
HAL Id: hal-02310229
https://hal.science/hal-02310229

Submitted on 10 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal modelling and analysis of distributed storage
systems

Jordan de La Houssaye, Franck Pommereau, Philippe Deniel

To cite this version:
Jordan de La Houssaye, Franck Pommereau, Philippe Deniel. Formal modelling and analysis of
distributed storage systems. [Research Report] IBISC, university of Evry / Paris-Saclay. 2014. �hal-
02310229�

https://hal.science/hal-02310229
https://hal.archives-ouvertes.fr


Formal modelling and analysis of
distributed storage systems

Jordan de la Houssaye1,2, Franck Pommereau2, and Philippe Deniel1

1 CEA, DAM, DIF, F-91297, Arpajon, France
jordan.delahoussaye@cea.fr, philippe.deniel@cea.fr

2 IBISC, Univ. Paris-Saclay/Évry, IBGBI, 23 bd de France, 91037 Évry, France
jordan.delahoussaye@ibisc.fr, franck.pommereau@ibisc.fr

Abstract. Distributed storage systems are nowadays ubiquitous, often
under the form of multiple caches forming a hierarchy. A large amount
of work has been dedicated to design, implement and optimise such sys-
tems. However, there exists to the best of our knowledge no attempt to
use formal modelling and analysis in this field. This paper proposes a
formal modelling framework to design distributed storage systems while
separating the various concerns they involve like data-model, operations,
placement, consistency, topology, etc. A system modelled in such a way
can be analysed through model-checking to prove correctness properties,
or through simulation to measure timed performance. In this paper, we
define the modelling framework and then focus on timing analysis. We
illustrate these two aspects on a simple example showing that our pro-
posal has the potential to be used to make design decisions before the
real system is implemented.

1 Introduction

Nowadays technologies make intensive use of distributed storage systems. A par-
ticular and prominent form of such systems are caches. They can be found in
many places embedded in almost every piece of hardware or software system
that involves information storage at some point. This results in overwhelmingly
complex systems in which we cannot even be sure that caches actually improve
performance. One reason for this situation is the lack of tools to analyse such
systems during their designing stages; in particular, to the best of our knowl-
edge, there exist no attempt to apply formal modelling and analysis to such
systems. Our main contribution in this paper is thus to propose a modelling
framework that can be applied to design distributed storage systems. Moreover,
the overall performance depends on a very large number of intricate aspects that
cannot easily be considered separately from each other. An important part of
our contribution is to separate various concerns and to link them explicitly:

– a generic data model is defined, allowing to consider a variety of operations
applicable to data;

– a topology is defined independently, describing how states are arranged in
the distributed system and how its nodes (see section 2.3) communicate;



2 Jordan de la Houssaye, Franck Pommereau, and Philippe Deniel

– policy-related questions like placement strategy, hierarchical organisation of
nodes, collaboration between nodes, interpretation of the distributed state
as a global state, etc., can be considered separately;

– properties like data consistency (e.g., cache coherence), correctness and ter-
mination of operations, deadlock-freeness, worst/best/mean-time execution,
etc., can be studied separately on the modelled systems.

In the next section, we define the static aspects of the framework, including:
data model, operations on data, topology model, communication between nodes,
interpretation of the distributed data as a global state, placement policy and
consistency properties. This is enriched in section 3 with a notion of actors
that generate activity yielding executions described by so called timelines; the
rest of the section describes the various kind of analysis that can be performed
on modelled systems. Section 4 illustrates these aspects on a toy three-level
cache hierarchy and shows how it can be modelled and how its performance can
be analysed. The last section concludes and gives perspectives, together with a
survey of related work. Additional details can be found in a technical report [7].

2 Static aspects of the modelling framework

From a static point of view, a model consists of three aspects:

– a data model that defines states and operations on them;
– a topology model that defines a notion of nodes storing data, together with a

communication model between nodes. This leads to a notion of interpretation
of a distributed state into a global state;

– a placement policy that decides how to manage the storage on nodes and
where each piece of state has to be located.

2.1 Data model

We consider three pairwise disjoint nonempty sets: K is the set of keys that can
be thought as addresses; V is the set of values stored at the addresses; L is the
set of labels used to relate keys. For instance, for a Unix file system, K would be
the inodes addresses, V their content and L could model relations like directory
membership. For a memory model, V would hold all the possible memory blocks
whose addresses would be in K, and L would be unused.

Definition 1. Let HK,V
df
= 2K×V and RK,L

df
= 2L×2

K×2K . A reduced state σ
is a pair (σ.h, σ.r) such that σ.h ∈ HK,V and σ.r ∈ RK,L. We note by Σ∗K,V,L
the set of all reduced states, and define dom(σ.h)

df
= {k | ∃v ∈ V, (k, v) ∈ σ.k}. A

reduced state σ ∈ Σ∗K,V,L is well-formed iff it satisfies the following conditions:

– σ.h is a map: ∀k ∈ dom(σ.h), |{(k, v) ∈ σ.h}| = 1;
– all the keys in σ.r are mapped by σ.h:

⋃
(l,K1,K2)∈σ.rK1 ∪K2 ⊆ dom(σ.h).

