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Abstract. We present three parallel algorithms for UCT. For 9×9 Go, they all
improve the results of the programs that use them against GNU GO 3.6. The
simplest one, the single-run algorithm, uses very few communications and shows
improvements comparable to the more complex ones. Further improvements may
be possible sharing more information in the multiple-runs algorithm.

1 Introduction

Works on parallelization in games are mostly about the parallelization of the Alpha-
Beta algorithm. We address here different approaches to theparallelization of the UCT
algorithm.

Monte-Carlo Go has recently improved to compete with the best Go programs [3–5,
7]. We show that it can be further improved using parallelization.

Section 2 describes related work. Section 3 presents three parallel algorithms. Sec-
tion 4 details experimental results. Section 5 concludes.

2 Related Works

In this section we expose related works on Monte-Carlo Go. Wefirst explain basic
Monte-Carlo Go as implemented in GOBBLE in 1993. Then we address the combination
of search and Monte-Carlo Go, followed by the UCT algorithm.

2.1 Monte-Carlo Go

The first Monte-Carlo Go program is GOBBLE [1]. It uses simulated annealing on a list
of moves. The list is sorted by the mean score of the games where the move has been
played. Moves in the list are switched with their neighbor with a probability dependent
on the temperature. The moves are tried in the games in the order of the list. At the end,
the temperature is set to zero for a small number of games. After all games have been
played, the value of a move is the average score of the games ithas been played in first.
GOBBLE-like programs have a good global sense but lack of tactical knowledge. For
example, they often play useless Ataris, or try to save captured strings.



2.2 Search and Monte-Carlo Go

A very effective way to combine search with Monte-Carlo Go has been found by Rémi
Coulom with his program CRAZY STONE [3]. It consists in adding a leaf to the tree
for each simulation. The choice of the move to develop in the tree depends on the
comparison of the results of the previous simulations that went through this node, and
of the results of the simulations that went through its sibling nodes.

2.3 UCT

The UCT algorithm has been devised recently [6], and it has been applied with success
to Monte-Carlo Go in the program MOGO [4, 5, 7] among others.

When choosing a move to explore, there is a balance between exploitation (ex-
ploring the best move so far), and exploration (exploring other moves to see if they can
prove better). The UCT algorithm addresses the exploration/exploitation problem. UCT
consists in exploring the move that maximizesµi +C×

√

log(t)/s. The mean result of
the games that start with theci move isµi, the number of games played in the current
node ist, and the number of games that start with moveci is s.

TheC constant can be used to adjust the level of exploration of thealgorithm. High
values favor exploration and low values favor exploitation.

3 Parallelization

In this section, we present the parallel virtual machine that we have used to implement
the parallel algorithms. Then we present in three separate subsections the three parallel
algorithms.

3.1 The Parallel Virtual Machine

To improve search, we choose message passing as parallel programming model, which
is implemented in the standard MPI, also supported by LAM/MPI [2]. Our virtual par-
allel computer, constituted with classical personal computer, sets up a fully connected
network of computers. Both communications are done only with the global communica-
tor MPI COMM WORLD. Each hyper-threaded computer that allows to work on two
threads at once, supports two nodes of our parallel computer. Each node runs one task
with independent data. Tasks are created at the beginning ofthe program’s execution,
via the use of the master-slave model. All gtp read and write commands are realized
from and to the master. Slaves satisfy computing requests. The maximum time taken by
any slave task is specified during each computing request. Therefore, the communica-
tion time is added. According to time limits, the maximum time spent over all comput-
ing loops is defined by the sum of all slowest answers. We use a synchronous communi-
cation mode for data transmission, with time-constrained computing sequences. In the
UCT context, as the algorithm is anytime, it is naturally well-adapted for synchronous
programming.



