
HAL Id: hal-02310188
https://hal.science/hal-02310188v1

Submitted on 5 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Necessary and sufficient elastic stability conditions in
various crystal systems

Félix Mouhat, François-Xavier Coudert

To cite this version:
Félix Mouhat, François-Xavier Coudert. Necessary and sufficient elastic stability conditions in various
crystal systems. Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2014, 90,
pp.224104. �10.1103/PhysRevB.90.224104�. �hal-02310188�

https://hal.science/hal-02310188v1
https://hal.archives-ouvertes.fr


Published as: Phys. Rev. B 90, 224104 (2014)

Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems

Félix Mouhat and François-Xavier Coudert∗

PSL Research University, Chimie ParisTech – CNRS,
Institut de Recherche de Chimie Paris, 75005 Paris, France

(Dated: December 5, 2014)

While the Born elastic stability criteria are well-known for cubic crystals, there is some confusion in the litera-
ture about the form it should take for lower symmetry crystal classes. We present here closed form necessary and
sufficient conditions for elastic stability in all crystal classes, as a concise and pedagogical reference to stability
criteria in non-cubic materials.

I. INTRODUCTION

The fundamental understanding of the conditions of me-
chanical stability of unstressed crystalline structures dates back
to the seminal work of Max Born and co-authors in the
1940s,1 and was consolidated in his 1954 book.2 This and later
textbooks3–5 usually state the generic requirements for elastic
stability of crystal lattices, and give simplified equivalents of the
generic conditions for some high-symmetry crystal classes. In
particular, in the case of cubic crystals, the conditions of sta-
bility reduce to a very simple form:

C11 − C12 > 0 ; C11 + 2C12 > 0 ; C44 > 0 (1)

The above equations for the cubic crystal system are well-
known, and often called the “Born stability criteria”. We no-
ticed however, through a review of the recent literature on the
experimentalmeasurements and first principles calculations of
elastic constants of solids, that there is a large amount of confu-
sion about the form that these conditions should take for other
crystal classes, including hexagonal, tetragonal, rhombohedral
and orthorhombic classes. In more than a few cases, incorrect
generalizations of the cubic criteria have been published;6–10
this is particularly frequent for orthorhombic crystals.11–17 In
other papers, the authors rely on conditions that are necessary
but not sufficient.18 So long as the diagonal elastic constants
C i i are dominant, this leads to wrong quantitative analyses,
but does not change the qualitative picture (whether a specific
crystal is stable or not). However, we identified at least one case
where accounting for the proper stability criteria did change
the conclusions drastically, meaning that a system (MOF-74
material with CH4 guest molecules) was identified as stable
when it is not.10

In this short paper, we summarize the generic elastic sta-
bility conditions for crystals, and present necessary and suffi-
cient conditions for each crystal class.We also detail the crystal
classes where no analytical necessary and sufficient conditions
exist.

II. GENERAL ELASTIC STABILITY CONDITION

The elastic behavior of a lattice are described by its matrix of
second-order elastic constants:

C i j =
1
V0

( ∂2E
∂ε i∂ε j

) (2)

where E is the energy of the crystal, V0 its equilibrium volume
and ε denotes a strain.19 This elasticmatrix (also called stiffness
matrix) has size 6× 6 and is symmetric: it is thus composed of
21 independent components. The crystal class of the material
considered yields additional symmetry constraints, further re-
ducing the number of independent elastic constants. For ar-
bitrary homogeneous deformation by an infinitesimal strain,
the energy of the crystal is therefore given by the following
quadratic form:

E = E0 +
1
2
V0

6
∑
i , j=1

C i jε i ε j + O (ε3) (3)

A crystalline structure is stable, in the absence of external
load and in the harmonic approximation,20 if and only if (i) all
its phononmodes have positive frequencies for all wave vectors
(dynamical stability), and (ii) the elastic energy, given by the
quadratic form of Eq. 3, is always positive (E > 0,∀ε ≠ 0).
This latter condition is called the elastic stability criterion. As
first noted by Born,1 it is mathematically equivalent with the
following necessary and sufficient stability conditions:

• the matrix C is definite positive;

• all eigenvalues of C are positive;

• all the leading principal minors ofC (determinants of its
upper-left k by k sub-matrix, 1 ≤ k ≤ 6) are positive, a
property known as Sylvester’s criterion;

• an arbitrary set of minors of C are all positive. It can be
useful to choose, for example, the trailingminors, or any
other set.

