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Asynchronous Box Calculus with Multi-way Communication

Cécile Bui Thanh, Hanna Klaudel, and Franck Pommereau

LACL, Université Paris 12
61, avenue du général de Gaulle

94010 Créteil, France
{bui,klaudel,pommereau}@univ-paris12.fr

Abstract. The starting point of this paper is the Asynchronous Box Calculus (or ABC), a
formalism suitable for modelling compositionally distributed systems using both synchronous
and asynchronous communication (through actions and links respectively). ABC is composed
of two semantically consistent models: an algebra of Petri nets and an associated algebra of
process expressions whose constants and operators directly corresponds to the Petri net ones.
In this paper, we extend the Petri net algebra of ABC by allowing the use of multisets of
actions as well as that of multisets of links. The ABC process expressions and their associated
structured operational semantics (SOS) are extended in the same way. The obtained frame-
work, called MBC (for Multi-way communication Box Calculus), allows to express processes
which could not be modelled with ABC; for instance, processes with multi-way synchronisa-
tion. As it was the case for ABC, the resulting algebra of expressions is consistent with the
net algebra in the sense that an expression and the corresponding net generate isomorphic
transition systems.
Keywords. Petri nets, process algebra, synchronous and asynchronous communication,
structured operational semantics.

1 Introduction

This paper is set in the framework of the Petri Box Calculus (PBC [1]), which has been designed
with the aim of allowing a compositional Petri net semantics of nondeterministic and concurrent
programming languages [4]. It was later extended into a more generic Petri Net Algebra (PNA [2,
3]), and afterwards to an Asynchronous Box Algebra (ABC [5]) which introduced asynchronous
communication links [6]. The ABC model is composed of an algebra of process expressions (box
expressions) with a fully compositional translation into labelled Petri nets (boxes). Synchronous
communications are modelled by actions and asynchronous communications by links. A basic ABC
event can perform at most one synchronous communication and one asynchronous link. This may
be seen as a limitation because it makes impossible, for instance, the multi-way synchronisations to
be built compositionally. In this paper, we remove this restriction and introduce multisets of actions
(called multiactions) for synchronous communications and multisets of links (called multilinks) for
asynchronous ones. The resulting model is called Multi-way communication Box Calculus (MBC
for short).

We will now introduce informally the aspects of this model which are needed for our extension.

1.1 An algebra of nets and process expressions

The variant of the ABC model relevant for this paper considers the following operators : sequence
E1; E2 (the execution of the process E1 is followed by that of E2); choice E1 � E2 (either E1 or E2

can be executed); parallel composition E1‖E2 (E1 and E2 can be executed concurrently); iteration
E1 ~E2 (E1 can be executed an arbitrary number of times and is followed by E2); and buffer
restriction E tie b (the buffer b and the related asynchronous links become private to the expression
E). The ABC operator of scoping E sc a enforces all multi-way synchronisations (instead of binary
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ones) between the sets of multiactions involving a or â, but forbidding any independent execution
of such actions.

A basic process expression is composed of a multiaction and a multilink where one or both of
them may be empty. An example of a basic expression is be, for instance, {ar, âc}{b

−
a , b+

d }, where ar

and âc are synchronous actions used for scoping while b−a and b+
d are asynchronous links expressing

the receiving of a resource from the buffer ba and a sending to the buffer bd. Such an expression
may be executed if it is in a context with sufficiently many resources in buffers in order to satisfy
all the receiving links (in our case, we should have at least one ressource in the buffer ba). Its
execution removes then a resource from the buffer ba, produces one in the buffer bd, and emits the
multiaction {ar, âc}. A basic net corresponding to such an expression has one transition labelled
{ar, âc} connected to one input and one output place and to two buffer places labelled ba and bd.
The receiving link b−a is represented by an arc going from the buffer place ba to the transition and
the sending link b+

d is represented by an arc from the transition to the buffer place labelled bd.
We illustrate these constructs using an example based on three process expressions:

Employee
df

= ({âr, âr}{}~{âc}{b
−
a , b+

d }) tie bd ,

Boss
df

= (({ar, ây}{} ; {}{b+
a }) � {ar, ân}{}) ~{af}{} ,

Friend
df

= {ar}{}~{ac}{}

modelling an employee, his boss and his friend. The employee repetitively requests his boss for a
pay rise, which is modelled by the synchronous action âr in the first part of the iteration. At the
same time, the employee receives encouragements from his friend, which is also modelled by the
action âr. Notice that this first step needs a three-way communication, which was impossible to
model compositionally in ABC. The boss may answer the request by yes or no which is modelled
by the actions ây and ân, respectively. If he accepts, then an amend to the contract is sent to the
employee, which is modelled by the sending link b+

a . If not, the employee continues asking until the
boss agrees or terminates, in which case the system is deadlocked. The employee receiving an amend
to the contract (modelled by the receiving link b−a ) keeps it with his personal documents (modelled
by the sending link b+

d ) and is congratulated by his friend (through the synchronous action âc).
Since the buffer bd is used to keep private documents, it is encapsulated into Employee thanks to
the buffer restriction tie bd.

Assuming that the binary operators associate to the left, the system where these processes
operate in parallel is:

Par
df

= Friend ‖ Employee ‖ Boss.

However, this system does not allow yet for synchronous communication between the processes
(through the synchronous communication actions ar and âr, ac and âc). This may be achieved by
applying the scoping w.r.t. ar and ac, leading to the expression:

PayRise
df

= (Friend ‖ Employee ‖ Boss) sc ar sc ac.

The nets (called the boxes) corresponding to Employee, Boss and Friend are represented on
the top of figure 1. The boxes of Par and PayRise are presented in the middle of the same figure.
They are all the translation of their process expressions (themselves called the box expressions).

Notice that, in a box, the places are labelled by their status (e for entry, x for exit, i for internal
places, [ for restricted buffer places and the name of the buffer for each unrestricted buffer place)
while the transitions are labelled by multiactions. The multilinks present in the expression are
represented in the box as arcs between a transition and the corresponding buffer places. Each
binary operator merges the unrestricted buffer places having the same label making asynchronous
communication effective. For instance, the two buffer places labelled by ba coming from Employee

and Boss are merged when the parallel composition is applied, producing a box with only one ba-
labelled place. The application of the buffer restriction w.r.t. bd changes the status of buffer place
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Fig. 1. Boxes used in the example of the pay rise request. By convention, annotations inside the transitions
represent the corresponding multiactions, and the one outside next to the transitions (like in the box of
PayRise) represent their names (identities).
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bd to [ denoting that it is now a private place which cannot be merged anymore. The scoping w.r.t.
ar and ac applied to the box of Par produces the new transitions labelled ây and ân (visible in
the box of PayRise) and removes from the net all the transitions involving ar, âr, ac and âc in
their labels.

In this paper, synchronous actions are always denoted by the letter a (possibly with some
subscripts), asynchronous links are denoted by the letter b (also with subscripts). Moreover, empty
multiactions are omitted in the figures, as well as disconnected unmarked buffer places.

1.2 Structured operational semantics

The operational semantics of box expressions is given through SOS rules in Plotkin’s style [7]. How-
ever, instead of expressing the evolutions through rules modifying the structure of the expressions,
like a.E

a
−→ E in CCS, the idea here is to represent the current state of the evolution using over-

bars and underbars, corresponding respectively to the initial and final states of (sub)expressions.
This is illustrated by the bottom left net of the figure 1, which represents the initial state of the
system specified by PayRise, i.e., that corresponding to the box expression PayRise.

There are two kinds of SOS rules: equivalence rules specifying when two distinct expressions
denote the very same state, e.g., one can derive that

Friend‖Employee‖Boss ≡ Friend‖Employee‖Boss ≡ Friend‖Employee‖Boss ,

and evolution rules specifying when we may have a state change, e.g., one can derive that

{ar, ây}{} ; {}{b+
a }

{ar , °ay}

−−−−−→ {ar, ây}{} ; {}{b+
a }

1.3 Execution examples

In order to provide more intuition about the way the MBC algebra is used, we describe in this
section two system evolutions (or execution scenarios) of the system PayRise presented in the
previous section. We use labelled step sequences as a formal device for capturing concurrent be-
haviours,1 and we assume that the system starts from its implicit initial state. Thus, for example,
we consider PayRise rather than PayRise.

Scenario I. Consider the box Σ0 of PayRise shown in figure 1, and the following evolution:

– the employee, encouraged by his friend, requests for his pay rise but the boss refuses (this is
modelled by the transition t1);

– the employee, still encouraged, asks again and now the boss accepts (transition t2);
– the boss sends the amend to the contract (transition t3, which puts a token in the buffer place

labelled by ba);
– the employee receives the amend, puts it into his private documents and is also congratulated

by his friend (transition t4); simultaneously, the boss terminates (transition t5).