MASTER PART:
singleRunParallelUCTMove(goban[ ], color, ko, time)
1 best← −1;
2 (wins[ ], games[ ])← initialParallelUCTMove(goban[ ], color, ko, time);
3 for j ← 0 to goban.size()
4 best← max(best, wins[j]/games[j]);
5 returnbest;

initialParallelUCTMove(goban[ ], color, ko, time)
1 for i← 0 to goban.size()
2 wins[i]← 0;
3 games[i]← 0;
4 broadcast(goban[ ], color, ko, time);
5 for i← 0 to nbSlaves
6 receiveUCTSequences(newWins[ ], newGames[ ]);
7 for j ← 0 to goban.size()
8 wins[j]← wins[j] + newWins[j];
9 games[j]← games[j] + newGames[j];
10 return(wins[ ], games[ ]);

SLAVE PART:
singleRunParallelUCTMoveSlaveLoop()
1 while(true)
2 if(SingleQueryUCTSlaveLoop() == END GAME) break;
3 return;

SingleQueryUCTSlaveLoop()
1 if(receive(goban[ ], color, ko, time) == END GAME) returnEND GAME;
2 for i← 0 to goban.size()
3 wins[i]← 0;
4 games[i]← 0;
5 (wins[ ], games[ ])← playUCTSequences(goban[ ], color, ko, time);
6 send(wins[ ], games[ ]);
7 returnCONTINUE;

ALG. 1: Single-Run Parallel Algorithm.

3.2 Single-Run Parallelization

The single-run parallelization consists in running multiple UCT algorithms in parallel
without communication between the processes. Each processhas a different seed for
the random-number generator, so they do not develop the sameUCT tree. When the
time is over, or when the maximum number of random games is reached, each slave
sends back to the master the number of games and the number of wins for all the moves



at the root node of the UCT tree. The master process then simply adds the number of
games and the number of wins of the moves for all the slave processes.

The master part and the slave part of the single-run parallelization are given in
algorithm 1.

3.3 Multiple-Runs Parallelization

On the contrary of the single-run parallelization algorithm, the multiple-runs paral-
lelization algorithm shares information between the processes. It consists in updating
the number of games and the number of wins for all the moves at the root of the shared
UCT tree every fixed amount of time. The master process startswith sending the goban,
the color to move, the ko intersection and the initial thinking time to the slaves, then
all the slaves start computing their UCT trees, and after theinitial thinking time is
elapsed, they all send the number of wins and the number of games for the root moves
to the master process. Then the master process adds all the results for all the moves at
the root, and sends back the information to the slaves. The slaves then initiate a new
UCT computation with the same shared root moves information. The communication
from the slaves to the master, the update of the master root moves information, the
update of the slaves root moves information and the slaves computations are then run
until the overall thinking time is elapsed. It is important to notice that at line 5 of the
multipleQuerySlaveLoop function, thenewWins andnewGames arrays con-
tain the difference between the number of wins (resp. games)after the UCT search and
the number of wins (resp. games) before the UCT search.

Another important detail of the algorithm is that in the slaves, the number of wins
and the number of games of the root moves are divided by the number of slaves. During
the experiments of the multiple-runs algorithm, we tried not to divide, and the results
were worse than the non-parallel algorithm. Dividing by thenumber of slaves makes
UCT develop its tree in the slaves in a similar way as it would without sharing infor-
mation, however the average scores of the root moves are moreaccurate than without
sharing information. The improvement comes from the improved average scores.

The master part and the slave part of the multiple-runs parallelization are given in
algorithm 2.

3.4 At-the-leaves Parallelization

At-the-leaves parallelization consists in replacing the random game at a leaf of the UCT
tree with multiple random games run in parallel on the slave processes. This type of par-
allelization costs much more in communication time than thetwo previous approaches
since communications between the master and the slaves occur for each new leaf of the
UCT tree.

In the at-the-leaves parallelization algorithm, the master is the only one to develop
the UCT tree. For each new leaf of the UCT tree, it sends to the slaves the sequence
that leads from the root of the tree to the leaf. Then each slave plays a pre-defined
number of random games that start with the sequence, and returns the average score of
these random games. The master collects all the averages of the slaves and computes
the average of the averages.



