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Background: DMAP1 was identified as an interactant
of the NF-�B transcription factor Relish in a proteomic
analysis.
Results: DMAP1 knockdown reduces activation of the IMD
pathway response to immune challenge in Drosophila.
Conclusion: DMAP1 is new modulator of the IMD
pathway acting in complex with chromatin remodeling
factors.
Significance: We report a novel function for the evolution-
arily conserved DMAP1 molecule in innate immunity.

The host defense of the model organism Drosophila is under
the control of two major signaling cascades controlling tran-
scription factors of the NF-�B family, the Toll and the immune
deficiency (IMD) pathways. The latter shares extensive similar-
ities with the mammalian TNF-R pathway and was initially dis-
covered for its role in anti-Gram-negative bacterial reactions. A
previous interactome study from this laboratory reported that
an unexpectedly large number of proteins are binding to the
canonical components of the IMD pathway. Here, we focus on
DNA methyltransferase-associated protein 1 (DMAP1), which
this study identified as an interactant of Relish, a Drosophila
transcription factor reminiscent of the mammalian p105 NF-�B
protein. We show that silencing of DMAP1 expression both in
S2 cells and in flies results in a significant reduction of Esche-
richia coli-induced expression of antimicrobial peptides. Epi-
static analysis indicates that DMAP1 acts in parallel or down-
stream of Relish. Co-immunoprecipitation experiments further

reveal that, in addition to Relish, DMAP1 also interacts with
Akirin and the Brahma-associated protein 55 kDa (BAP55).
Taken together, these results reveal that DMAP1 is a novel
nuclear modulator of the IMD pathway, possibly acting at the
level of chromatin remodeling.

Innate immunity comprises a heritable, multifaceted, and
highly conserved defense system. Significant progress has been
made during the past two decades in the understanding of the
signaling pathways involved in innate immunity and of the
receptors sensing infectious non-self (1– 4). The well estab-
lished genetic tools and the remarkable conservation of key
aspects of the genetic regulation have established the fruit fly
Drosophila melanogaster as a favorable model organism to
decipher the principles of innate immune responses. Extensive
studies have pointed to the role of two major innate immune
pathways: (i) the Toll pathway (initially discovered for its role in
early embryogenesis (5, 6)), which is predominantly activated
by Gram-positive bacterial and fungal infections, and (ii) the
immune deficiency (IMD)3 pathway, which is preferentially
activated by Gram-negative bacterial infection (1, 7, 8). In Dro-
sophila, three NF-�B family members, namely Dorsal, DIF
(Dorsal-related immunity factor), and Relish, play central roles
in controlling the expression of hundreds of immune-respon-
sive genes (9). Toll pathway activation occurs when microbial
ligands, namely Gram-positive peptidoglycan and fungal �-glu-
can, interact with dedicated proteins in circulation, thus initi-
ating proteolytic cascades, which culminate in the cleavage of
the polypeptide Spaetzle (7, 8). Cleaved Spaetzle in turn inter-
acts with the extracellular domain of the Toll receptor, trigger-
ing an intracellular signaling cascade, which sets free the cyto-
solic NF-�B family members Dorsal and/or DIF from the
inhibitory polypeptide Cactus, resulting in their nuclear trans-
location. In the case of the IMD pathway, Gram-negative bac-
terial peptidoglycan is sensed by a transmembrane receptor,
which activates an intracellular signaling cascade leading to the
proteolytic cleavage of Relish, and the concomitant nuclear
translocation of its N-terminal Rel domain. Predominant
among the immune response genes are the antimicrobial pep-
tides. The relevance of these two pathways in the host defense
of the flies is illustrated by the compromised survival of adults
mutant for components of these pathways (10, 11). Recent evi-
dence suggests that the IMD pathway, which is evocative of the
human tumor necrosis factor receptor (TNF-R) signaling path-
way, is more complex than initially anticipated. For one, it
involves a range of post-translational modifications, positive
and negative regulators, and tissue-specific modulators (e.g.
gut) (12). Further, it is not only activated by Gram-negative
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bacteria, but can react in the absence of infection to endoge-
nous ligands, namely DNA (13, 14).

To further characterize IMD signaling, this laboratory previ-
ously undertook a proteomic approach to identify new interac-
tants of its 11 canonical components. This study led to the iden-
tification of 369 interacting proteins (15). Of these, 96 were
identified in complex with Relish, suggesting an essential regu-
lation at the level of this NF-�B family member. The functions
of these interactants have not yet been investigated. Here, we
report that one of these interactants, DNA methyl transferase-
associated protein 1 (DMAP1), is a novel modulator of Relish
activation in Drosophila cell culture and in flies.