Such a scenario corresponds to the step sequence {t1} {t2} {t3} {t4, t5} leading from Σ0 to a net
Σ1, where Σ1 is Σ0 with one token in the buffer place [, one token in each of the x-labelled places,
and no token elsewhere. This is denoted by:

Σ0 [{t1} {t2} {t3} {t4, t5}〉Σ1 ,

In terms of labelled step sequences, the scenario is represented by

Σ0 [{{ân}} {{ây}} {{}} {{af}, {}}〉Σ1 .

Since each x-labelled place holds exactly one token, we will say that Σ1 is in a final marking (or
final state).

1 A labelled step is a multiset of multiactions, while a step is here a set of transitions.
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Scenario II. Consider now the following execution of Σ0:

– the employee asks for his pay rise but the boss refuses (transition t1);
– the boss terminates (transition t5);

This scenario corresponds to Σ0 [{{ân}} {{af}}〉Σ2 , where Σ2 is the box represented in figure 1.
Notice that Σ2 is not in a final marking. Moreover, the transition t4, which comes from the
synchronisation of the employee and his friend on action ac is now dead (it will never have a token
in the ba-labelled place in order to fire).

Notice that the same labelled step sequences may be obtained at the box expression level by
the application of the operational rules (SOS) to PayRise.

1.4 About this paper

Multi-way communication is introduced through multiactions (multisets of actions replacing the
single actions of ABC) and multilinks (multisets of links while ABC has single links). Since one
atomic event in MBC can perform arbitrarily many communications, the three kinds of constant
expressions and basic boxes in ABC are replaced by infinite families of basic expressions and basic
boxes representing all the possibilities. The structured operational semantics is modified in order
to take all these changes into account; in particular, the rules for basic moves are replaced with a
single general rule. All the proofs were carefully revised and it turned out that in all cases, they
could be adapted to the new framework in a quite systematic and straightforward way. This is the
reason why they are not included in the present paper.

To start with, section 2 describes the class of labelled nets on which MBC is based. In section 3,
we introduce the net algebra part of MBC; in particular, we define a number of operators, either
directly, or by using an auxiliary net substitution meta-operator. Section 4 investigates the rela-
tionship between the structure and the behaviour of composite nets. In section 5, we introduce an
algebra of process expressions which forms the second part of the MBC. In particular, we define
a translation from expressions to nets, and an operational semantics of process expressions both
in terms of steps of transitions of the corresponding boxes and in terms of their labels. We also
present there our main result that a box expression and the corresponding box generate isomorphic
transition systems.

2 Preliminaries

In this section, we present a number of definitions used throughout the paper.

2.1 Multisets

A multiset over a set X is a function µ : X → N. We denote by mult(X) the set of all finite
multisets µ over X , i.e., those satisfying

∑
x∈X µ(x) < ∞. We will write µ ≤ µ′ if the domain X of

µ is included in that of the multiset µ′, and µ(x) ≤ µ′(x), for all x ∈ X . An element x ∈ X belongs
to µ, denoted x ∈ µ, if µ(x) > 0. The sum and difference of multisets, and the multiplication by
a non-negative integer are respectively denoted by +, − and · (the difference will only be applied
when the second argument is smaller or equal to the first one). A subset of X may be treated
as a multiset over X , by identifying it with its characteristic function, and a singleton set can be
identified with its sole element.

A finite multiset µ over X may be written as
∑

x∈X µ(x) · x or
∑

x∈X µ(x) · {x}, as well as in
extended set notation, e.g., {a1, a1, a2} denotes a multiset µ such that µ(a1) = 2, µ(a2) = 1 and
µ(x) = 0 for all x ∈ X \ {a1, a2}.

In this paper, in particular for steps or in the annotations of transitions, we may denote by {}
instead of ∅ empty multisets of actions or links.
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2.2 Actions, buffers and synchronisation

We assume that there is a set A of actions representing synchronous interface activities used, in
particular, to model handshake communication. We will also assume that, for every a ∈ A, â is
an action in A such that ̂̂a = a. In addition to the set of atomic actions, there is a finite set B

of buffer symbols (or buffers) for asynchronous interprocess communications.2 In the following, we

will use the notation mB
df

= mult(B). Communications through a buffer b ∈ B are represented with

asynchronous links of the form b+ for sending or b− for receiving. Thus, we denote by L
df

= {b+, b− |
b ∈ B} the set of all possible links.

Since an atomic action can perform simultaneously several synchronous and asynchronous com-

munications, it will have the form αβ where α ∈ mA
df

= mult(A) is a multiaction, representing its

synchronous communications (actions), and β ∈ mL
df

= mult(L) is a multilink, representing its
asynchronous communications (links).

We need a device to express formally that, e.g., concurrent actions should synchronise. To this
end, we will use partial functions ϕ : mult(mA) → mA, called interface functions, and interpreted
as a subset of mult(mA) × mA. For (Γ, α) ∈ ϕ, we define ϕ(Γ ) = α.

An example of such a function is the identity ϕid
df

= {({α}, α) | α ∈ mA}. This function is used
when no synchronous interface change has to be performed.

The interface function ϕsy a is used in order to specify when concurrent events labelled by
multiactions α1, · · · , αk can synchronise w.r.t a ∈ A. Formally, ϕsy a is defined as the smallest set
containing ϕid and such that if (Γ1, α1 +{a}) and (Γ2, α2 +{â}) belong to ϕsy a, then (Γ1 +Γ2, α1 +
α2) belongs to ϕsy a. For instance, we have ϕsy a({a1, a1, a2}, {â1, a3}, {â1}) = {a2, a3}, which means
that the multiactions {a1, a1, a2}, {â1, a3} and {â1} may lead to a multi-way synchronisation
represented by the multiaction {a2, a3}, while the fact that ϕsy a({a1, â1}, {a2}) is not defined
means that multiactions {a1, â1} and {a2} cannot synchronise together.

Another useful interface function is ϕsc a, for a ∈ A, which allows to setup all synchronous com-
munications w.r.t. a but forbids the execution of events labelled by multiactions still involving a.

Formally: ϕsc a
df

= {(Γ, α) ∈ ϕsy a | a, â /∈ α}. Such a function will be used to enforce CCS-like syn-
chronisations, but with no limitation on the number of simultaneously performed synchronisations.

2.3 Labelled nets

A (marked) labelled net is, in the present framework, a tuple Σ
df

= (S, T, W, λ, M) such that:

– S and T are disjoint sets of places and transitions, respectively.
– W is a weight function from the set (S×T ) ∪ (T×S) to N.
– λ is a labelling for places and transitions such that λ(s) is a symbol in {e, i, x, [} ] B, for every

place s ∈ S; and λ(t) is an interface function ϕ or a multiaction in mA, for every transition
t ∈ T .

– M is a marking, i.e., a multiset over S (in other words, a mapping from the set of places S to
N).

Moreover, Σ is finite if both S and T are finite sets, and it is simple if W always returns 0 or 1.
If the labelling of a place s is e, i or x, then s is an entry, internal or exit place, respectively.

Collectively, these places are called control (flow) places. If the labelling is [ then s is a closed
buffer place, and if it is a buffer symbol b ∈ B, then s is an open buffer place. The set of all entry
(resp. exit) places will be denoted by ◦Σ (resp. Σ◦). We shall also use M ctr and Mopb to denote
M restricted to the control places and to the open buffer places, respectively; finally, Σctr is Σ
with all its buffer places and adjacent arcs removed (intuitively, this also amounts to putting an
infinite marking on each closed or open buffer place of Σ).

2 The finiteness of ± is not essential, but it will allow us to consider only finite nets. We also assume that
e, x, i, [ /∈ ± .



Asynchronous Box Calculus with Multi-way Communication 7

We adopt the standard rules about representing nets as directed graphs; moreover, double-
headed arrows will represent self-loops. To avoid ambiguity, we will sometimes decorate the various
components of Σ with the index Σ; e.g., TΣ will denote the set of transitions of Σ. In order to
simplify diagrams, we will omit disconnected unmarked buffer places.

For every place (resp. transition) x, we use •x to denote its pre-set, i.e., the set of all transitions
(resp. places) y such that there is an arc from y to x, i.e., W (y, x) > 0. The post-set x• is defined
in a similar way. The pre- and post-set notation extends in the usual way to sets R of places and

transitions, e.g., •R
df

=
⋃

r∈R
•r.