We define a partial order �∗ on Σ∗K,V,L by σa �∗ σb⇔σa.h ⊆ σb.h∧σa.r ⊆ σb.r.



Formal modelling and analysis of distributed storage systems 3

Intuitively, a reduced state is a map from related keys to the corresponding
data. For instance, consider an extremely simplified file-system containing the
following objects: the root directory “/”, sub-directories “/bin”, “/usr” with
nested sub-directory “/usr/bin”, and files “/bin/sh” and “/usr/bin/sh”. These
objects could be represented in a state σ as follows:

σ.h
df
=
{
(0, /), (1, bin), (2, usr), (3, sh), (4, bin), (5, sh)

}
σ.r

df
=
{
(root, {0}, ∅), (dir, {0}, {1}), (dir, {0}, {2}), (dir, {2}, {4}),
(file, {1}, {3}), (file, {4}, {5})

}
where σ.h stores identifiers of the file-system objects associating them to their
names, and σ.r stores links between the objects, allowing to identify a root
directory (root label) and the children of each directory, which may be directories
themselves (dir label) or files (file label).

Definition 2. A (complete) state is a triple σ df
= (σ.base, σ.plus, σ.minus) in

ΣK,V,L
df
= (Σ∗K,V,L)

3. Such a state is well-formed iff σ.base is well-formed,
σ.plus �∗ σ.base and σ.minus ∩ σ.base = ∅. We define a partial order � on
ΣK,V,L as the component-wise extension of �∗, i.e., σa � σb ⇔ σa.base �∗
σb.base ∧ σa.plus �∗ σb.plus ∧ σa.minus �∗ σb.minus.

A state (σ.base, σ.plus, σ.minus) can be understood as a reduced state with a
history, i.e., σ.base is the result of adding σ.plus to and removing σ.minus from
an original state σ0.base. This shall be depicted as:({

σ.base.h
}

+
{
σ.plus.h

} − {σ.minus.h
}{

σ.base.r
}

+
{
σ.plus.r

} − {σ.minus.r
})

Historicized states are needed to model distributed storage. Consider indeed a
simple case where a cache lies between a process and a storage. If the process
requests to delete the resource associated to a key k, this may be made in the
cache only. Just dropping the information associated to k in the cache is not
correct. Indeed, by definition, the cache holds only a subset of the information
that the storage holds. The absence of k in the cache is thus not a sufficient
information to know that k has to be deleted in the storage too, it may as well
mean that k has never been stored in the cache. Moreover, if later k is allocated
again, the cache may store the new value associated to k and forget about the
fact that k has been deleted previously. So, a history enables a cache for actually
hiding operations to the storage, which is crucial for a cache.

Reduced and complete states are equipped with various compositions and op-
erations. For σ∗a, σ∗b ∈ Σ∗K,V,L, we define union (∪), intersection (∩) and difference
(\) as simple component-wise extensions of their sets counterparts. For instance,
we have σ∗a ∪ σ∗b

df
= (σ∗a.h ∪ σ∗b .h, σ∗a.r ∪ σ∗b .r). Moreover, for σa, σb ∈ ΣK,V,L,

these operations are further extended component-wise. For instance, we have
σa ∪ σb

df
= (σa.base ∪ σb.base, σa.plus ∪ σb.plus, σa.minus ∪ σb.minus). For

k ∈ K, σ∗ ∈ Σ∗K,V,L, we note by σ∗ \k the restriction of σ∗ in which we removed
any element involving k; this notation is extended component-wise to a complete
state. We finally define projection (�) as follows:



4 Jordan de la Houssaye, Franck Pommereau, and Philippe Deniel

σa � σb
df
=
((

(σa.base ∪ σb.base) \ σa.minus
)
∪ σa.plus,(

(σa.plus \ σb.minus) ∪ σb.plus
)
\ σa.minus,(

(σa.minus \ σb.plus) ∪ σb.minus
)
\ σa.plus

)
This definition is specially designed to provide with the following properties:

– σ∅
df
= ((∅, ∅), (∅, ∅), (∅, ∅)) is neutral: for any σ ∈ ΣK,V,L that is well defined

we have σ0 � σ = σ and σ � σ0 = σ;
– intermediate changes that cancel each other are hidden: consider for example

an initially empty state σ∅ as above on which we perform a series of updates
• add a: ((∅, ∅), a, (∅, ∅))� σ∅ = (a, a, (∅, ∅)) df

= σ1,
• drop a to add b instead: ((∅, ∅), b, a)� σ1 = (b, b, a)

df
= σ2,

• finally drop b to add c instead: ((∅, ∅), c, b) � σ2 = (c, c, a) in which b
has disappeared like we had dropped a to add c directly from σ1;

– similarly, if as above we start from σ1 then drop a to add b instead, we get
σ2; then if we now drop b to add a back, we compute (a, a, b) � (b, b, a) =
(a, (∅, ∅), (∅, ∅)) which hides the mutually cancelling operations.