EXPERIMENTAL PROCEDURES

Plasmid Constructs—A PCR fragment of DMAP1 ORF
tagged with either V5 or Myc sequence was amplified from an
EST clone (LD35228, nt 99 –1400) and subcloned into EcoRI-
XbaI sites of the metallothionein promoter-driven pMT-V5-
HisA vector (Invitrogen). Other DMAP1 deletion constructs
were generated in the same way based on the amino acid
sequence position shown in Fig. 2A. pPAC-Relish �S29-S45
(16), pMT-Toll�LRR (17), pAC-PGRP-LC (18), and pAC-Aki-
rin-V5 (18) constructs were described previously. The pMK33-
BAP55-HA-FLAG construct was provided by J. M. Reichhart.4

Cell Culture and Transfection—Drosophila S2 cells were
maintained at 23 °C in Schneider’s medium (Biowest) supple-
mented with 10% FCS. A total of 6 � 105 cells were transfected
in 24-well plates by calcium phosphate precipitation with 50 ng
of the AttacinA-luciferase or Drosomycin-luciferase reporter
vector (17), 10 ng of an Actin5C-Renilla luciferase transfection
control vector, the expression vectors, and each dsRNA (2.0
�g/well). After transfection, the cells were stimulated with
heat-killed Escherichia coli for 24 h, and both firefly and Renilla
luciferase activities on the cell lysate were measured using
Dual-Luciferase assay kit (Promega).

Cell Staining—S2 cells were fixed 4 days after transfection
with methanol/water/acetic acid (95:4:1, by volume) for 20 min.
They were then permeabilized with cold methanol for 15 min,
incubated overnight with anti-V5 monoclonal antibody (500-
fold dilution in PBST/PBS containing 0.1% Triton X-100),
washed four times with PBST, incubated with Alexa Fluor 488
anti-mouse IgG (500-fold dilution in PBST, Molecular Probes)
for 2 h, and washed four times with PBST. VECTASHIELD
mounting medium with DAPI was used to visualize nuclei
(Vector Laboratory). Specimens were observed under Zeiss
Axioskop 2 microscope.

Synthesis of dsRNAs—Templates for dsRNA preparation
were PCR-derived fragments between two T7 promoter
sequences. Fragments for each gene were as follows: GFP (nt
26 –302, GenBankTM L29345), DMAP1 dsA and dsB region (nt
834 –1138 and 1150 –1419, National Center for Biotechnology
Information (NCBI) NM_137659), IMD (nt 550 –919, NCBI
NM_133166), dMyD88 (nt 929 –1240, NCBI NM_136635), and
Akirin (nt 656 –1051, NCBI NM_139856). dsRNAs were syn-
thesized with the MEGAscript T7 transcription kit (Ambion).

Annealed dsRNAs were ethanol-precipitated and dissolved in
distilled water for the transfection.

Co-immunoprecipitation Assay—A total of 2 � 106 S2 cells
were co-transfected by calcium phosphate precipitation with 5
�g of each expression vector. After the transfection in the pres-
ence of 500 �M CuSO4 for 48 h, a total of 4 – 6 � 106 cells were
lysed in cell extraction buffer (Invitrogen) with protease inhib-
itors (Roche Diagnostics), and cleared cell lysates were incu-
bated with anti-V5-agarose beads (Sigma) overnight under
constant rotation at 4 °C. The beads were washed and resus-
pended in 2� sample buffer. The aliquots were used for West-
ern blot analysis using commercially available antibodies
against FLAG (Abcam, Ab1162), V5 (Sigma v8137), Myc
(Abcam, Ab9106), and Actin5C (clone 4, Millipore). 1% of the
volume of cell lysate was used as input.

QRT-PCR Analysis—To measure expression of the endoge-
nous AttacinA, CecropinA1, and Drosocin genes, the dsRNA
soaking method using 96-well plates was used. Briefly, 20 �g of
either dsGFP, dsIMD, or dsDMAP1 were prespotted per well,
mixed with 45,000 cells in 30 �l of serum-free medium for 1 h
before the addition of serum-containing medium. After 7 days
of dsRNA soaking, the cells were stimulated with heat-killed
E. coli for 3 h. Total RNA extraction, cDNA synthesis, and
quantitative PCR using primers against AttacinA, Cecropin A1,
Drosocin, and DMAP1 (forward 5�-TTA AGT TAA CGC GGC
CCG TTT C-3� and reverse 5�-ATC CAT TTA TTT CCC CAT
GCG G-3�) were carried out using Cells-to-CT kit according to
the manufacturer’s instructions (Ambion). Rp49 copy number
was used for normalization.