2.4 Step sequences

A finite step sequence semantics of a labelled net Σ captures the potential concurrency in the
behaviour of the system modelled by Σ. A finite multiset of transitions U , called a step, is enabled
by Σ if for every place s ∈ S,

M(s) ≥
∑

t∈U

W (s, t) · U(t) .

We denote by enabled(Σ) the set of all steps enabled by Σ; notice that we always have ∅ ∈
enabled(Σ). A step U ∈ enabled(Σ) can be executed, leading to a marking M ′ given, for every place
s ∈ S, by

M ′(s)
df

= M(s) −
∑

t∈U

W (s, t) · U(t) +
∑

t∈U

W (t, s) · U(t) .

We will denote this by Σ[U〉Σ ′, where Σ′ is Σ with the marking changed to M ′. Transition labelling
may be extended to steps, through the formula

λ(U)
df

=
∑

t∈U

U(t) · λ(t) ∈ mult(mA) .

In particular, we will denote Σ [Γ 〉λ Σ′ whenever there is a multiset of transitions U such that
Σ [U〉Σ′ and Γ = λ(U). This allows one to translate various behavioural notions defined in terms
of multisets of transitions into notions based on multisets of transition labels (or labelled steps).
Although we will use the same term ‘step’ to refer both to a finite multiset of transitions and to a
finite multiset of labels, it will always be clear from the context which one is meant. It may happen
that two different transition steps correspond to the same labelled step, when different transitions
have the same label.

A step sequence of Σ is a (possibly empty) sequence of steps, ω = U1 . . . Uk, such that there
are nets Σ1, . . . , Σk satisfying Σ [U1〉Σ1 [U2〉Σ2 · · · [Uk〉Σk. We will denote this by Σ [ω〉Σk or
Σk ∈ [Σ〉, and call Σk derivable from Σ and its marking MΣk

reachable from MΣ (with the
convention that Σ [ω〉Σ if k = 0, i.e., if ω is the empty step sequence). The definition of a labelled
step sequence of Σ is similar.

2.5 Clean, ac-free and quasi-safe markings

A marking M of Σ is:

– clean if Mctr ≥ ◦Σ ⇒ Mctr = ◦Σ and Mctr ≥ Σ◦ ⇒ Mctr = Σ◦.
If Mctr = ◦Σ, we will say that Σ is in an initial state (or marking), and if M ctr = Σ◦, we will
say that Σ is in a final state (or marking).

– ac-free if, for every transition t, there is a control place s ∈ •t such that M(s) < 2 · W (s, t),
meaning that the marking of the control places does not allow auto-concurrency.

– quasi-safe if, for every transition t, there is a control place s ∈ •t such that M(s) ≤ 1; note
that this implies ac-freeness.
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3 An algebra of boxes

To model concurrent systems, we will use a class of labelled nets called asynchronous boxes. To
model operations on such nets, we will use another class of labelled nets, called operator boxes,
and the net substitution meta-operator (called also refinement [2]), which allows one to substitute
transitions in an operator box by possibly complex asynchronous boxes.

3.1 Asynchronous boxes

An asynchronous box (or, shortly, a box) is a labelled net Σ such that each transition is labelled
by a multiaction in mA, and Σ itself is:

– ex-restricted : there is at least one entry place and at least one exit place;
– B-restricted : for every b ∈ B, there is exactly one b-labelled place;
– control-restricted : for every transition t there is at least one control place in •t, and at least one

control place in t•.

A box Σ is static (resp. dynamic) if M ctr
Σ = ∅ (resp. Mctr

Σ 6= ∅) and all the markings reachable
from Mctr

Σ , ◦Σ or Σ◦ in the box Σctr are both clean and ac-free. The asynchronous boxes, static

boxes and dynamic boxes will respectively be denoted by abox, aboxstc and aboxdyn . In what follows,
we will only consider finite boxes and operator boxes.

The basic building blocks, from which other static and dynamic boxes of the MBC will be
constructed, are the boxes Σαβ, for α ∈ mA and β ∈ mL. Each Σαβ is defined as follows. Its set
of places is composed of one entry place e, one exit place x, and one place sb labelled b for each
b ∈ B. It has only one transition vαβ labelled by α, which has one incoming arc of weight 1 from
e and one outgoing arc of weight 1 to x. The other arcs correspond to the links in β and we have:

WΣαβ
(sb, v

αβ)
df

= β(b−) and WΣαβ
(vαβ , sb)

df

= β(b+), for each b ∈ B. The marking of Σαβ is empty.
Several examples of such boxes are given in figure 2.

Proposition 1 Let Σ be a box and Σ[U〉Σ ′.

1. If Σ is static, then U = {} and Σ = Σ ′.
2. If Σ is dynamic, then U is a set of transitions 3 and Σ′ is a dynamic box. ut

Hence being a dynamic box is invariant over any possible evolution.
We will use the following marking operators, which modify the marking of a box Σ, where b ∈ B

and B ∈ mB:

– Σ.B adds B(b) tokens to the b-labelled open buffer place of Σ, for each b ∈ B; in particular,

Σ.b
df

= Σ.{b} adds one token to the b-labelled place of Σ. This operation will be called buffer
stuffing.

– Σ (resp. Σ) is Σ with one additional token in each entry (resp. exit) place, i.e., MΣ

df

= MΣ +◦Σ

(resp. MΣ
df

= MΣ + Σ◦).
– bΣc is Σ with all the tokens in its control places removed, and bbΣcc is Σ with the empty

marking. Both notations extend component-wise to tuples of boxes.

Proposition 2 Let Σ be a box and B, B′ ∈ mB.

1. Σ is static iff Σ.B is static, and Σ is dynamic iff Σ.B is dynamic.
2. Σ is dynamic iff Σ is static iff Σ is dynamic.
3. Σ.∅ = Σ, Σ.B.B′ = Σ.(B + B′), Σ.B = Σ.B and Σ.B = Σ.B.
4. If Σ is static or dynamic, then bΣc and bbΣcc are static boxes.
5. If Σ is static, then bΣc = Σ.
6. bbbbΣcccc = bbbΣccc = bbbΣccc = bbΣcc.
7. bΣc.B = bΣ.Bc, bΣc = bΣc = bbΣcc = bΣc and bbΣ.Bcc = bbΣcc = bbΣcc = bbΣcc. ut

3 But if Σ [Γ 〉λ Σ′, then the labelled step Γ may be a true multiset of multiactions.
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Fig. 2. Four examples of basic boxes.
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ϕid v µ1
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Ω;
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ϕid v;
1

i

ϕid v;
2

x

Fig. 3. Operator boxes used in MBC, where a ∈ ¶ and b ∈ · .

3.2 Transition systems

The complete behaviour of a static or dynamic box can be represented by a transition system.
And, since we have two kinds of possible steps (based on transitions and on labels), we introduce
two kinds of transition systems.

The full transition system of a dynamic box Σ is ftsΣ
df

= (V, L, A, init) where V
df

= [Σ〉 is the

set of states; L
df

= 2TΣ is the set of arc labels; A
df

=
{
(Σ′, U, Σ′′) ∈ V × L × V | Σ′ [U〉Σ′′

}
is the

set of arcs; and init
df

= Σ is the initial state. For a static box Σ, ftsΣ
df

= ftsΣ .
The labelled transition system of a static or dynamic box Σ, denoted by ltsΣ , is defined as ftsΣ

with each arc label U changed to λΣ(U). Note that many different arcs between two states in ftsΣ

may lead to a single arc in ltsΣ .
As usual, if (V, L, A, init) and (V ′, L′, A′, init ′) are two transition systems, an isomorphism

between them is a bijection iso : V → V ′ such that iso(init) = init ′ and, for all states v, w ∈ V
and labels ` ∈ L ∪ L′, (v, `, w) ∈ A iff (iso(v), `, iso(w)) ∈ A′. In the consistency results presented
in section 5, we construct binary relations which are isomorphisms between transition systems of
boxes and the corresponding box expressions.
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3.3 Operator boxes

An operator box Ω is an unmarked, finite, simple, ex-restricted and control-restricted labelled net
with only control places (hence it is not B-restricted) and such that every transition v is labelled
by an interface function. For every operator box Ω, we will assume that its transitions v1, . . . , vn

are implicitly ordered, and then each n-tuple of nets (or expressions later on) Σ = (Σ1, . . . , Σn),
will be referred to as an Ω-tuple (or, simply, a tuple); we will also use Σvi

to denote Σi, for i ≤ n.
The notation Σ will be used in the net substitution operation, denoted by Ω(Σ), and defined in
the next section.