Now, consider again our example of a simplified file system and consider an
initial state where only “/” and “/bin” exist. The creation of “/usr” can be
represented a projection as follows:( {

(0, /), (1, bin)
}

+ {} − {}{
(root, {0}, ∅), (dir, {0}, {1})

}
+ {} − {}

)
�

(
{} +

{
(2, usr)

} − {}
{} +

{
(dir, {0}, {2})

} − {}
)

=

( {
(0, /), (1, bin), (2, usr)

}
+
{
(2, usr)

} − {}{
(root, {0}, ∅), (dir, {0}, {1}), (dir, {0}, {2})

}
+
{
(dir, {0}, {2})

} − {}
)

2.2 Operations

An operation is a request a user of the storage system might perform and is part
of a system definition. We assume that any operation has an effect (possibly
neutral), provided as a parametrised complete state, and a result. To apply an
operation, one provides a valuation of the input parameters, then the result is a
valuation of the output parameters. If no output parameters can be found, the
operation fails. Otherwise, the effect is computed from the parametrised state
evaluated using to the input and output parameters values. A mapping from
variables to values is called a binding and usually noted by β, possibly with
subscripts or superscripts. We note by keys(β)

df
= img(β) ∩ K the set of keys

referenced in β, where img is the image (or codomain) of the binding.

Definition 3. Let vars(e) be the set of variables involved in an expression e. An
operation is a 4-tuple op

df
= (op.name, op.guard , op.effect , op.params) such that:

– op.name is a name used to refer to the operation (any string);



Formal modelling and analysis of distributed storage systems 5

– op.guard is a Boolean expression that guards the application;
– op.effect is a an expression that may be evaluated to a complete state;
– op.params is a set of variables such that op.params ⊆ vars(op.guard) ∪

vars(op.effect)
df
= vars(op);

– we have vars(op.effect) ⊆ op.params ∪ vars(op.guard);
– there exists at least one binding such that op.effect and op.guard can be

actually evaluated ( i.e., both are actually computable).

We note by OPS the set of all defined operations.

The role of the guard is to prevent operations to be applied on incompatible
states (e.g., one cannot read from an unallocated address). Thus the guard is
always evaluated on the state the operation is meant to be applied for a given
valuation of the input parameters. Then, if the guard is true and output pa-
rameters can be computed, the effect is evaluated and projected onto the state.
Given an operation op, we note by:

– Bop,K,V,L the set of all bindings β : vars(op)→ K ∪ V ∪ L;
– Binop,K,V,L the set of all bindings β : op.params → K ∪ V ∪ L;
– Boutop,K,V,L the set of all bindings β : vars(op) \ op.params → K ∪ V ∪ L.

For two bindings βa, βb ∈ Bop,K,V,L such that dom(βa) ∩ dom(βb) = ∅, we
define their composition β df

= βa+βb : dom(βa)∪dom(βb)→ K∪V ∪L as follows:

∀x ∈ dom(β), β(x)
df
=

{
βa(x) if x ∈ dom(βa),
βb(x) otherwise, i.e., if x ∈ dom(βb)

For convenience, we introduce some more notations. Let σin ∈ ΣK,V,L, op ∈
OPS, and βin ∈ Binop,K,V,L, we define:

– op.guard(σin, β) is the evaluation of op.guard through β+{σ → σin}, where
σ refers to the input state and can be used to access it from the guard;

– op.effect(β) is the evaluation of op.effect through a binding β;
– op.candidates(σin, βin)

df
= {βout ∈ Boutop,K,V,L | op.guard(σin, βin + βout) ∧

op.effect(βin + βout) ∈ ΣK,V,L} is the set of possible output bindings that,
combined with βin, allow to validate the guard and to evaluate the effect to
an actual complete state;

– op is called elligible for σin and βin iff op.candidates(σin, βin) 6= ∅;
– op is called deterministic iff for all σin ∈ ΣK,V,L and all βin ∈ Binop,K,V,L we

have |op.candidates(σin, βin)| ≤ 1.

Then, when op is elligible for some input state and input binding, the set
of output states and output bindings is computed by applying op with every
possible candidate binding, which is made using a projection as follows.

Definition 4. The application of operation op ∈ OPS onto input state σin ∈
ΣK,V,L given an input binding βin ∈ Binop,K,V,L results in the subset of Boutop,K,V,L×
ΣK,V,L defined by op(σin, βin)

df
= {(βout, op.effect(βin + βout) � σin) | βout ∈

op.candidates(σin, βin)}.



6 Jordan de la Houssaye, Franck Pommereau, and Philippe Deniel

2.3 Topology

A distributed storage consists of a set of nodes that store (local) states and
communicate through buses. This is formalised as an hypergraph as follows.