Fly Strains and Genetics—Flies were grown on standard
medium at 25 °C. To generate conditional DMAP1 knockdown
adult flies, we used a GAL4-GAL80ts system (19). UAS-DMAP1-
RNAi (20) and UAS-GFP-RNAi (used as a negative control)
were crossed with Actin-GAL4/CyO; Tub-GAL80ts flies at
18 °C. Emerged adult flies were then transferred to 29 °C to
activate the UAS-GAL4 system for 7–9 days. Microbial chal-
lenges were performed by pricking adult flies with a sharpened
tungsten needle dipped into either concentrated E. coli (1106)
or concentrated Micrococcus luteus (CIP A270) solution. Total
RNA extraction with TRIzol (Invitrogen), iScript cDNA syn-
thesis (Bio-Rad), and quantitative PCR using Diptericin (Dpt)-
and Drosomycin (Drs)-specific primers were described previ-
ously (21).

RESULTS

DMAP1 Interacts with Relish—In a preliminary RNAi screen
against a subset of Relish interactants, DMAP1 reproducibly
scored as a positive regulator of the IMD pathway (15) (see
below). We first validated in an independent experiment the
interaction of DMAP1 and Relish. Co-immunoprecipitation
assays in S2 cells transfected with vectors expressing a tagged
version of DMAP1 and Relish�S29-S45, a constitutively active
version of the protein with a short internal truncation (16),
confirmed that the two proteins indeed interact. Both the full-
length (FL) version of Relish and the N-terminal domain (Rel-
68) were pulled down with DMAP1 (Fig. 1A).

DMAP1 Is a Positive Regulator of the IMD Pathway—We
next examined the impact of DMAP1 function on activation4 J. M. Reichhart, unpublished data.
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of the IMD pathway in tissue-cultured cells. For this, S2 cells
were treated with dsRNA against DMAP1, and the activation of
the IMD pathway was monitored using the AttacinA-luciferase
reporter, a conventional readout of the IMD pathway activation
(17). We first confirmed that DMAP1 expression was indeed
silenced in cells treated with dsDMAP1 as compared with con-
trol dsGFP (supplemental Fig. S1A). DMAP1 knockdown
resulted in �40% reduction of the AttacinA-luciferase activity
upon stimulation with heat-killed E. coli (Fig. 1B). To exclude

the possibility that this phenotype results from the artificial
luciferase system, expression of endogenous AttacinA,
CecropinA1, and Drosocin genes, three classical standard mark-
ers for the activation of the IMD pathway in S2 cells, was also
measured. The inducibility of AttacinA, CecropinA1, and
Drosocin expression was significantly impaired in DMAP1
knockdown experiments (Fig. 1C). This reduced inducibility
did not result from cell viability or cell proliferation defects as
neither the activity of the transfection efficiency control

FIGURE 1. Functional characterization of DMAP1 in the IMD pathway. A, S2 cells were co-transfected with plasmids expressing either N terminus or C
terminus V5-tagged DMAP1 and FLAG-Relish�S29-S45. Cell lysates were co-immunoprecipitated (IP) and immunoblotted (WB) with the indicated antibodies.
Empty vector transfection (�) and single overexpression of either construct were used as controls. 1% of the volume of cell lysate was used as input. B, S2 cells
were transfected with the indicated dsRNA together with the AttacinA-luciferase (Att-A-FL) and the transfection control Actin5C-Renilla luciferase (Act5C-RL).
After stimulation with heat-killed E. coli, the ratio of Att-A-FL/Act5C-RL was measured. C, expression of endogenous AttacinA, Cecropin A1, and Drosocin genes
was monitored by QRT-PCR after knocking down expression of the indicated genes and stimulation with heat-killed E. coli. D and E, PGRP-LC (D) or Relish�S29-
S45 (E) expression vectors were co-transfected with dsRNAs targeting two independent regions of DMAP1 (dsA and dsB) and the Att-A-FL and Act5C-RL
reporters. The value for control dsGFP-treated cells was set at 100%. F, conditional DMAP1 knockdown adult flies were pricked with E. coli, and the expression
of Diptericin and Drosocin at 6 h after infection was monitored by QRT-PCR. GFP-RNAi flies were used as control. � indicates non-infected. For panels B–F, the
data represent the mean and S.D. of at least two independent experiments, and the difference between control GFP and each target RNAi is statistically
significant (Student’s t test: *, p � 0.05, **, p � 0.01, ***, p � 0.001).
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Actin5C-Renilla luciferase reporter nor the 3-(4,5-dimethylthi-
azol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium (MTS) assay, which determines the number of
viable cells based on mitochondrial dehydrogenase activity, was
largely affected in our experimental condition (data not
shown). Silencing of both IMD and DMAP1 did not show syn-
ergistic effect (Fig. 1C), further indicating that DMAP1 and
IMD act in the same pathway.