We will consider four groups of operator boxes for MBC as described below.

Sequential operators. A sequential operator box Ωsq is an operator box such that: no place is
disconnected; there is exactly one e-labelled place, and exactly one x-labelled place; and, for every
transition v ∈ TΩsq

, |•v| = |v•| = 1 and λΩsq
(v) = ϕid . That is, Ωsq can be thought of as a finite

automaton in which each transition will be substituted by a potentially complex box by the net
substitution operation. We assume that all the transitions have basic transition identities, and that
two distinct operator boxes have disjoint sets of nodes. The domain of application of Ωsq is the
set domΩsq

comprising all Ωsq -tuples of static and dynamic boxes such that at most one box is
dynamic.

Examples of sequential operator boxes are choice Ω�, iteration Ω~ and sequence Ω; depicted

in figure 3. They are all binary, with the domain of application domΩ�
= domΩ~ = domΩ ;

df

=

(aboxstc)2 ∪ (aboxdyn × aboxstc) ∪ (aboxstc × aboxdyn ). We will denote: Σ1 � Σ2
df

= Ω�(Σ1, Σ2),

Σ1 ~ Σ2
df

= Ω~(Σ1, Σ2) and Σ1 ; Σ2
df

= Ω ; (Σ1, Σ2).

Parallel composition Ω‖. This is also a binary operator box (see figure 3), but with the domain

of application domΩ‖

df

= (aboxstc)2 ∪ (aboxdyn )2, so that its two operands may evolve concurrently.

We will denote Σ1‖Σ2
df

= Ω‖(Σ1, Σ2).

Communication interface operators. A unary communication interface operator box Ωϕ, shown
in figure 3, is parameterised by an interface function ϕ : mult(mA) \ {∅} → mA, and has the

domain of application domΩϕ

df

= aboxstc ∪ aboxdyn . The role of Ωϕ will be to effect the change of

synchronous communication interface specified by ϕ. It has the domain of application domΩϕ

df

=

aboxstc ∪ aboxdyn .
Examples of such operators are the scoping operators, which are parameterised by an action

a ∈ A. We will denote Σ sca
df

= Ωsc a(Σ).

Buffer restriction Ωtie b. Parameterised by a buffer b ∈ B, this unary operator also has the domain

of application domΩtie b

df

= aboxstc ∪ aboxdyn . Buffer restriction will hide the b-labelled open buffer

place of the box it is applied to. We will denote Σ tie b
df

= Ωtie b(Σ).

3.4 Net substitution

Throughout the rest of the paper, the identities of transitions in asynchronous boxes will play a
key role, especially when defining the SOS semantics of process expressions. For such a model,
transition identities will come in the form of finite labelled trees retracing the operators used to
construct a box.

We assume that there is a set η of basic transition identities and a corresponding set of basic
labelled trees with a single node labelled with an element of η. All the transitions in figure 2 and 3
are assumed to be of that kind. To express more complex (unordered) finite trees, or sets of trees,
used as transition identities in boxes obtained through net substitution, we will use the following
linear notations:
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– vC T, where v ∈ η is a basic transition identity and T is a finite set of finite labelled trees,
denotes a tree where the trees of the set T are appended to a root labelled with v.

– vC t denotes the tree vC {t}, and vJT denotes the set of trees {vC t | t ∈ T}.

We assume that place identities may be changed at will to avoid clashes. In particular, when
applying net substitution, we will assume that the place sets of the operands are pairwise disjoint;
if this is not the case, we rename them in a consistent way. With this assumption, in the following
we shall construct new places by grouping the existing ones, e.g., if s1 and s2 are places of some
operand boxes, then (s1, s2) may be the identity of a newly constructed place.

Sequential and parallel operators. Let Ω be a sequential or the parallel operator with transitions
v1, . . . , vn, and Σ = (Σ1, . . . , Σn) = (Σv1

, . . . , Σvn
) be a tuple of boxes in domΩ . Then Ω(Σ) = Φ

whose components are defined as follows.
The set of transitions of Φ is the set of all trees viC t (with t ∈ TΣi

and i ∈ {1, . . . , n}). The
label of each viC t is that of t. Each i-labelled or [-labelled place p ∈ SΣi

belongs to SΦ. Its label
and marking are unchanged and for every transition wC t, the weight function is given by:

WΦ(p, wC t)
df

=

{
WΣi

(p, t) if w = vi

0 otherwise ,

and similarly for WΦ(wC t, p).
For every place s ∈ SΩ with •s = {u1, . . . , uk} and s• = {w1, . . . , wm}, we construct in SΦ all

the places of the form p
df

= (x1, . . . , xk, e1, . . . , em), where each xi is an exit place of Σui
, and each

ej is an entry place of Σwj
. The label of p is that of s, its marking is the sum of the markings of

x1, . . . , xk, e1, . . . , em, and for every transition wC t, the weight function is given by:

WΦ(p, wC t)
df

=





WΣw
(xi, t) + WΣw

(ej , t) if w ∈ •s ∩ s• and w = ui = wj

WΣw
(xi, t) if w ∈ •s \ s• and w = ui

WΣw
(ej , t) if w ∈ s• \ •s and w = wj

0 otherwise ,

and similarly for WΩ(Σ)(wC t, p). We will denote by P〈s〉 the set of all places p as defined above
for a given s, and by P〈s, q〉 (resp. P〈s, q, q′〉) the sets of all those p ∈ P〈s〉 in which q (resp. q and
q′) is present.

For every b ∈ B, there is a unique b-labelled place pb df

= (pb
v1

, . . . , pb
vn

) ∈ SΩ(Σ), where each pb
vi

is the unique b-labelled place of Σi. The marking of pb is the sum of the markings of the pb
vi

’s, and
for each transition wC t, the weight function is given by:

WΩ(Σ)(p
b, wC t)

df

= WΣw
(pb

w, t) ,

and similarly for WΩ(Σ)(wC t, pb).

Communication interface operators. For a communication interface operator Ωϕ, the intuition
behind a multiset Γ in the domain of ϕ is that some interface change can be applied to any
finite multiset of transitions whose labels match the argument, i.e., the non-empty multiset of
multiactions Γ . More precisely, such transitions can be synchronised to yield a new transition
labelled ϕ(Γ ). (Note that, since sequential operators as well as the parallel one, use the interface
function ϕid , no transition label is changed for them.) Hence, the application of a communication
interface operator Ωϕ to a box Σ results in a labelled net which is like Σ with the only difference

that the set of transitions comprises all trees t
df

= vϕC {t1, . . . , tl} such that {t1, . . . , tl} ∈ mult(TΣ)

and the multiset Λ
df

= {λΣ(t1), . . . , λΣ(tl)} belongs to the domain of ϕ. The label of t is ϕ(Λ), and
for a place p of Ωϕ(Σ), the weight function is given by:

WΩϕ(Σ)(p, t)
df

=

l∑

i=1

WΣ(p, ti) ,
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and similarly for WΩϕ(Σ)(t, p).

Buffer restriction. An application of the buffer restriction operator Ωtie b to a box Σ results in a
labelled net like Σ with the only difference that the identity of each transition t ∈ TΣ is changed
to vtie bC t, the label of the only b-labelled place is changed to [, and a new unmarked disconnected
b-labelled place is added to SΩtie b(Σ).

3.5 Consistency in the box domain

For a constructed net, the property of having an empty control marking is directly linked to the
same property about the arguments.

Proposition 3 Let Ω be any sequential operator box or the parallel composition operator box Ω‖,
Σ be any Ω-tuple of boxes, and Σ be any box.

1. Mctr
Ω(Σ) = ∅ iff Mctr

Σvi
= ∅, for each vi ∈ TΩ.

2. If Σ′ is Ωϕ(Σ) or Σ tie b or Σ.B, then M ctr
Σ′ = ∅ iff Mctr

Σ = ∅. ut

Moreover, the operation of net substitution always returns a syntactically valid object provided
that it is applied to operands belonging to the correct domain. This is shown by the two lemmata
and the theorem below.

Lemma 4 If M is a clean marking of a box Σ such that M(e) + M(x) ≥ 1, for all e ∈ ◦Σ and
x ∈ Σ◦, then Mctr ∈ {◦Σ, Σ◦}. ut

Lemma 5 Let Ωsq(Σ) be a legal application of a sequential operator box Ωsq , and z ∈ TΩsq
be

such that Σ = Σz is a dynamic box. Moreover, let s′′ be a place in Ωsq , M
df

= MΩsq (Σ),
•z = {s}

and z• = {s′}.