MASTER PART:
multipleRunsParallelUCTMove(goban[ ], color, ko, time)
1 best← −1;
2 (wins[ ], games[ ])← initialParallelUCTMove(goban[ ], color, ko,

initialPassT ime);
3 for j ← 0 to goban.size()
4 best← max(best, wins[j]/games[j]);
5 time← time− initialPassT ime;
6 while(runPassT ime < time)
7 (wins[ ], games[ ])← runParallelUCTMove(wins[ ], games[ ],

runPassT ime);
8 time← time− runPassT ime;
9 for j ← 0 to goban.size()
10 best← max(best, wins[j]/games[j]);
11 returnbest;

runParallelUCTMove(wins[ ], games[ ], time)
1 broadcast(wins[ ], games[ ], time);
2 for i← 0 to nbSlaves
3 receiveUCTSequences(newWins, newGames);
4 for j ← 0 to goban.size()
5 wins[j]← wins[j] + newWins[j];
6 games[j]← games[j] + newGames[j];
7 return(wins[ ], games[ ]);

SLAVE PART:
multipleRunsParallelUCTMoveSlaveLoop()
1 while(true)
2 if(SingleQueryUCTSlaveLoop() == END GAME) break;
3 state← CONTINUE;
4 while(state == CONTINUE)
5 state← multipleQueryUCTSlaveLoop();
6 return;

multipleQueryUCTSlaveLoop()
1 if(receive(wins[ ], games[ ], time) == END LOOP ) returnEND LOOP ;
2 for i← 0 to goban.size()
3 wins[i]← wins[i]/nbSlaves;
4 games[i]← games[i]/nbSlaves;
5 (newWins[ ], newGames[ ])← continueUCTSequences(time);
6 send(newWins[ ], newGames[ ]);
7 returnCONTINUE;

ALG. 2: Multiple-Runs Parallel Algorithm.



MASTER PART:
AtLeavesParallelUCTMove(goban[ ], color, ko, time)
1 best← −1;
2 broadcast(goban[ ], color, ko);
3 while(moreTime(time)))
4 sequence[ ]← getUCTSequence()
5 newWins← runParallelImproveAtLeaves(sequence[ ]);
8 for nodeId in sequence[ ]
6 wins[nodeId]← wins[nodeId] + newWins;
7 games[nodeId]← games[nodeId] + 1;
8 for j ← 0 to goban.size()
9 best← max(best, wins[j]/games[j]);
10 returnbest;

runParallelImproveAtLeaves(sequence[ ])
1 broadcast(sequence[ ]);
2 improvedWins← 0;
3 for i← 0 to nbSlaves
4 receive(nodeWins);
5 improvedWins← improvedWins + nodeWins;
6 returnimprovedWins/nbSlaves;

SLAVE PART:
atLeavesParallelSlaveLoop()
1 while(true)
2 if(receive(goban[ ], color, ko) == END GAME) break;
3 state← CONTINUE;
4 while(state == CONTINUE)
5 state← atLeavesQuerySlaveLoop();
6 return;

atLeavesQuerySlaveLoop()
1 if(receive(sequence[ ]) == END LOOP ) returnEND LOOP ;
2 for i← 0 to sequence.size()
3 playMove(sequence[i]);
4 nodeWins← 0
5 for i← 0 to nbGamesAtLeaf
6 newNodeWins← playRandomGame();
7 nodeWins← nodeWins + newNodeWins;
8 send(nodeWins/nbGameAtLeaf);
9 returnCONTINUE;

ALG. 3: At-The-Leaves Parallel Algorithm.



The master part and the slave part of the at-the-leaves parallelization are given in
algorithm 3.

4 Experimental Results

Tests are run on a simple network of computers running LINUX 2.6.18. The network
includes 100 Mb switches. The BogoMips rating of each node isapproximately 6000.