Definition 5. Let N be a set of nodes, a topology T on N is a pair T df
=

(T.nodes, T.buses) where T.nodes
df
= N is the set of nodes and T.buses ⊆ 2N \ ∅

is the set of hyperedges. For i, j ∈ T.nodes, we note by T [i, j] the fact that there
exists b ∈ T.buses such that {i, j} ⊆ b.

Given a topology T , nodes in T.nodes are allowed to communicate by ex-
changing frames over the buses in T.buses. We assume that a bus can transmit
only one message at a time, i.e., a sender is blocked until a previously sent mes-
sage has been received. Moreover, a receiver is blocked until a message is sent for
it. The possible frames are defined in figure 1. Each frame is a 4-tuple holding
the bus on which the communication is made, the sender and recipient nodes
identities, and the message itself. Message can be of four types:

sync this type of message transmits a 〈request〉. It is synchronous in that there
can be no further message between source and destination until the destina-
tion has responded with a return message holding the expected 〈response〉;

async this type of message transmits a 〈request〉. It is asynchronous in that
it only blocks the sender until the destination has responded with a wait

message, but the actual 〈response〉 will come later;
wait this is a response to an async message, which comes with a handler (a

unique identifier) so that the receiver will be able to link its request with the
response that will be provided later. We assume that H is a set that is large
enough (e.g., infinite) to assign a unique handler for every wait message;

return this type of message transmits a 〈response〉 to a 〈request〉. A response
to a sync message comes as a pair (return, 〈response〉); a response to
an async message comes as a triplet (return, handler , 〈response〉), where
handler is the identifier that was provided with the wait response.

There is currently only one type of 〈request〉, but this may change if needed.
A request req

df
= (operate, op, β) is parametrised by an operation req .op and

an input binding req .β for this operation. The corresponding answer, sent syn-
chronously or asynchronously, is a 〈response〉 that can be a success or a
failure. In the former case, it comes with the output binding (noted resp.β)
chosen by the system; in the latter case, it comes with a failure message.

〈frame〉T ::= (bus, source, destination, 〈message〉)
〈message〉 ::= (sync, 〈request〉) | (async, 〈request〉)

| (wait, handler) | (return, 〈response〉) | (return, handler , 〈response〉)
〈request〉 ::= (operate, op, βin)
〈response〉 ::= (success, βout) | (failure, text)

Fig. 1. The frames exchanged between the nodes of a topology T , where bus ∈ T.buses,
source, destination ∈ T.nodes, handler ∈ H (H is a set of identifiers), op ∈ OPS,
βin ∈ Bin

op,K,V,L, βout ∈ Bout
op,K,V,L and text is a text string. Special typesetting denotes

〈non terminals〉 and symbols (i.e., constants).



Formal modelling and analysis of distributed storage systems 7

Interpretations and integration. As soon as states are distributed over a
topology, we need to define how to compose these local states into a unique
global state. This must be user-defined together with the topology. Moreover we
must define how a node integrates the information about states it can deduce
from its exchanges with other nodes. For instance, consider a memory hierarchy
with a cache that receives a request to read a block a. If it forwards the request
to the next level in the hierarchy and eventually receives the value v in the
response, it knows that (a, v) could be added to its local state. More generally,
because of the way operations are defined, knowing the operation together with
the input and output bindings is enough to evaluate op.effect . The latter is a
state that may be composed with the local state. How this composition must be
made (or avoided) is dependent on how the distributed state is interpreted and
must be user-defined as well.

Definition 6. An interpretation IT of topology T is a pair of functions:

IT
df
=
(

globalview : T.nodes×ΣK,V,L → ΣK,V,L ,

integrate : T.nodes× T.nodes→ ΣK,V,L ×ΣK,V,L → ΣK,V,L
)

In this definition, globalview is responsible for computing a single global state
from the collection of states located on T.nodes. Function integrate is more
complex: it takes a pair of nodes (a, b) and returns another function ΣK,V,L ×
ΣK,V,L → ΣK,V,L. This one takes a pair of states (σa, σb) and combine them
into a single state σ′a that can be understood as the integration of the effect σb
on the state σa, for an operation that was actually computed on node b.

When considering a hierarchy, where a process accesses a storage through a
chain of caches, function globalview can be computed as: σ0 � σ1 � · · · � σn
where the σi’s are the locals states ordered from the one closest to the process
(i.e., σ0) to the state of the storage itself (i.e., σn).

2.4 Placement policy

The question of placement is complementary to interpretation: a node has to
know on which other node the value associated with a key is located. This way
it knows how to retrieve this value or to whom it has to forward a request it
cannot handle itself (or does not want to). This information is provided by a
placement policy PmeIT

that is provided by the user for an interpretation IT . Let
us assume a global variable me that is the node on which these methods are
called, then PmeIT

is provided as a set of methods:

where (keys ⊆ K,notme ∈ {⊥,>})→ T.nodes ∪ {8}
Returns a node where the resources referenced by keys should be stored, or
a dummy value 8 if no such node can be identified. If notme = >, the return
value cannot be me.

space (keys ⊆ K,σin ∈ ΣK,V,L)→ N
Returns the number of resources currently stored on node me that need to
be deleted in order to be able to store locally the values associated to keys.