1. If there is a place in P〈s′′〉 which is marked at M then s′′ ∈ {s, s′}.

2. If Mctr
Σ = ◦Σ then Mctr = P〈s〉, and if Mctr

Σ = Σ◦ then Mctr = P〈s′〉.

3. If Mctr ≥ P〈s′′〉 then Mctr = P〈s′′〉, and one of the following holds:

(a) s′′ = s 6= s′ and Mctr
Σ = ◦Σ.

(b) s′′ = s′ 6= s and Mctr
Σ = Σ◦.

(c) s′′ = s = s′ and Mctr
Σ ∈ {◦Σ, Σ◦}. ut

Theorem 6. Let Ω be any operator box and Σ ∈ domΩ. Then Ω(Σ) is a box with a clean and
ac-free marking. Moreover, if all the dynamic boxes (if any) in Σ have quasi-safe markings, then
the marking of Ω(Σ) is also quasi-safe. ut

We finally observe that, if one makes no use of buffer stuffing nor buffer restriction and uses
only basic nets of the form Σα{}, then the net operations described above are similar to those
defined in the standard box algebra (see [1–3]), except for the additional b-labelled places, which
are all disconnected and unmarked.

4 Relating behaviour and structure of composite boxes

In this section we investigate how the behaviour of composite boxes depends on the behaviours of
the boxes being composed.
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4.1 Static properties of boxes

An important result from the point of view of developing an algebra of box and box expressions is
given next.

Proposition 7 Let Ω be a sequential operator box, and Σ be an Ω-tuple of static boxes.

1. If v ∈ TΩ is such that ◦Ω = •v or ◦Ω = v•, then Ω(Σ) = Ω(Σ′), where Σ
′ is Σ with Σv

replaced respectively by Σv or Σv.
2. If v ∈ TΩ is such that Ω◦ = •v or Ω◦ = v•, then Ω(Σ) = Ω(Σ ′), where Σ

′ is Σ with Σv

replaced respectively by Σv or Σv. ut

4.2 Structural equivalence

We intend here to capture situations where different applications of a same operator box lead to
the same labelled net. Let Ω be an operator box and Σ, Θ be Ω-tuples of boxes. We start by
defining five auxiliary relations ≡i

Ω, in the following way.

– Σ ≡0
Ω Θ if there is a transition v ∈ TΩ and a box Ψ such that •v = v•, {Σv, Θv} = {Ψ, Ψ} and

Σu = Θu, for all u ∈ TΩ \ {v}.
– Σ ≡1

Ω Θ if there are two transitions v 6= w ∈ TΩ and two boxes Ψv and Ψw such that •v = •w,
{(Σv, Σw), (Θv , Θw)} = {(Ψv, Ψw), (Ψv , Ψw)} and Σu = Θu, for all u ∈ TΩ \ {v, w}.

– Σ ≡2
Ω Θ if there are two transitions v 6= w ∈ TΩ and two boxes Ψv and Ψw such that v• = w•,

{(Σv, Σw), (Θv , Θw)} = {(Ψv, Ψw), (Ψv , Ψw)} and Σu = Θu, for all u ∈ TΩ \ {v, w}.
– Σ ≡3

Ω Θ if there are two transitions v 6= w ∈ TΩ and two boxes Ψv and Ψw such that v• = •w,
{(Σv, Σw), (Θv , Θw)} = {(Ψv, Ψw), (Ψv , Ψw)} and Σu = Θu, for all u ∈ TΩ \ {v, w}.

– Σ ≡4
Ω Θ if, for each v ∈ TΩ , there is a box Ψv and two multisets Bv and B′

v over B, such that

∑

v∈TΩ

Bv =
∑

v∈TΩ

B′
v ,

and Σv = Ψv.Bv and Θb = Ψv.B
′
v , for all v ∈ TΩ .

Then we define ≡Ω
df

= ≡4
Ω ◦

⋃

i∈I

≡i
Ω , where I = {0, 1, 2, 3, 5} and ≡5

Ω

df

= id abox. Note that ≡Ω‖
=≡4

Ω

and ≡Ω= id abox, for every unary operator box Ω.

Proposition 8 Let Ω be an operator box, and Σ ∈ domΩ.

1. If Σ ≡Ω Θ, then Θ ∈ domΩ and bbΣcc = bbΘcc.
2. ≡Ω is an equivalence relation on domΩ.
3. If Θ ∈ domΩ and bbΣcc = bbΘcc, then Ω(Σ) = Ω(Θ) iff Σ ≡Ω Θ. ut

4.3 Dynamic properties of composite nets

In the results presented below, we capture the behavioural compositionality of our model, i.e., the
way the behaviours of composite nets (in terms of enabled steps) are related to the behaviours of
their constituting nets. Basically, we want to establish what steps are enabled by Ω(Σ), knowing
the steps enabled by the boxes in Σ.

Proposition 9 Let Σ
df

= (Σ1, Σ2) ∈ domΩ‖
. Then enabled(Ω‖(Σ)) comprises exactly all sets of

transitions U = (v
‖
1 J U1)∪ (v

‖
2 J U2) such that there is a pair of boxes Θ satisfying Θ ≡Ω‖

Σ and
Ui ∈ enabled(Θi), for i ∈ {1, 2}. Moreover, Ω‖(Σ) [U〉Ω‖(Φ), where Θi [Ui〉Φi, for i ∈ {1, 2}. ut
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Proposition 10 Let Ω be a sequential operator box and Σ ∈ domΩ.

1. If Σi [Ui〉Θi (for i ≤ n), then Θ ∈ domΩ, and

Ω(Σ) [(v1JU1) ∪ . . . ∪ (vnJUn)〉Ω(Θ) .

2. If Ω(Σ) [U〉Θ, then there are Ψ , Φ ∈ domΩ and steps U1, . . . , Un such that Σ ≡Ω Ψ , Ψi [Ui〉Φi

(for i ≤ n), Θ = Ω(Φ) and

U = (v1JU1) ∪ . . . ∪ (vnJUn) .

Note: As a consequence, enabled(Ω(Σ)) comprises exactly all sets (v1JU1) ∪ . . . ∪ (vnJUn) of
transitions such that there is Ψ ≡Ω Σ and Ui ∈ enabled(Ψi) (for i ≤ n). ut

Notice that for the sequential operators, at most one Ui is non-empty. Otherwise, the property
is very similar to that which holds for the parallel operator box.

Proposition 11 Let Σ be a box, b ∈ B, B ∈ mult({b}) and B ′ ∈ mB.

1. enabled(Σ tie b) comprises exactly all sets of transitions U = vtie bJV such that V ∈ enabled(Σ).
Moreover, Σ tie b [U〉Φ tie b, where Σ [V 〉Φ.

2. enabled((Σ tie b).B) comprises exactly all sets of transitions U ∈ enabled(Σ tie b).
Moreover, (Σ tie b).B [U〉Φ.B, where Σ tie b [U〉Φ.

3. enabled(Σ) is a subset of enabled(Σ.B ′).
Moreover, if Σ [U〉Φ then Σ.B′ [U〉Φ.B′. ut

That the converse of the last property does not hold may be illustrated by a simple counter-
example: the dynamic box Σ{}{b−} only allows the empty step, while Σ{}{b−}.b [{v{}{b−}}〉Σ{}{b−}.

Proposition 12 Let Σ be a static or dynamic box, and Ωϕ be a communication interface operator
box.

1. If Σ [U1 ] . . . ] Uk〉Θ and each λΣ(Ui) belongs to the domain of ϕ, then

Ωϕ(Σ) [{vϕ
C U1, . . ., v

ϕ
C Uk}〉Ωϕ(Θ) .

2. If Ωϕ(Σ) [U〉Ψ then there is a box Θ and steps of transitions U1, . . . , Uk such that Ψ = Ωϕ(Θ),
U = {vϕC U1, . . . , v

ϕC Uk}, and Σ [U1 ] . . . ] Uk〉Θ .

Note: As a consequence, enabled(Ωϕ(Σ)) comprises exactly all U = {vϕ C U1, . . . , v
ϕ C Uk} such

that U1 ] . . . ] Uk ∈ enabled(Σ) and each λΣ(Ui) belongs to the domain of ϕ. ut

The behaviours of the basic asynchronous boxes of MBC are captured below.

Proposition 13 Let B ∈ mB and Σαβ be one of the basic boxes. If B(b) ≥ β(b−), for each b ∈ B,
then the only non empty steps of Σαβ.B are

Σαβ .B [{vαβ}〉 Σαβ.

