertainty was the one with no

interpolation where the subpixels are binned. Only pixels corresponding to a Bayer elementary

matrix were considered as a unique gray level pixel [10]. The bias induced by demosaicing

results in noise with spatial correlations [6], which is not appropriate for DIC applications [10].

As seen for the previous monochrome case, DIC starts from a distance between two images,

namely 1) the reference image and 2) the corrected deformed one, and among many possible

distances, the one that is optimal exploits the known statistical information on noise within

a Bayesian framework. Thus, it is crucial to characterize noise of color pictures in order to

assess whether it may (or not) account for a given image difference.

When no spatial correlations are present, and for a Gaussian noise, the entire statistical char-

acterization is contained in the covariance matrix C defined as

Cij = 〈ηi(x)ηj(x)〉 (6)

where ηi(x) is the noise affecting the i-th color channel at pixel x, and 〈•〉 denotes the sta-

tistical expectation. It is assumed that 〈ηi〉 = 0, otherwise a bias would be present, and in

this case, because it would affect all images in the same way, it would not contribute to image

6



differences and hence would be harmless.

Based on the color covariance matrix, the probability density for a noise vector η reads

P (η) =
1

det(C)(2π)3/2
exp

(
−1

2
ηC−1η

)
(7)

Following the same footsteps as in the previous section, it is straightforward to express the

probability that a color residual ρi = fi(x)− gi(x+u(x)) be solely due to noise. Maximizing

this probability over trial displacement fields provides the optimal variational formulation of

color DIC. More precisely, the co-logarithm of the likelihood is to be minimized, or

QN [u] =
1

2

Nx∑
k=1

3∑
i=1

3∑
j=1

ρi(xk)C
−1
ij (xk)ρj(xk) (8)

where 3 is number of channels, and can be straightforwardly generalized toN if more channels

are used (say for hyperspectral imaging).

It can be observed that in the case of a noise that would uniformly affect all three color chan-

nels without correlation and with identical variance, then the above functional reduces to the

canonical form

Q3[u] ∝
Nx∑
k=1

3∑
i=1

(fi(x)− gi(x+ u(x)))2 (9)

3 Noise characterization

In this section, a method for characterizing the intrinsic noise of color cameras is introduced.

Three properties are studied, namely, uniformity, spatial correlations and color space correla-

tions. A set of color images with color speckle pattern is considered (Figure 2).
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Figure 2: Color speckle pattern used herein

The experiment was very simple. A speckled sheet of paper, placed on a horizontal table, was

repeatedly photographed with a camera mounted on a tripod. The hardware parameters of the

optical setup are reported in Table 1.

Table 1: DIC hardware parameters

Camera CANON E70D

Definition 2748× 1835 (Bayer) pixels

Color filter Bayer

Gray Levels amplitude 14 bits (raw data)

Lens CANON 50-mm

Aperture f/12

Field of view 274× 182 mm2

Image scale 100 µm/pixel

Stand-off distance 30 cm

Image acquisition rate 1-2 fps

Patterning technique sprayed paints (see more details in text and Figures 2 and 10)

Pattern feature size (B/W) 3.4 pixels

Pattern feature size (colored) 3.8 pixels

The noise of color channel i in image number n, ηni (x), is obtained from the following steps:

1. After converting all color images to a (monochrome) gray scale thanks to an rgb2gray

transform [24, 25], the nth image was registered with the first one accounting for a
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rigid translation, un. This registration was performed in Fourier space using cross-

correlations [26].

2. From the measured displacements, corrected images were computed g̃ni (x) = gni (x +

un). The chosen subpixel interpolation scheme was cubic (Table 2).

3. An average color reference image, f̂(x) was obtained by averaging over all corrected

(i.e., registered) color images, f̂i(x) = 〈g̃ni (x)〉n the three color fields with all corrected

images g̃n.