8 Jordan de la Houssaye, Franck Pommereau, and Philippe Deniel

update (keys ⊆ K, handler ∈ H)
This method does not return any value but is called on node me whenever
a request identified by handler has just been received. It is used to update
the current knowledge about the situation that may be maintained by the
policy. For instance it may update the MRU (most recently used) keys in
a LRU (least recently used) cache. Notice that we see here a handler in H
as for asynchronous requests; indeed, we will see later on that they are also
used internally to the nodes for their bookkeeping.

purge ()→ K
Deletes and returns a resource currently stored on node me, which should
be chosen as the one which has the least value when purge is called. For
instance, a LRU cache will exactly chose the least recently used key.

close (handler ∈ H, outcome ∈ {success, failure})
This method is called to commit (on a success) or cancel (on a failure)
the changes that occurred when update has been called.

Methods update and close work together: calling update allows to increase
the importance of a set of keys, then calling close allows to commit or cancel
the update. The reason for such a mechanism is that most operations on a node
cannot be realised atomically and may require to communicate with other nodes.
During this process, the node may receive and proceed other requests that can
be completed locally, so we cannot rely on a mechanism that would lock the
whole node during the processing of a request.

PmeIT
can be thought as a class of which each node me holds an instance and

the above definitions are its methods. Note that update, close and purge are thus
expected to have side effects on the instance.

2.5 Nodes management processes

We now describe how the nodes manage their states and communicate with
others. It should be stressed that these algorithms are completely generic: the
user just has to provide the elements specified above to get a working model.

At the core of each node is the job manager : when a 〈request〉 is received
by a node, it is first stored in a job manager and associated to a handler in H; it
is kept here until it is fully processed. Dependencies can occur between requests:
two requests r1 and r2 are independent if keys(r1.β) ∩ keys(r2.β) = ∅. The job
manager handles these dependencies and provides the following methods:

last (key ∈ K)→ H∪ {8}
Returns the handler of the last request added with a domain including key
if any, or a dummy value 8 if no request is associated to key .

add (request ∈ 〈request〉)→ H
Adds request identified by handler into the manager and returns a fresh
handler for it. The added request depends on the lastly added request for
every key in keys(request).



Formal modelling and analysis of distributed storage systems 9

next ()→ 〈request〉 × H
Returns a pair (request , handler) that is ready to be proceeded (no pending
dependencies). The caller is blocked until such a job is actually available.

deps (handler ∈ H)→ (〈request〉 × H)∗
Returns the list of pairs (r, h) corresponding to all requests r and handlers h
the request rhandler associated with handlers depends on. This list is ordered
consistently with dependencies, the last item being (rhandler , handler), and
is deterministically computed.

done (handler ∈ H)
Marks every information associated to handler as disposable and clears any
disposable information that is not needed anymore.

Nodes processes are implemented as coloured Petri nets [7], however, we
present them here using simpler pseudo-code. Noting by p! the infinite replication
of a process p, each node runs a simple process consisting of two such replications
composed in parallel: listener! ‖ worker!. These processes are executed in a context
with the following global variables:

– me is the node on which the process is executed;
– jobsme is the job manager for node me;
– T is the topology and we note by T.send (b, s, d,m) the sending of a message
m on bus b from a source node s to a destination node d; the correspond-
ing reception is noted by T.receive (b, s, d,m). Recall that T.send (b, . . . ) is
blocking if a message is already in transit on b and T.receive (b, s, d, . . . ) is
blocking until a message is actually sent on b, from s to d. Moreover, pattern
matching may be used to filter the format of received messages;

– ret is a communication channel internal to the node that behaves like a bus,
i.e., it provides methods ret .send (m) and ret .receive (m);

– IT and PmeIT
are the interpretation and the placement respectively;

– σme is the current state.

Figure 2 shows process listener that is responsible for receiving a message
for the node, add it to the job manager and send back the response when it is
available. It is quite a simple process, but it is worth noting how asynchronous
requests are handled.

Figure 3 describes process worker that is responsible for actually executing
the jobs. Essentially, it uses the placement to know if node me is responsible
for the keys associated to the request and if so, it computes the effect locally if
possible or forward the request to the appropriate node otherwise.

Figure 4 shows process apply that is responsible for applying on the local state
σme the effect of an operation for which we have obtained the output binding.
To do so, it possibly makes room in the local state if needed. For instance, a
cache may drop a block if it has to store one more block but is already full.

Finally, figure 5 shows process sync that applies all the pending requests
a given handler depends on. It should be stressed that a call to sync (h) also
proceeds the request for h itself, as the last one. So sync returns the response for
this request together with the identity of the node that actually answered it.