To further explore the involvement of DMAP1 in other
innate immunity signaling pathways, we monitored the expres-
sion of readout markers of the Toll (Drosomycin) or JAK-STAT
(Turandot M (TotM)) pathways and noted that neither of them
were reduced upon DMAP1 knockdown. Rather, expression of
both Drosomycin and TotM was increased when DMAP1 was
silenced (supplemental Fig. S2, A and C). Taken together, these
results indicate that DMAP1 functionally contributes to the
activation of the IMD pathway by E. coli stimulation.

DMAP1 Acts Either in Parallel or Downstream of Relish—To
further characterize the role of DMAP1 in the IMD pathway
and determine its position within the IMD pathway, we per-
formed epistatic experiments. For this, we overexpressed the
genes PGRP-LC, encoding the IMD pathway receptor, or
Relish�S29-S45 (Fig. 1, D and E) in the presence or absence of
dsDMAP1, and monitored the AttacinA-luciferase activity. As
previously reported, PGRP-LC overexpression results in an
IMD-dependent activation of the AttacinA-luciferase reporter
(18). Similar results were obtained when cells were transfected
with dsRNAs targeting different, non-overlapping regions of
DMAP1, although the effect was not as strong as in the case of
IMD knockdown (Fig. 1D). We next performed a similar exper-
iment in Relish�S29-S45-expressing cells. When DMAP1 was
silenced in cells, the activity of the AttacinA-luciferase reporter
was also significantly reduced, albeit not as strongly as in the
knockdown of the highly conserved Relish regulator Akirin (18)
(Fig. 1E). This result indicates that DMAP1 acts either in par-
allel or downstream of Relish, which is in agreement with the
physical interaction between the two proteins (Fig. 1A).

DMAP1 Modulates Antimicrobial Peptide Expression in
Vivo—We next analyzed whether DMAP1 plays a role in anti-
microbial peptide expression in vivo. Because there are no null
mutants available, we used a UAS-DMAP1-RNAi line from
Vienna Drosophila RNAi Center (VDRC) (20). We first crossed
this DMAP-RNAi line with ubiquitous GAL4 drivers such as
daughterless-GAL4 or Actin5C-GAL4. All the progeny from
these crosses exhibited larval-pupal lethality, suggesting that
DMAP1 is required for development (data not shown). We then
tried the tissue-specific Collagen-GAL4 driver, where GAL4 is
expressed in immune-responsive organs such as fatbody and
hemocytes. In this case, a small number of escaper flies
emerged, but they were fragile and susceptible to stress such as
injury (data not shown). We therefore used a conditional
DMAP1 knockdown strategy at the adult stage using the
thermo-sensitive Actin-GAL4; Tub-GAL80ts flies (19). Briefly,
after the crossing and development at 18 °C, newly emerged
adult flies were shifted to 29 °C to inactivate the Gal80 system
and then to induce the UAS-GAL4 system. A �60% reduction
in DMAP1 RNA expression was observed in 7–9-day-old flies
(supplemental Fig. S1B).

We observed a weak but statistically significant reduction of
the infection-induced expression of Diptericin as well as Droso-
cin, another commonly used in vivo marker gene for activation
of the IMD pathway (Fig. 1F). When flies were stimulated with
the Gram-positive bacteria M. luteus, expression of the Toll
pathway marker gene Drosomycin was not reduced in DMAP1-
silenced flies. Of note, as observed in tissue-cultured cells,
DMAP1 silencing resulted in increased expression of Drosomy-
cin (supplemental Fig. S2B). The significance of this up-regula-
tion is discussed below. Taken together, these results indicate
that in vivo DMAP1 participates in the activation of the IMD
pathway in adults, and further suggest that it also plays an
important role during development.