4. Last, the noise was computed as ηni (x) = g̃ni (x)− f̂n
i (x).

The first two steps were needed because it was observed that spurious rigid body translations

of small amplitudes occurred in the acquisition of image series. This may have been caused

by ambient vibrations and a compliant setup, but due to the low frequency of acquisition, the

translations appeared random in time. If such motions were not corrected, the apparent noise

appeared to have a broader scatter, and a higher spatial correlation at short distances.

Table 2: DIC analysis parameters for rigid body translations

DIC software Correli 3.0 [27]

Image filtering None

ZOI size 1000× 1000 pixels

Step size None

Shape function Constant

Matching criterion Cross-correlation product

Interpolant cubic

Displacement noise-floor (x direction) 1.6× 10−2 pixel

Displacement noise-floor (y direction) 2.4× 10−2 pixel

3.1 Spatial correlations

Let us recall that the 3-layer description of a color image given at the same pixel location

is already a reconstruction, and even if no demosaicing algorithm is used, an interpolation

scheme is inherently present at the scale of elementary color sensors, beneath the Bayer matrix

scale. It is therefore very important to assess the presence or not of spatial correlations in noise.
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For a single field of data, the spatial autocorrelation function reads

C(δ) = 〈η(x)η(x+ δ)〉x (10)

where the expectation value denoted by angular brackets can be substituted by a spatial average

over x for stationary fields.

The dimensionless autocorrelation functions of noise on the field associated with the red color

are plotted for two images of the sample. In order to quantify acquisition noise, the images are

shifted by translation movements using bi-cubic interpolation in both directions with respect

to the first image, corresponding to the FFT-DIC calculation result. The applied rigid body

displacements, that have been calculated for two real images, are:

• 0.018 pixel along x, 0.036 pixel along y for the first image.

• 0.056 pixel along x, 0.190 pixel along y for the second image.

The autocorrelation functions are plotted in two dimensions in Figure 3, and in each direction

in Figure 4. The larger the translation amplitudes, the more correlated would nearest neighbor

pixels be, as a result of the subpixel interpolation scheme. In particular, for half a pixel trans-

lation, the interpolated color level weights equally both neighbors (along each dimension).

However, for small amplitude translations, the noise keeps its white character.

(a) (b)

Figure 3: Autocorrelation functions for the red field for the first (a) and second (b) images
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(a) (b)

Figure 4: Autocorrelation functions along x (a) and y (b) directions

3.2 Noise uniformity

To determine the noise amplitude for different brightness levels, pixels are partitioned into 12

classes according to f̂i(x), the intensity of each color channel of the reference averaged image.

The entire encountered brightness range is considered. For each class, the noise variance of

ηni (x) over all pixels x in the class is calculated for each image n. The latter is plotted as

a function of the mean color brightness of the class (for the red channel as an example in

Figure 5). Figure 5(b) shows that a much broader data scatter is observed if the slight motion

that occurred during image acquisitions is not accounted for.
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(a) (b)

Figure 5: Variance of red brightness with (a) and without (b) corrections for rigid body mo-

tions. Units are in color levels (GL), encoded over 16 bits. The different symbols corresponds

to the different images

In Figure 5, an affine regression is also reported, which accounts quite precisely for the data

points. This feature is characteristic of Poisson noise, which is a basic form of noise associated

with the counting of independent events [28]. Let us note that an offset is introduced here to

account for dark field noise. The observed linearity holds also for the other color channels

as shown in Figure 6. Let us also underline that the color brightness is always high enough

so that the Poisson distribution for the noise distribution matches very accurately a Gaussian

distribution.
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(a) (b)

Figure 6: Variance for the green (a) and blue (b) color fields as functions of the brightness

level

To handle images with Poisson noise, which would require a nonuniform weighting for an

optimal DIC treatment, it is also possible to have recourse to the Anscombe transform [29, 30],

which is a simple nonlinear transform on the brightness that renders the noise variance uniform

fi −→
√
fi − fi0 (11)

where fi0 corresponds to the offset of the affine regressions shown in Figures 5 and 6. Thus,

after a pre-processing step consisting of the Anscombe transform that re-encodes the bright-

ness, there is no need to weight the residuals non-uniformly, and a plain quadratic difference

becomes optimal. Such Anscombe transform is applied to each color channel in the image set.