(
B −

∑

b∈B

β(b−) · b +
∑

b∈B

β(b+) · b

)
;

otherwise, Σαβ .B has no non-empty step. ut

Various important consequences may be derived from the results presented above; in particular
that the way static and dynamic boxes are composed in MBC guarantees that the result is a static
or dynamic box when the domain of application of the operators is respected.
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Proposition 14 Let Ω be an operator box of MBC and Σ ∈ domΩ. Then every net derivable
from Ω(Σ) is of the form Ω(Θ), where Θ ∈ domΩ and bbΘcc = bbΣcc. Moreover, if no box in Σ

is dynamic, then every net derivable from Ω(Σ) or Ω(Σ) is of the form Ω(Θ), where Θ ∈ domΩ

and bbΘcc = bbΣcc. ut

Theorem 15. Every composite net of MBC is a quasi-safe static or dynamic box. Moreover, it is
static iff the marking operators (·), (·) are not used, unless in the scope of the b·c or bb·cc operators.

ut

5 An algebra of asynchronous box expressions

We consider an algebra of process expressions over the signature:

C ∪ { (·) , (·) } ∪ { ‖ , ; , � , ~ } ∪ { sca | a ∈ A} ∪ { tie b, .b | b ∈ B} , (1)

where C
df

= {αβ | α ∈ mA, β ∈ mL} are the constants; the binary operators ‖ , ; , � and ~ will
be used in the infix mode; the unary operators sc a, tie b and .b will be used in the postfix mode;
and (·) and (·) are two positional unary operators (the position of the argument being given by
the dot).

There are two classes of process expressions corresponding to the static and dynamic boxes, viz.
the static and dynamic expressions, denoted respectively by aexprstc and aexprdyn . Collectively, we
will refer to them as the (asynchronous) box expressions, aexpr. Their syntax is given by:

aexprstc E ::= αβ | E sc a | E tie b | E.b | E‖E | E � E | E; E | E ~E

aexprdyn D ::= E | E | D sc a | D tie b | D.b | D‖D | D � E | E � D

| D; E | E; D | D ~ E | E ~ D

(2)

where αβ ∈ C, a ∈ A and b ∈ B. Moreover, we will use F to denote any static or dynamic expression.
We also use the notations bF c and bbF cc yielding static expressions, where bF c is F with all

occurrences of (·) and (·) removed, and bbF cc is bF c with all occurrences of .b removed. Note that

we do not need terms of the form F.B since F.{b, . . . , b′} would be equivalent to F.b · · ·.b′ (but such
terms can be used as a convenient shorthand).

Essentially, a box expression encodes the structure of a box, together with the current marking
of the control places (using overbars and underbars) and of the buffer places (using the .b’s).
Thus, a box expression E represents E in its initial state (in terms of nets, this corresponds
to the initially marked box of E). Similarly, E represents E in its final state. Note that the .b
notation is needed for static as well as for dynamic box expressions because the dormant part of a
dynamic box expression may still have .b’s which are later needed in the active part. For instance,

D
df

= {a}{b+}.b ; {af}{b−} has a static component with a .b in it, and may be transformed into an

equivalent D′ df

= {a}{b+}; {af}{b−}.b (see section 5.2).

5.1 Denotational semantics

The denotational semantics of box expressions is given in the form of a mapping box : aexpr → abox,
defined homomorphically by induction on their structure, following the syntax (2). Below, αβ ∈ C,
a ∈ A, b ∈ B, una stands for any unary operator (sca, tie b or .b), and bin for any binary operator
(‖, �, ; or ~).

box(αβ)
df

= Σαβ box(E)
df

= box(E) box(E)
df

= box(E)

box(F una)
df

= box(F ) una box(F1 binF2)
df

= box(F1) bin box(F2) .
(3)
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The semantical mapping always returns a box, and the property of corresponding to a static
or dynamic box has been captured by the syntax (2).

Theorem 16. Let F be a box expression.

1. box(F ) is a static or dynamic box.

2. box(F ) is a static box iff F is a static box expression. ut

5.2 Structural similarity relation

We define the structural similarity relation on box expressions, denoted by ≡, as the least equiv-
alence relation on box expressions such that all the equations in table 1 are satisfied. These rules
directly follow those of the ABC and PNA models.

CON1
F ≡ F ′

F una ≡ F ′
una

CON2
F1 ≡ F ′

1, F2 ≡ F ′
2

F1 bin F2 ≡ F ′
1 binF ′

2

ENT
E ≡ E′

E ≡ E′
EX

E ≡ E′

E ≡ E′

OPL (F.b) bin F ′ ≡ (F binF ′).b OPR F bin(F ′.b) ≡ (F binF ′).b

E1 E una ≡ E una X1 E una ≡ E una

B1 (F.b) una ≡ (F una).b if una 6= tie b IS1 E1; E2 ≡ E1; E2

IS2 E1; E2 ≡ E1; E2 IS3 E1; E2 ≡ E1; E2

IPAR1 E1‖E2 ≡ E1‖E2 IPAR2 E1‖E2 ≡ E1‖E2

IC1L E1 ¸ E2 ≡ E1 ¸ E2 IC1R E1 ¸ E2 ≡ E1 ¸ E2

IC2L E1 ¸ E2 ≡ E1 ¸ E2 IC2R E1 ¸ E2 ≡ E1 ¸ E2

IIT1 E1 ¹ E2 ≡ E1 ¹ E2 IIT2 E1 ¹ E2 ≡ E1 ¹ E2

IIT3 E1 ¹ E2 ≡ E1 ¹ E2 IIT4 E1 ¹ E2 ≡ E1 ¹ E2

IIT5 E1 ¹ E2 ≡ E1 ¹ E2

Table 1. Structural similarity relation for MBC, where b ∈ º , una stands for any unary MBC operator
and bin stands for any binary MBC operator.

It may be observed that, due to the rules CON1-2, ENT and EX, the equivalence relation so
defined is in fact a congruence for all the operators of the algebra. It is easy to see that the
structural similarity relation is closed in the domain of expressions, in the sense that, if a box
expression matches one of the sides of any rule then, the other side defines a legal box expression.
Moreover, it preserves the types of box expressions (static or dynamic), and captures the fact that
box expressions have the same net translation, as shown below.

Theorem 17. Let F1 and F2 be box expressions.

1. If F1 ≡ F2 then bF1c ≡ bF2c, bbF1cc = bbF2cc and box(F1) = box(F2).
2. If bbF1cc = bbF2cc, then box(F1) = box(F2) iff F1 ≡ F2. ut
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That the precondition bbF1cc = bbF2cc is needed in the second part of the last result may be

justified by the counter-example F1
df

= {a}{} sca and F2
df

= {â}{} sca for which F1 6≡ F2 but
box(F1) = box(F2) (no transition is left in the nets by the scoping operation).

Theorem 18. Let F be a box expression.

1. box(F ) = bbox(F )c iff F ≡ bF c.
2. box(F ) = bbox(F )c iff F ≡ bF c. ut

In the first case above we say that F is an initial expression, and in the second a final one.
In developing the operational semantics of the box algebra, we first introduce operational rules.

They are based on transitions of the nets providing the denotational semantics of box expressions.
Based on these, we will formulate our key consistency result. Then we will introduce the label
based rules, together with the derived consistency results.

5.3 Transition based operational semantics

Consider the set T of all transition trees in the boxes derived through the box mapping. It is easy to
check that each t ∈ T has always the same label in all the boxes derived through the box mapping
where it occurs; it will be denoted by λ(t).

The first operational semantics we will consider has moves of the form F
U
−→ F ′ such that F

and F ′ are box expressions and U ∈ U
df

= mult(T). The idea here is that U is a valid step for the
boxes associated with F and F ′, i.e., that box(F ) [U〉 box(F ′), as stated by theorem 20.

Formally, we define a ternary relation −→ which is the least relation comprising all (F, U, F ′) ∈

aexpr × U × aexpr such that the relations in table 2 hold. Notice that we use F
U
−→ F ′ to denote

(F, U, F ′) ∈ −→. In the definition of EOP we make no restriction on U1 and U2 but the domain of
application of bin will ensure that this rule will always be used with the correct static/dynamic
mixture of boxes. For instance, in the case of the choice operator, one of U1 and U2 is necessarily
empty, and in the rule of the sc a operator, each Ui contains only transitions whose labels can be
scoped together.