10 Jordan de la Houssaye, Franck Pommereau, and Philippe Deniel

process listener is
T.receive (bus, src,me, (kind , req)) /* receive a message (kind , req) */
h← jobsme .add (req) /* add it to the job manager and get its handler h */
Pme
IT
← Pme

IT
.update(keys(req.β), h) /* notify the placement policy */

if kind = async: /* this is an asynchronous request */
T.send (bus,me, src, (wait, h)) /* immediately send a wait answer */

ret .receive (resp, h) /* wait for the worker process to respond */
if kind = async:

T.send (bus,me, src, (return, h, resp)) /* send asynchronous answer */
else:

T.send (bus,me, src, (return, resp)) /* send synchronous answer */

Fig. 2. The listener process.

process worker is
req , h← jobs.next () /* wait until a new job is available */
if Pme

IT
.where (keys(req.β),⊥) = me:

c← req .op.candidates(σ, req .β) /* search for possible βout */
if c 6= ∅:

choose βout ∈ c /* make a non-deterministic choice if |c| > 1 */
resp ← (success, βout) /* build the response */
apply (req , resp, h,me) /* apply the effect to update σ */

elif Pme
IT
.where (keys(req.β),>) 6= 8:

resp, pos ← sync (h) /* complete all the dependencies on h and get a
response from node pos that performed the latest operation in sync */
if resp[0] = success:

apply (req , resp, h, pos) /* apply the effect to update σ */
else: /* we do not know how to process the request */

resp ← (failure, "no node to handle request")
else: /* this forwards the request to the appropriate node */

resp, pos ← sync (h)
Pme
IT
.close (h, resp[0]) /* tell the placement about the outcome, recall that

we have resp[0] ∈ {failure, success} */
jobsme .done (h) /* tell the job manager that the request for h is done */
ret .send (resp, h) /* send the response back to the listener */

Fig. 3. The worker process.

3 Dynamic aspects of the modelling framework

To produce activity, we need to introduce dedicated nodes, called actors, whose
only role is to send messages and receive the corresponding answers. For instance,
a processor is the actor in a memory hierarchy. It is not possible to define a
generic model of an actor because each one corresponds to a particular profile
of activity, that will stimulate the system in its particular way. For instance,
our processor at the top of a memory hierarchy could behave in many different
ways depending on what kind of program it is supposed to execute. Choosing an
adequate model of actor is crucial for a correct analysis. Indeed, most distributed



Formal modelling and analysis of distributed storage systems 11

process apply (req , resp, h, pos) is
k ← keys(req .β + resp.β) /* get the keys involved in the operation */
Pme
IT
.update (k, h) /* tell the placement that these keys are currently under

interest */
for 1 ≤ i ≤ Pme

IT
.space (k, σ):

least ← Pme
IT
.purge () /* get and drop the least value element */

h′ ← jobsme .last (least) /* get the last added request for least */
if h′ 6= 8:

r, p← sync (h′) /* flush operations h′ depends on */
σme ← σme \ least /* restrict σme to remove least */

integrate = IT .integrate (me, pos) /* get the method to integrate the effect
in the local state */
σme ← integrate(σme, req .op.effect(req .β + resp.β)) /* do it actually */

Fig. 4. The apply process.

process sync (handler) is
foreach req , h ∈ jobs.deps (handler)do /* the list order is respected! */

pos ← Pme
IT
.where (keys(req .β),>) /* search where req should be

processes, excluding me */
choose b ∈ T.buses such that T [pos,me] /* get a bus to reach pos */
if no such b: /* this is a bug in the placement or the topology! */

return (failure, "no path to pos"),me
T.send (b,me, pos, (sync, req)) /* forward req to pos */
T.receive (b, pos,me, (return, resp)) /* wait for the response */

return resp, pos /* returns the latest response that is for handler */

Fig. 5. The sync process.

storage systems, and cache policies in particular, are based on strong hypotheses
about the access patterns of the systems using them.

An actor is implemented as a Petri net that is composed with the Petri nets
for the nodes processes to obtain a full system from which we can get executions
of two kinds. On the one hand, the state space, consists of the reachable states of
the Petri net linked by the transitions from one state to another. This is usually
a huge object that is suitable for qualitative analysis, in particular through
model-checking. On the other hand, a trace is a sequence of alternating states
and transitions that corresponds to a path in the state space. As such, it is
usually used to exhibit a faulty execution discovered using model-checking.