These are four possible formulations of the generic Born elas-
tic stability conditions for an unstressed crystal. They are valid
regardless of the symmetry of the crystal studied, and are not
linear.
Finally, from these conditionswe can deduce some necessary

but not sufficient conditions. Fedorov,4 in particular, noted that
the condition on principal minors implies that all diagonal el-
ements are positive (C i i > 0,∀i), but this alone is not strong
enough to ensure stability. Another example of necessary con-
dition is

(C i j)2 < C i iC j j ∀i , j (4)
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III. EXPRESSIONS FOR SPECIFIC LAUE CLASSES

We now turn our attention to express closed form expres-
sions of the necessary and sufficient elastic stability conditions
for 11 Laue classes, as described in Table I. For each class, the
Table also gives the number of independent elastic constants in
the stiffness matrix. We focus here on the crystalline systems
in three dimensions, but this analysis can also be extended in
very similar terms to other dimensions (e.g., one- and two-
dimensional quasicrystals).21,22

For each crystal system and Laue class, closed form expres-
sions of the necessary and sufficient elastic stability conditions
can be found following a number of different approaches. The
one we have chosen is to develop the series of minors of the
stiffness matrix, in an order chosen to minimize the degree
of the polynomials involved. For this, one reorders the ma-
trix into block diagonal form and expresses theminors starting
with the smallest blocks. Another way to view this approach is
to express the quadratic form of the energy and reducing it by
successively “completing the square” in the variables, taken in
a sequence appropriate to the symmetries.23,24 This is formally
equivalent and gives identically expressions for the conditions.
Finally, we also checked the results presented below by means
of direct calculation with computer algebra sofware,25 expand-
ing the characteristic polynomial of the stiffnessmatrix in each
case, and factoring it.

A. Cubic crystal system

The cubic crystal system has the simplest form of elastic ma-
trix, with only 3 independent constants: C11, C12 and C44:

Ccubic =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

C11 C12 C12
. C11 C12
. . C11

C44
C44

C44

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

(5)

(in this notation, dots are used to indicate nonzero elements
constrained by the symmetric nature of the matrix). The three
Born stability criteria for the cubic system are well-known:

C11 − C12 > 0 ; C11 + 2C12 > 0 ; C44 > 0 (6)

They are necessary and sufficient. Here wemerely note that the
first two conditions imply that C11 > 0, so it needs not be noted
as an extra condition, as is sometimes done. Also, the first con-
dition can be equivalently stated as C11 > ⋃︀C12⋃︀.

B. Hexagonal and tetragonal classes

Both Laue classes of the hexagonal crystal system, as well as
the tetragonal (I) class (4⇑mmm), have the same form for the

Crystal system Laue class Point groups C i j ’s
Triclinic 1 1, 1 21
Monoclinic 2⇑m 2, m, 2⇑m 13
Orthorhombic mmm 222, 2mm, mmm 9
Tetragonal (II) 4⇑m 4, 4, 4⇑m 7
Tetragonal (I) 4⇑mmm 4mm, 422, 42m, 4⇑mmm 6
Rhombohedral (II) 3 3, 3 7
Rhombohedral (I) 3m 32, 3m, 3m 6
Hexagonal (II) 6⇑m 6, 6, 6⇑m 5
Hexagonal (I) 6⇑mmm 6mm, 622, 62m, 6⇑mmm 5
Cubic (II) m3 23, m3 3
Cubic (I) m3m 432, 43m, m3m 3

Table I. Laue groups and number of independent second-order elastic
constants C i j . We follow the naming convention of Wallace5 (I/II) to
distinguish Laue classes within the same crystal system.

elastic matrix:

Chexa/tetra I =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C11 C12 C13

. C11 C13

. . C33

C44

C44

C66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(7)

Crystals of the tetragonal (I) class thus have 6 independent
elastic constants, while those with hexagonal crystal system
have only 5, due to the added relation:

C66 = (C11 − C12)⇑2 (8)

By direct calculation of the eigenvalues of the stiffness ma-
trix above, one can derive the following four necessary and
sufficient conditions for elastic stability in the hexagonal and
tetragonal (I) case:

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

C11 > ⋃︀C12⋃︀ ; 2C2
13 < C33(C11 + C12)

C44 > 0 ; C66 > 0
(9)

(where the condition on C66 is redundant with the first one,
for the hexagonal case).

The tetragonal (II) class (4⇑m) features an extra elastic con-
stant, C16, bringing the total of independent C i j ’s to 7:

Ctetra II =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C11 C12 C13 C16

. C11 C13 −C16

. . C33

C44

C44

. . C66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(10)

The conditions for this are the same as for the tetragonal (I)
class, Eq. 9, with the exception of the condition on C66 being
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replaced by: 2C2
16 < C66(C11 − C12). Thus the complete neces-

sary and sufficient Born stability criteria for tetragonal (II) class
are:

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

C11 > ⋃︀C12⋃︀ ; 2C2
13 < C33(C11 + C12)

C44 > 0 ; 2C2
16 < C66(C11 − C12)

(11)

C. Rhombohedral classes

Crystals in the rhombohedral (I) class (Laue class 3m) fea-
ture 6 independent elastic constants:

Crhombo I =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C11 C12 C13 C14

. C11 C13 −C14

. . C33

. . C44

C44 C14

. C66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(12)

where, like in the hexagonal case, C66 = (C11 − C12)⇑2. We
therefore obtain the following four necessary and sufficient
conditions:

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

C11 > ⋃︀C12⋃︀ ; C44 > 0
C2
13 < 1

2C33(C11 + C12)
C2
14 < 1

2C44(C11 − C12) = C44C66

(13)

For the rhombohedral (II) class, there is one more indepen-
dent elastic constant, namely C15:

Crhombo II =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C11 C12 C13 C14 C15

. C11 C13 −C14 −C15

. . C33

. . C44 −C15

. . C44 C14

. . C66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(14)

The resolution leads to a similar case as the rhombohedral (I)
class, but with a stricter version of the last criterion:

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

C11 > ⋃︀C12⋃︀ ; C44 > 0
C2
13 < 1

2C33(C11 + C12)
C2
14 + C2

15 < 1
2C44(C11 − C12) = C44C66

(15)

The criteria presented in Eq. 15, though they are rigorously nec-
essary and sufficient, have not been presented so far in the sci-
entific literature or textbooks, to our knowledge.