EA αβ. »½¼ b∈ ¾ β(b−) · b ¿ {vαβ}

−−−−−→ αβ. »À¼ b∈ ¾ β(b+) · b ¿
EQ1 F

{}
−→ F EQ2

F ≡ F ′, F ′ U
−→ F ′′, F ′′ ≡ F ′′′

F
U

−→ F ′′′

EBUF
F

U
−→ F ′

F.b
U

−→ F ′.b
ETIE

F
U

−→ F ′

F tie b
vtie b Á U

−−−−−−−−→ F ′
tie b

ESC
F

U1+...+Uk

−−−−−−−−−−−−−−→ F ′

F sc a
{vsc aÂ U1,...,vsc aÂ Uk}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ F ′
sc a

if ∀i : λ(Ui) ∈ dom(ϕsca)

EOP
F1

U1−→ F ′
1, F2

U2−→ F ′
2

F1 binF2

(vbin

1
Á U1)∪(vbin

2
Á U2)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ F ′
1 binF ′

2

Table 2. Transition based operational semantics for MBC, where a ∈ Ã , b ∈ Ä and bin stands for any
binary MBC operator.
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PayRise

≡ ( ({ar}{} Å {ac}{}) ‖ (({ Æar, Æar}{} Å { Æac}{b
−
a , b+

d }) tie bd)

‖ ((({ar, Çay}{} ; {}{b+
a }) È {ar, Çan}{}) Å {f}{}) ) sc ar sc ac E1, IPAR1

≡ ( ({ar}{} Å {ac}{}) ‖ (({ Æar, Æar}{} Å { Æac}{b
−
a , b+

d }) tie bd)

‖ ((({ar, Çay}{} ; {}{b+
a }) È {ar, Çan}{}) Å {af}{}) ) sc ar sc ac IIT1, IC1R

{t1}

−−−−−→ ( ({ar}{} Å {ac}{}) ‖ (({ Æar, Æar}{} Å { Æac}{b
−
a , b+

d }) tie bd) EA, EOP

‖ ((({ar, Çay}{} ; {}{b+
a }) È {ar, Çan}{}) Å {af}{}) ) sc ar sc ac ESC, ETIE

≡ ( ({ar}{} Å {ac}{}) ‖ (({ Æar, Æar}{} Å { Æac}{b
−
a , b+

d }) tie bd)

‖ ((({ar, Çay}{} ; {}{b+
a }) È {ar, Çan}{}) Å {af}{}) ) sc ar sc ac IC2R

≡ ( ({ar}{} Å {ac}{}) ‖ (({ Æar, Æar}{} Å { Æac}{b
−
a , b+

d }) tie bd)

‖ ((({ar, Çay}{} ; {}{b+
a }) È {ar, Çan}{}) Å {af}{}) ) sc ar sc ac IIT2, IC1L

≡ ( ({ar}{} Å {ac}{}) ‖ (({ Æar, Æar}{} Å { Æac}{b
−
a , b+

d }) tie bd)

‖ ((({ar, Çay}{} ; {}{b+
a }) È {ar, Çan}{}) Å {af}{}) ) sc ar sc ac IS1

{t2}

−−−−−→ ( ({ar}{} Å {ac}{}) ‖ (({ Æar, Æar}{} Å { Æac}{b
−
a , b+

d }) tie bd) EA, EOP

‖ ((({ar, Çay}{} ; {}{b+
a }) È {ar, Çan}{}) Å {af}{}) ) sc ar sc ac ESY, ETIE

≡ ( ({ar}{} Å {ac}{}) ‖ (({ Æar, Æar}{} Å { Æac}{b
−
a , b+

d }) tie bd)

‖ ((({ar, Çay}{} ; {}{b+
a }) È {ar, Çan}{}) Å {af}{}) ) sc ar sc ac IS2

{t3}

−−−−−→ ( ({ar}{} Å {ac}{}) ‖ (({ Æar, Æar}{} Å { Æac}{b
−
a , b+

d }) tie bd)

‖ ((({ar, Çay}{} ; {}{b+
a }. ba) È {ar, Çan}{}) Å {af}{}) ) sc ar sc ac EA

≡ ( ({ar}{} Å {ac}{}) ‖ (({ Æar, Æar}{} Å { Æac}{b
−
a , b+

d }) tie bd)

‖ ((({ar, Çay}{} ; {}{b+
a }. ba) È {ar, Çan}{}) Å {af}{}) ) sc ar sc ac IC2L

≡ ( ({ar}{} Å {ac}{}) ‖ (({ Æar, Æar}{} Å { Æac}{b
−
a , b+

d }. ba) tie bd) IIT3, OPR

‖ ((({ar, Çay}{} ; {}{b+
a }) È {ar, Çan}{}) Å {af}{}) ) sc ar sc ac OPL, B1

{t4,t5}

−−−−−→ ( ({ar}{} Å {ac}{}) ‖ (({ Æar, Æar}{} Å { Æac}{b
−
a , b+

d }. bd) tie bd) EA, EOP, ESY

‖ ((({ar, Çay}{} ; {}{b+
a }) È {ar, Çan}{}) Å {af}{}) ) sc ar sc ac ERS, ETIE

≡ PayRise IIT5, IC2R

IPAR2, X1

Table 3. Execution scenario I
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We will now derive some properties of the derivation rules. First, an empty move always relates
two structurally equivalent box expressions.

Proposition 19 Let F and F ′ be two box expressions. Then, F
{}
−→ F ′ iff F ≡ F ′. ut

Next, a move of the operational semantics transforms a box expression into another expression
with a structurally equivalent underlying static expression, and the move generated is a valid step
for the corresponding boxes. We interpret this as establishing the soundness of the operational
semantics of box expressions. We then reverse the implication obtaining the completeness of the
operational semantics.

Theorem 20. Let F be a box expression.

1. If F
U
−→ F ′, then F ′ is a box expression such that box(F ) [U〉 box(F ′) and bbF cc = bbF ′cc.

2. If box(F ) [U〉Σ, then there is a box expression F ′ such that box(F ′) = Σ and F
U
−→ F ′. ut

5.4 Consistency of the denotational and operational semantics

The consistency between the denotational and the operational semantics of box expressions will
be formulated in terms of the transition systems they generate. This will be possible since, thanks
to theorem 20, we are now in a position to relate transition systems generated by a box expression
and the corresponding box.

Let D be a dynamic box expression. We will use [D〉 to denote all the box expressions derivable

from D, i.e., the least set of expressions containing D such that if D′ ∈ [D〉 and D′ U
−→ D′′, for

some U ∈ U, then D′′ ∈ [D〉. Moreover, [D]≡ will denote the equivalence class of ≡ containing D.

The full transition system of D is ftsD
df

= (V, L, A, init), where V
df

= {[D′]≡ | D′ ∈ [D〉} is the set

of states; L
df

= U is the set of arc labels; A
df

=
{
([D′]≡, U, [D′′]≡) ∈ V × U × V | D′ U

−→ D′′
}

is the

set of arcs; and init
df

= [D]≡ is the initial state. For a static box expression E, ftsE
df

= ftsE .
Note that we base transition systems of box expressions on the equivalence classes of ≡, rather

than on box expressions themselves, since we may have D
{}
−→ D′ for two different expressions D

and D′, whereas in the domain of boxes, Σ [{}〉Θ always implies Σ = Θ.
We now state a fundamental result which demonstrates that the operational and denotational

semantics of a box expression capture the same behaviour, in arguably the strongest sense.

Theorem 21. For every box expression F , isoF
df

=
{
([F ′]≡, box(F ′))

∣∣ [F ′]≡ is a node of ftsF

}
is

an isomorphism between the full transition systems ftsF and ftsbox(F ). Moreover, isoF preserves the
property of being in an initial or final state.4 ut

5.5 Label based operational semantics

First, we retain the structural similarity relation ≡ on box expressions without any change. Next,

we define moves of the form F
Γ

−→ F ′, where F and F ′ are box expressions as before, and
Γ ∈ mult(mA), as shown in table 4.

The two types of operational semantics are clearly related; essentially, each label based move
is a transition based move with only transitions labels being recorded.

Proposition 22 Let F be a box expression and Γ ∈ L . Then F
Γ

−→ F ′ iff there is U ∈ U such

that F
U
−→ F ′ and λ(U) = Γ . ut

4 In terms of box expression (cf. theorem 18) or box net (cf. section 2.5), not w.r.t. the transition system.
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LA αβ. É½Ê b∈ Ë β(b−) · b Ì {α}
−→ αβ. ÉÀÊ b∈ Ë β(b+) · b Ì LOP

F1
Γ1−→ F ′

1, F2
Γ2−→ F ′

2

F1 binF2

Γ1+Γ2

−−−−−−−−→ F ′
1 binF ′

2

LQ1 F
{}
−→ F LQ2

F ≡ F ′, F ′ Γ
−→ F ′′, F ′′ ≡ F ′′′

F
Γ

−→ F ′′′

LBUF
F

Γ
−→ F ′

F.b
Γ

−→ F ′.b
LTIE

F
Γ

−→ F ′

F tie b
Γ

−→ F ′
tie b

LSC
F

Γ1+...+Γk

−−−−−−−−−−−−−−→ F ′

F sc a
ϕsc a(Γ1)+...+ϕsc a(Γk)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ F ′
sc a

if ∀i : Γi ∈ dom(ϕsca)

Table 4. Label based operational semantics for MBC, where a ∈ Í , b ∈ Î and bin stands for any binary
MBC operator.