To enable for timed analysis of the modelled systems, and in particular per-
formance analysis, traces are extended by applying a cost function that maps
each transition to its duration. The resulting weighted traces can be rendered
on timelines that represent the activity of each node, exhibiting both its busy
and idle phases. Figure 6 shows a graphical representation of a timeline: time is
passing from the left to the right and each horizontal line represents the activity
of one node. Vertical segments depict communications. In this picture, the topol-
ogy is displayed on the left. Events, i.e., transitions occurrences, are depicted on
the lines and ordered respecting causality, event costs are displayed within the



12 Jordan de la Houssaye, Franck Pommereau, and Philippe Deniel

A

C

S

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

40

40.0

10

50.0

10

60.0

10

70.0

10

80.0

40

120.0

80

200.0

20

220.0

20

240.0

20

260.0

20

280.0

20

300.0

20

320.0

20

340.0

20

360.0

80

440.0

40

480.0

10

490.0

10

500.0

10

510.0

40

550.0

0

550.0

0

550.0

0

550.0

0

550.0

0

550.0

0

550.0

A

C

S

0
0.0

120
120.0

320
440.0

110
550.0

0
550.0

Fig. 6. At the top, a complete timeline for a system with three nodes: an actor A, a
cache C and a storage S. Below, the aggregated version.

events. We model communication costs by weighting more the transitions that
correspond to message sending and reception (the grey nodes in the top-most
figure). If successive events between two communications are aggregated, we get
a simpler but still accurate view of the nodes activity as shown at the bottom of
the figure. More generally, such a graphical representation may become quickly
unreadable on large systems or when complex topologies are involved. So a time-
line should better be thought as a timed trace distributed onto the nodes rather
than a visual representation. This representation assumes that each node is se-
quential and interleaves its concurrent activities. It is easy to generalise this to
concurrent nodes by allowing multiple lines for each node, as many as the node
can handle concurrent tasks.

4 Application example

To illustrate our framework, we propose now a model of the simple hierarchical
system of figure 6: an actor A requests memory blocks to a storage S through a
LRU cache C. These nodes are arranged on topology T df

= ({A,C, S}, {{A,C},
{C, S}}) and their initial states are:

σA
df
=
( ∅ ∅ ∅
∅ ∅ ∅

)
, σC

df
=
( ∅ ∅ ∅
∅ ∅ ∅

)
, and σS

df
=
(
α ∅ ∅
∅ ∅ ∅

)
,

where α df
= {k1 → v1, . . . , k10 → v10} is randomly generated such that σS is

well-formed.
This system uses two operations, read and write defined as follows:

read
df
=


name

df
= “read”

guard
df
= (k, v) ∈ σ.base.h

effect
df
=
(
(k,v) ∅ ∅
∅ ∅ ∅

)
params

df
= {k}

write
df
=


name

df
= “write”

guard
df
= (k, v1) ∈ σ.base.h

effect
df
=
( ∅ (k,v2) (k,v1)
∅ ∅ ∅

)
params

df
= {k, v2}

Operation read gets the value v associated to a given key k. Operation write
replaces the value v1 associated to key k with value v2 also passed as argument.



Formal modelling and analysis of distributed storage systems 13

We have here a hierarchical system in which state interpretation is straight-
forward: the global state is obtained by projecting states top-down and integra-
tion projects an observed state onto the local state (except for A that has no
local state):

IT
df
=
(

globalview : {(A, σA), (C, σC), (S, σS)} 7→ (σA � σC)� σS ,

integrate : me, pos 7→
{
σme , σpos 7→ σme if me = A,
σme , σpos 7→ σpos � σme otherwise.

The placements PA, PC and PS respectively associated to the nodes A, C
and S are defined as follows:
– PA is such that every key belongs to the node C because A does not store

any data. So, where constantly returns C; space constantly returns 0 (and
thus, purge is never called); update and close are no-ops;

– PC is such that every key belongs to C, moreover, it maintains a list ` in
which new keys are positioned in MRU and the purge always deletes the
key positioned in LRU. So, where constantly returns C or S if notme = >;
space (keys, σin)

df
= max (0, |σin.h| + |keys| − size), where size is the size of

the cache (i.e., the maximum number of keys it can hold); update (keys, h)
adds [(k, h) | k ∈ keys] at the head of ` (MRU position); purge returns k
such that (k, h) is the tail of ` (LRU position), which is dropped from `;
close (h, outcome) either drops from ` any pair (k, h) if outcome = failure

or drops elements at the tail of ` until its has at most size elements;
– PS is such that every key belongs to S, apart for this, it behaves like PA:

where constantly returns S; space constantly returns 0 (and thus, purge is
never called); update and close are no-ops.

To perform a timed analysis of this system, we have considered a LRU friendly
actor that sequentially sends requests (waiting for each answer before to send
the next request) as follows:
– it maintains a MRU-to-LRU ordered list L of keys already sent in a request;
– a read or write is chosen with 50% probability each;
– with probability 1/a, a key k is chosen in L, otherwise, it is chosen in K \ L;
– with probability 1/b, the LRU key is dropped from L;
– k is added to L in MRU position.

We have run 100 executions of this system for every size ∈ {0, . . . , 12}. For
each run we obtained a timeline and measured its duration weighting events as
follows: communication events cost 0 on A, 40 on C and 400 on S; other event
cost 0 on A, 1 on C and S. Figure 7 shows the mean value of these timeline
durations (estimated cost) with respect to the size of the cache. Because the
actor is LRU friendly (with a = 2 and b = 100), costs decrease with the cache
size, until 10 where we reach the number of available keys.