To validate this treatment, a similar characterization of the noise variance after the Anscombe

transform is performed. Figure 7 shows that indeed most of the systematic variation of the

variance with the brightness has been erased or remains within the scatter of data points.
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(a) (b)

Figure 7: Variances for the green (a) and blue (b) color fields after Anscombe transform

3.3 Color space correlations

It has been shown, through transformations, that the noise variance can be made uniform

with respect to brightness for the three color channels. In addition, if the raw data are used,

noise has been shown to be spatially uncorrelated. However, correlations between different

color channels after Anscombe transform have not yet been studied. The covariance matrix

C (see Equation (6)) is now computed over the entire ROI. This symmetric matrix can be

diagonalized, a procedure that allows eigenvectors, i.e., “eigencolors,” to be defined as linear

combinations of say R, G and B primary colors, which turn out to be uncorrelated. These

eigenvectors are shown in Figure 8.
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(a) (b) (c)

Figure 8: Plot of noise covariance matrix eigenvectors in planes (a) Red-Green, (b) Red-Blue

and (c) Green-Blue. The eigenvector denoted as “Vect i−j” corresponds to the ith eigenvector

of the jth image

The noise eigenvectors are not oriented along the primary color “directions,” thereby revealing

that correlations between those primary colors exist. It is noteworthy that the linear transform

f̂i(x) = C
−1/2
ij fj(x) allows a novel re-encoded image f̂i(x) to be obtained for which the noise

affecting the different color channels i is independent, and the noise variance is uniform and

equal to 1. To illustrate this last property, Figure 9 shows the three “eigencolors” re-encoding

the image displayed in Figure 2.

The procedure that consists in applying the above linear transform, left multiplication of the

inverse square root of the covariance matrix, allows the noise affecting the re-encoded quan-

tities to become perfectly white. This is very general and can be tailored to a large variety of

problems. As a consequence, it renders trivial the handling of a Mahalanobis distance [31],

which reduces to a mere Euclidean distance on the re-encoded quantities. The Mahalanobis

distance is constructed with the inverse covariance as the metric tensor as in Equation (8). It is

the optimal metric in the sense of leading to minimal uncertainties.
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(a) (b) (c)

Figure 9: Projections of Figure 2 onto (a) first, (b) second, and (c) third color modes

It is remarkable that the ranges of intensity of the new colors are markedly different due to the

fact that noise has now a normalized variance. This method allows the Signal to Noise Ratio

(SNR) to be assessed very quickly on each field. The noise intensity is now constant over all

the fields. The SNR is only the logarithm of the L2-norm of each f̂i field. In the present case,

the amplitude ranges from 35 to 120 between the three fields.

It is noteworthy that this linear transformation can be applied at the pre-processing stage, after

the Anscombe transform. Thus, after this simple color re-encoding (first nonlinear, then linear)

the optimal color DIC procedure reduces to the canonical formQ3 (see Equation (9)), which is

mathematically equivalent toQN (Equation (8)), using only the Anscombe transformed image,

and the full color covariance matrix.

4 Uncertainty quantifications

A way of assessing the noise level and measurement uncertainty is to acquire a set of images

of a static sample where the reference image is the first one. This procedure was carried out

for two different speckles, namely, one with black and white paints (Figure 10), and another

obtained with red-green-blue paints (Figure 2). Let us stress the fact that these two speckles

may have slightly different feature sizes (Table 1). However, the important point is not to

directly compare them or their results, but rather that the trends obtained with different color

processings are similar for both speckles.
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Figure 10: Black and white speckle pattern used herein

The same optical setup as previously described was used (Table 1). To evaluate the perfor-

mance of the DIC algorithm, eight different settings are tested:

• Monochrome: correlation with monochrome images issued from direct R-G-B fields

summation.

• Monochrome (rgb2gray): correlation with monochrome images issued from R-G-B

fields summation with 0.2989, 0.5870, 0.1140 weights. This transform is usually se-

lected to switch from color to grayscale pictures [24, 25].