The results concerning transition based operational semantics directly extend to the label based
one. Let F be a box expression. In view of proposition 22, the label based operational semantics
of F is faithfully captured by the labelled transition system of F , denoted by ltsF , and defined as
ftsF with each arc label U changed to λ(U). The consistency result for the label based operational
semantics can then be formulated thus.

Theorem 23. For every box expression F , isoF
df

=
{
([F ′]≡, box(F ′))

∣∣ [F ′]≡ is a node of ltsF

}
is

an isomorphism between the labelled transition systems ltsF and ltsbox(F ). Moreover, isoF preserves
the property of being in an initial or final state. ut

6 Conclusion

We extended the synchronous and asynchronous capabilities of ABC by allowing the use of multisets
of actions as well as that of multisets of links. These modifications has been introduced at the
level of ABC process expressions and also at the level of their associated structured operational
semantics. The resulting framework, called MBC, comprises an algebra of process expressions and
an algebra of nets which are consistent in the sense that an expression and the corresponding
net generate isomorphic transition systems. As it was the case with PNA, MBC allows also for
expressing compositionally processes with multi-way synchronisation, what was not possible with
ABC.

In the process of extending PNA with asynchronous communication, the extension we still need
is the recursion. Moreover, the enhancement presented in this paper is crucial when one investigates
high-level extensions of such formalisms. Actually, a high-level synchronous action may encode a
set of low-level actions, and similarly, a high-level communication link may correspond to a set of
low-level links. The work presented here is based on multisets which are a natural generalisation
of sets. Our future work will go in both directions.
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PayRise

≡ ( ({ar}{} Ï {ac}{}) ‖ (({ Ðar, Ðar}{} Ï { Ðac}{b
−
a , b+

d }) tie bd)

‖ ((({ar, Ñay}{} ; {}{b+
a }) Ò {ar, Ñan}{}) Ï {f}{}) ) sc ar sc ac E1, IPAR1

≡ ( ({ar}{} Ï {ac}{}) ‖ (({ Ðar, Ðar}{} Ï { Ðac}{b
−
a , b+

d }) tie bd)

‖ ((({ar, Ñay}{} ; {}{b+
a }) Ò {ar, Ñan}{}) Ï {af}{}) ) sc ar sc ac IIT1, IC1R

{{an}}

−−−−−→ ( ({ar}{} Ï {ac}{}) ‖ (({ Ðar, Ðar}{} Ï { Ðac}{b
−
a , b+

d }) tie bd) LA, LOP

‖ ((({ar, Ñay}{} ; {}{b+
a }) Ò {ar, Ñan}{}) Ï {af}{}) ) sc ar sc ac LSC, LTIE

≡ ( ({ar}{} Ï {ac}{}) ‖ (({ Ðar, Ðar}{} Ï { Ðac}{b
−
a , b+

d }) tie bd)

‖ ((({ar, Ñay}{} ; {}{b+
a }) Ò {ar, Ñan}{}) Ï {af}{}) ) sc ar sc ac IC2R

≡ ( ({ar}{} Ï {ac}{}) ‖ (({ Ðar, Ðar}{} Ï { Ðac}{b
−
a , b+

d }) tie bd)

‖ ((({ar, Ñay}{} ; {}{b+
a }) Ò {ar, Ñan}{}) Ï {af}{}) ) sc ar sc ac IIT2, IC1L

≡ ( ({ar}{} Ï {ac}{}) ‖ (({ Ðar, Ðar}{} Ï { Ðac}{b
−
a , b+

d }) tie bd)

‖ ((({ar, Ñay}{} ; {}{b+
a }) Ò {ar, Ñan}{}) Ï {af}{}) ) sc ar sc ac IS1

{{ay}}

−−−−−→ ( ({ar}{} Ï {ac}{}) ‖ (({ Ðar, Ðar}{} Ï { Ðac}{b
−
a , b+

d }) tie bd) LA, LOP

‖ ((({ar, Ñay}{} ; {}{b+
a }) Ò {ar, Ñan}{}) Ï {af}{}) ) sc ar sc ac LSC, LTIE

≡ ( ({ar}{} Ï {ac}{}) ‖ (({ Ðar, Ðar}{} Ï { Ðac}{b
−
a , b+

d }) tie bd)

‖ ((({ar, Ñay}{} ; {}{b+
a }) Ò {ar, Ñan}{}) Ï {af}{}) ) sc ar sc ac IS2

{{}}

−−−−−→ ( ({ar}{} Ï {ac}{}) ‖ (({ Ðar, Ðar}{} Ï { Ðac}{b
−
a , b+

d }) tie bd)

‖ ((({ar, Ñay}{} ; {}{b+
a }. ba) Ò {ar, Ñan}{}) Ï {af}{}) ) sc ar sc ac LA

≡ ( ({ar}{} Ï {ac}{}) ‖ (({ Ðar, Ðar}{} Ï { Ðac}{b
−
a , b+

d }) tie bd)

‖ ((({ar, Ñay}{} ; {}{b+
a }. ba) Ò {ar, Ñan}{}) Ï {af}{}) ) sc ar sc ac IC2L

≡ ( ({ar}{} Ï {ac}{}) ‖ (({ Ðar, Ðar}{} Ï { Ðac}{b
−
a , b+

d }. ba) tie bd) IIT3, B1

‖ ((({ar, Ñay}{} ; {}{b+
a }) Ò {ar, Ñan}{}) Ï {af}{}) ) sc ar sc ac OPR, OPL

{{af},{}}

−−−−−−−−→ ( ({ar}{} Ï {ac}{}) ‖ (({ Ðar, Ðar}{} Ï { Ðac}{b
−
a , b+

d }. bd) tie bd) LA, LOP

‖ ((({ar, Ñay}{} ; {}{b+
a }) Ò {ar, Ñan}{}) Ï {af}{}) ) sc ar sc ac LSC, LTIE

≡ PayRise IIT5, IC2R

IPAR2, X1

Table 5. Execution scenario I.
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PayRise

≡ ( ({ar}{} Ó {ac}{}) ‖ (({ Ôar, Ôar}{} Ó { Ôac}{b
−
a , b+

d }) tie bd)

‖ ((({ar, Õay}{} ; {}{b+
a }) Ö {ar, Õan}{}) Ó {f}{}) ) sc ar sc ac E1, IPAR1

≡ ( ({ar}{} Ó {ac}{}) ‖ (({ Ôar, Ôar}{} Ó { Ôac}{b
−
a , b+

d }) tie bd)

‖ ((({ar, Õay}{} ; {}{b+
a }) Ö {ar, Õan}{}) Ó {af}{}) ) sc ar sc ac IIT1, IC1R

{{an}}

−−−−−→ ( ({ar}{} Ó {ac}{}) ‖ (({ Ôar, Ôar}{} Ó { Ôac}{b
−
a , b+

d }) tie bd) LA, LOP

‖ ((({ar, Õay}{} ; {}{b+
a }) Ö {ar, Õan}{}) Ó {af}{}) ) sc ar sc ac LSC, LTIE

≡ ( ({ar}{} Ó {ac}{}) ‖ (({ Ôar, Ôar}{} Ó { Ôac}{b
−
a , b+

d }) tie bd)

‖ ((({ar, Õay}{} ; {}{b+
a }) Ö {ar, Õan}{}) Ó {af}{}) ) sc ar sc ac IC2R

≡ ( ({ar}{} Ó {ac}{}) ‖ (({ Ôar, Ôar}{} Ó { Ôac}{b
−
a , b+

d }) tie bd)

‖ ((({ar, Õay}{} ; {}{b+
a }) Ö {ar, Õan}{}) Ó {af}{}) ) sc ar sc ac IIT2, IIT3

{{af}}

−−−−−→ ( ({ar}{} Ó {ac}{}) ‖ (({ Ôar, Ôar}{} Ó { Ôac}{b
−
a , b+

d }) tie bd)
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