In our experiments, UCT usesµi +
√

log(t)
10×s

to explore moves.
The random games are played using the same patterns as in MOGO [7] near the last

move. If no pattern is matched near the last move, the selection of moves is the same as
in CRAZY STONE [3].

Table 1 gives the results (% of wins) of 200 9×9 games (100 with black and 100
with white) for the single-run parallel program against GNU GO 3.6 default level. The
parallel algorithm has been tested with either 3,000 simulations (random games) for
each UCT search, or 10,000 simulations. The single-run parallelization improves the
result bringing them from 27.5% for 1 CPU and 3,000 games to 53.0% for 16 CPUs
and 3,000 games per CPU. Concerning the experiments with 10,000 games per CPU,
the results increase from 45.0% for 1 CPU to 66.5% for 16 CPUs.For the single-run
parallelization, the communication time is very small compared to the computation
time. The single-run parallelization successfully improves the UCT algorithm.

Table 1. Results of the single-run program against GNU GO 3.6.

1 CPU2 CPUs4 CPUs8 CPUs16 CPUs
3,000 simulations27.5% 40.0% 48.0% 55.5% 53.0%

10,000 simulations45.0% 62.0% 61.5% 65.0% 66.5%

Table 2 gives the results of 200 9×9 games for the multiple-runs parallel program
against GNU GO 3.6 default level. In these experiments, the multiple-runsalgorithms
updates the shared information every 250 simulations. The results are similar to the
results of the single-run parallelization. They are slightly better with 10,000 simulations.

Table 2. Results of the multiple-runs program against GNU GO 3.6.

1 CPU2 CPUs4 CPUs8 CPUs16 CPUs
3,000 simulations20.0% 32.0% 48.0% 53.5% 56.0%

10,000 simulations49.0% 58.5% 72.0% 72.0% 68.0%

Table 3 gives the results of 200 9×9 games for the at-the-leaves parallel program
against GNU GO 3.6 default level. We can see an improvement when the number of



CPUs increases from 1 to 8. However increasing the number to more than 8 does not
improve much as can be seen from the second line of the table, where the slaves all play
8 games per leaf. Playing 8 games per leaf is equivalent to having 8 times more CPUs
with one game per leaf.

Concerning the 10,000 simulations experiments, the percentage of wins also in-
creases until 8 CPUs.

Table 3. Results of the at-the-leaves parallel program against GNU GO 3.6.

nbGamesAtLeaf1 CPU2 CPUs4 CPUs8 CPUs16 CPUs
3,000 simulations 1 21.0% 35.0% 42.0% 46.0% 45.0%
3,000 simulations 8 54.5% 48.5% 49.5% 47.5% 51.0%

10,000 simulations 1 47.0% 53.5% 53.5% 69.5% 62.0%

Table 4 shows the communication overhead for the at-the-leaves parallel program.
For one CPU, the slave process runs on the same machine as the master process, so the
communication time is small and the time used to find the first move on an empty 9×9
goban can be used as a reference for a non-parallel program. We see in the next columns
that the communication time progressively increases, doubling the thinking time for 8
CPUs.

Table 4. Times for the first move for the at-the-leaves parallel program.

nbGamesAtLeaf1 CPU2 CPUs4 CPUs8 CPUs
10,000 simulations 1 6.21s. 10.85s.11.56s.13.07s.

The communication time for the at-the-leaves parallel program is significantly higher
than the two previous algorithms. Given that it gives similar improvements in level, it
is preferable to use the single-run or multiple-runs algorithms. The at-the-leaves paral-
lelization could be of interest to multiple CPUs machines with a shared memory where
the communication costs are less of a problem.

5 Conclusion

We have presented three parallel algorithms that improve UCT search. They all give
similar improvements. The single-run parallelization is the most simple one and also
the one that uses the fewest communications between the processes.

The at-the-leaves parallelization currently costs too much communications, how-
ever it could still be interesting on a multiple CPUs machine.

We believe that the multiple-runs algorithm can be further improved to share more
information and then may become the best algorithm.
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