D. Orthorhombic Systems

Finally, we come to the crystal systems with lower symme-
try and larger number of independent elastic constants. The

stiffness matrix for an orthorhombic crystal has the following
form, with 9 constants and no relationships between them:

Cortho =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C11 C12 C13

. C22 C23

. . C33

C44

C55

C66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(16)

There are three trivial eigenvalues for this matrix, namely C44,
C55 and C66, all of which need to be positive. However, the
eigenvalues of the upper-left 3 × 3 block do not have closed
form expression. They are the three roots of the following cu-
bic polynomial:

λ3 − λ2 (C11 + C22 + C33)
+ λ (C11C22 + C11C33 + C22C33 − C2

12 − C2
23 − C2

13)
+ C11C2

23 + C22C2
13 + C33C2

12

− C11C22C33 − 2C12C13C23 (17)

One can, however, find a closed form expression equivalent
to the generic criteria, through the requirement that leading
principal minors be positive. This reduces to the following nec-
essary and sufficient Born criteria for an orthomrhombic sys-
tem:

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

C11 > 0 ;C11C22 > C2
12

C11C22C33 + 2C12C13C23

−C11C2
23 − C22C2

13 − C33C2
12 > 0

C44 > 0 ; C55 > 0 ; C66 > 0

(18)

The conditions obtained are not all linear, but polynomial
functions of the elastic constants (because the largest non-
diagonal block in the stiffness matrix has size 3 × 3 and all co-
efficients are independent).

We feel it is important to note here that some authors have
presented in the literature simpler stability conditions for or-
thorhombic crystals, many of them linear!6,11,12 To quote only
one, Wu et al.6 claim that “it is known that for orthorhombic
crystals, the mechanical stability requires the elastic stiffness
constants satisfying the following conditions”:

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

C i i > 0 ; C i i + C j j − 2C i j > 0
C11 + C22 + C33 + 2(C12 + C13 + C23) > 0

(19)

These conditions seem like a natural extension of the well-
known cubic case, but they are incorrect. Indeed, it is easy
to verify formally, with CAS (Computer Algebra System) soft-
ware, that these conditions are necessary but not sufficient.26

E. Monoclinic and Triclinic Systems

Monoclinic and triclinic crystal systems have 13 and 21 in-
dependent elastic constants respectively. Given the complexity

http://dx.doi.org/10.1103/PhysRevB.90.224104
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of the equations obtained, we will not show those here. When
studying such low-symmetry crystals, it is usuallymore conve-
nient to keep the stiffness coefficents in matrix form. In partic-
ular, the generic necessary and sufficient criterion that all eigen-
values of C be positive is easily to check with simple linear al-
gebra routines.

If, nevertheless, one wishes to obtain closed form expres-
sions for the stability conditions of monoclinic and triclinic
systems, they can be obtained as 6 polynomials in the elastic
constants by writing out that the leading principal minors of
C be positive. For monoclinic systems, the polynomials will be
of degree 4 (at most), while for triclinic crystals they will be
of degree 6 (at most). Simpler forms, including fully linear or
quadratic, that have sometimes proposed in the literature,6 are
incorrect.

IV. CONCLUSION

We gathered here, for the first time, closed form expressions
for necessary and sufficient elastic stability criteria (also called
Born stability conditions) depending on the Laue classes of
crystals.While high symmetry crystal systems allow for simple
formulas, these cannot be generalized trivially to lower sym-
metry systems. In particular, the cubic system is the only one

for which these conditions are all linear. Hexagonal, tetrago-
nal and rhombohedral systems have quadratic stability criteria.
Conditions for orthorhombic crystals involve cubic polynomi-
als, while monoclinic and triclinic systems can be expressed as
quartic and sextic polynomials, respectively.
Finally, we note that the conditions of elastic stability de-

scribed here for an unstressed system can be readily general-
ized to systems under an arbitrary external load σ by intro-
ducing an elastic stiffness tensor B under load, defined as (in
tensorial notation):20,27

B i jk l = C i jk l +
1
2
(δ i kσ j l + δ jkσi l + δ i l σ jk + δ j l σi k − 2δk l σi j)

(20)
The resulting symmetry of the B tensor might be lower than
that of C, if the load is not isotropic. Elastic stability condi-
tions can then be derived, as a function of crystal system and
symmetry of the external load, by applying the formalism of
this paper.28
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