This simple example shows how it is easy to use simulations of modelled
systems to analyse the impact of various parameters on the timed performance
of the system. We have considered here a simple system with a simple analysis,
but it is easy to see that we could have considered many other analyses of the
already numerous parameters of this system.



14 Jordan de la Houssaye, Franck Pommereau, and Philippe Deniel

0 2 4 6 8 10 12

5,000

6,000

7,000

8,000

cache size

es
ti
m
at
ed

co
st

without cache
with cache

Fig. 7. Estimated performance of our system (lower is better) with respect to cache
size. 95% confidence intervals are depicted as vertical segments (and the greyed zone).

5 Conclusion, related work and perspectives

We have presented what is, to the best of our knowledge, the first attempt to
provide a generic modelling framework for distributed storage systems, and in
particular cache systems. Our proposal allows a separation of usually intricate
concerns and can be applied to qualitative or timed analysis. We have illustrated
on a simple, yet reasonably realistic, example how a system is modelled and how
we can analyse its timed performance.

We have surveyed about 60 papers about caches and distributed storage sys-
tems and found no work directly related to ours. However, among others, several
papers are worth citing. [1] is probably the first paper to introduce the notion of
caches (not yet named this way) using a FIFO eviction algorithm. Later, in [4],
LRU (least recently used) is introduced, which is further generalised in [10] that
considers a hierarchy of caches. A recent evolution is ARC, defined in [9], that
is a sophisticated dynamic eviction algorithm which adapts itself with respect
to frequently or recently used blocks. Regarding analysis aspects, [10] presents
a simulation driven design of an efficient cache algorithm (called demote). How-
ever, it is not implemented because it involves extensions of existing low-level
APIs of storage. This work also introduces the idea of distributed storage by
partitioning the key domain across the caches in a hierarchy. Another proposal
is [6] that proposes promote to fix costs problems of demote. An interesting con-
tribution is to introduce a notion of optimality of a cache algorithm, showing
that promote approaches it. Moreover, this work introduces ideas to address
multi-path hierarchies. [8] explores the idea of exploiting the relations between
resources, which are discovered through statistical analysis of accesses. In con-
trast, our proposal make these relations explicit in σ.r. Finally, an interesting
paper is [3] that surveys majors multi-level cache systems, with a classification
with respect to collaboration between levels, eviction algorithm and local optimi-
sation strategies. It also shows an analysis of the algorithm through simulation



Formal modelling and analysis of distributed storage systems 15

and actual implementation of widely used benchmarks. These benchmarks could
be rendered as dedicated actors in our proposal.

Future work will include the modelling of a realistic system in order to anal-
yse it thoroughly, proving in particular correctness properties through model-
checking and comparing the performances of various settings of its parameters.
Multi-level variants of LRU, ARC, demote or promote could be good candidates
for this case study. We also intend to explore performance analysis directly on
the state space, instead of resorting to simulated traces. It may be more accu-
rate than our current simulation-based method, but probably also less efficient if
non trivial actors are considered (leading to larger state spaces). Finally, we will
consider symbolic techniques to reduce the cost of model-checking on models in
our framework. In particular, symmetries reductions on keys like in [5] and finite
abstraction of values on infinite domain like in [2] should be easy to adapt to
our case and would allow to consider realistic storage sizes (contrasting with the
ten keys/values we have considered here). Combining both is however a more
challenging problem that we would like to address on the long term.

References

1. Belady, L.A.: A study of replacement algorithms for a virtual-storage computer.
IBM Syst. J. 5 (1966)

2. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of agent-based artifact sys-
tems. ArXiv:1301.2678 [cs.MA] (2013)

3. Chen, Z., Zhang, Y., Zhou, Y., Scott, H., Schiefer, B.: Empirical evaluation of
multi-level buffer cache collaboration for storage systems. In: SIGMETRICS’05.
ACM (2005)

4. Denning, P.J.: The working set model for program behavior. Commun. ACM 11
(1968)

5. Fronc, Ł.: Effective marking equivalence checking in systems with dynamic process
creation. In: INFINITY’12. ENTCS, Elsevier (2012)

6. Gill, B.S.: On multi-level exclusive caching: offline optimality and why promotions
are better than demotions. In: FAST’08. USENIX Association (2008)

7. de la Houssaye, J., Pommereau, F., Deniel, P.: Formal modelling and analysis of
distributed storage systems. Tech. rep., IBISC, Univ. Évry/Paris-Saclay (2014)

8. Li, Z., Chen, Z., Srinivasan, S.M., Zhou, Y.: C-miner: Mining block correlations in
storage systems. In: FAST’04. USENIX Association (2004)

9. Megiddo, N., Modha, D.S.: ARC: A self-tuning, low overhead replacement cache.
In: FAST’03. USENIX Association (2003)

10. Wong, T.M., Wilkes, J.: My cache or yours? Making storage more exclusive. In:
FAST’02. USENIX Association (2002)