• Color: correlation with color images considering the three color channels independent.

• Poisson color: correlation of images on three fields obtained with the Anscombe trans-

form and normalized by their own noise variances.

• Poisson monochrome: monochrome images obtained by R-G-B field summation of

Anscombe transform and normalization by noise variances in each color channel.

• Eigencolor modes: correlation with images projected onto noise eigencolor modes.

• Eigencolor to monochrome: monochrome image correlation obtained after summation

of the three eigencolor mode fields.

The images were processed using the Correli 3.0 software (Table 3). It corresponds to global

DIC with meshes made of 3-noded (T3) elements. When color images are considered, all color

layers have the same kinematics. Therefore, all DIC Hessians (i.e., one per color channel) and
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all gradients of the DIC cost functions are considered as an overdetermined system to compute

the common displacement field, and the latter is used to similarly correct all color layers of the

deformed image.

Table 3: DIC analysis parameters

DIC software Correli 3.0 [27]

Image filtering see text

Element length 40 pixels

Shape functions linear (T3)

Mesh regular

Matching criterion see text

Interpolant cubic

Displacement noise-floor see Figures 11 and 12

For each registration, the standard uncertainty is determined. It corresponds to the standard

deviation of all nodal displacements in both directions. The results are shown in Figure 11

(resp. 12) for the black and white (resp. color) speckle pattern. Ten images were selected to

show that the reported trends hold for the whole image series.

(a) (b)

Figure 11: Standard displacement uncertainties with a black and white speckle pattern along

x (a) and y (b) directions
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(a) (b)

Figure 12: Standard displacement uncertainties with a color speckle pattern along x (a) and y

(b) directions

The general trends are identical for both speckles. First, the highest uncertainties are observed

with raw color images (i.e., when the three fields are considered separately with no transform).

The measurement uncertainties with monochrome images are lower than when color fields

are considered separately with or without performing Anscombe transform and normalization.

This observation is not valid when the transform on color modes is considered. The uncertain-

ties are the lowest among all investigated cases. These results show that many different ways

of handling color images may be considered, providing all a satisfactory answer, and only their

uncertainties allow their respective merit to be ranked. In the above considered examples, the

level of uncertainty varies very significantly (by about a factor of two). Among all possible

variants, the optimal one (i.e., theoretically defined as leading to the least uncertainty) indeed

displays the lowest values.

Last, the uncertainty levels are lower with the colored speckles. These differences may have

two causes. First, the combination of speckle and color sensors provides more information

and therefore reduces the uncertainties. Second, the density of the colored speckles is higher

than that of the black and white speckles (Table 1). No more investigation about this subject

was conducted.
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5 Conclusion and outlook

In this work, a consistent treatment of noise affecting color images within a Bayesian frame-

work has led to the definition of an optimally-suited metric to evaluate image differences,

thereby defining the optimal color DIC procedure. Moreover, the above study has shown that

the combination of two simple transformations, first an Anscombe transform, followed by a

linear color combination along “eigencolors,” provided re-encoded images with which the op-

timal DIC procedure reduces to the canonical form, thereby allowing closed (e.g., commercial)

DIC softwares to be used, provided the different layers can be handled.

Quantifications of standard displacement uncertainties were carried out using black and white,

as well as color speckles. The conclusions were similar in both cases, namely, the color image

transformation for DIC applications had a significant influence on the uncertainty levels (i.e.,

they can vary by a factor of two). The transformation that allows one to benefit from the lowest

uncertainties consists in re-encoding each color intensity using the Anscombe transform, and

then further perform a rotation in the color space to align with (appropriately scaled) eigencol-

ors.

The noise characterization was performed on three-color images, which are determined from

three filters of different wavelengths. This type of analysis can be extended to hyperspectral

image processing, which is much more computationnaly involved, by requiring the noise vari-

ance to be uniform and unitary over all processed wavelengths. It enables the whole data set

to be reformatted in a canonical form for optimal handling.
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