DMAP1 Interacts with Akirin and BAP55—The above results
raise the question of the mode of action of DMAP1, a poorly
characterized protein containing a highly conserved SANT
(SWI-SDA2-NcoR-TFIIIB) domain, involved in histone tail
binding, and a coiled coil domain, responsible for protein olig-
omerization (Fig. 2A). Because Relish resides both in the cytosol
and nucleus, we first wanted to clarify where DMAP1 localizes
in Drosophila cells. Although we reproducibly could detect
cytosolic staining in �20% of the transfected cells, the tagged
full-length DMAP1-V5 protein localizes mainly to the nucleus
(Fig. 2B). A similar staining pattern was observed when the
truncated version of the protein �C-ter was expressed (Fig. 2B).
By contrast, the �N-ter truncated DMAP1 protein was mainly
cytosolic (Fig. 2B), suggesting that the SANT domain is partially
responsible for the nuclear localization. We also noticed that
both the �N-ter and the �C-ter proteins co-immunoprecipi-
tated with Relish, suggesting that both regions are sufficient for
Relish interaction (Fig. 2C). It was previously shown that the
nuclear protein Akirin acts in the IMD pathway at the level or
downstream of Relish (18). We therefore explored whether
DMAP1 interacts with Akirin. As shown in Fig. 2D, DMAP1
co-immunoprecipitated with Akirin. To further characterize
the role of DMAP1, we looked for putative interactants in pro-
tein databases. Interestingly, both DPiM (22) and String 9.05
(23) databases pointed to the Brahma complex protein BAP55
as an interactant for DMAP1. Co-immunoprecipitation exper-
iments in transfected S2 cells indeed revealed that DMAP1
physically interacts with BAP55 (Fig. 2E).

DISCUSSION

The p105-like NF-�B family member Relish is a key player in
the IMD signaling pathway in Drosophila, regulating tens of
genes in response to infection. Regulation of Relish activity is a
critical aspect of the immune response as abnormally high or
sustained activation of the IMD pathway can be detrimental to
the host (24, 25). We previously described a proteomic analysis
to identify novel partners of Relish (15). Here, we report that
one of these novel interactants, DMAP1, modulates activation
of the IMD pathway in tissue culture cells and in vivo. We fur-
ther show that in addition to Relish, DMAP1 also interacts with
Akirin and BAP55. Our results unravel a novel function for
DMAP1 in innate immunity, and also establish a connection
between this molecule and the Brahma chromatin remodeling
complex.
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DMAP1 was initially identified in humans through a yeast
two-hybrid screen as a protein interacting with the DNA
methyl transferase 1, DNMT1 (hence the name DMAP1, which
stands for DNA methyl transferase-associated protein 1) and
was shown to function as a transcriptional corepressor through
association with histone deacetylase 2 (HDAC2) (26). Subse-
quently, DMAP1 was biochemically identified as a component
of the Tip60-p400 histone acetyltransferase complex (27, 28).
Consistent with the loss-of-function phenotype for other mem-
bers of the Tip60-p400 complex, such as Tip60 (29) and Trrap
(30), DMAP1 KO mice exhibit early embryonic lethality even
before the eight-cell embryo or blastocyst stage (31). It was
recently shown that DMAP1 is required for Tip60 function
(32). DMAP1 contains a highly conserved SANT domain, a his-

tone tail binding module (33), and may act as scaffold for the
Tip60-p400 histone acetyltransferase complex (32). The Dro-
sophila genome does not encode an ortholog of DNMT1, and
no consistent pattern of DNA methylation could be detected in
flies (34). Hence, the role of DMAP1 may be connected to
Tip60-p400 nucleosome remodeling rather than to DNA meth-
ylation. Interestingly, our interactome analysis also identified
other SANT domain-containing chromatin remodeling factors
interacting with components of the IMD pathway such as
Tip48/Reptin, Tip49/Pontin, and p400/Domino (15). It will
therefore be interesting to test their involvement in antimicro-
bial host defenses.

Our results raise the question of the mechanism of DMAP1
function in the regulation of antimicrobial peptide gene expres-

FIGURE 2. The nuclear protein DMAP1 interacts with the chromatin remodeling factors Akirin and BAP55. A, schematic presentation of DMAP1 full-
length, �N-ter, and �C-ter constructs. aa, amino acids. B, S2 cells were transfected with each plasmid expressing V5-tagged DMAP1, stained with anti-V5
antibody, and revealed by Alexa Fluor 488 secondary antibody (green). DAPI (blue) was used to stain nucleus. Bar indicates 10 �m. Arrows indicate the cell
stained both in the nucleus and in the cytosol. C–E, S2 cells were co-transfected with vectors expressing tagged DMAP1 (Myc or V5) and FLAG-Relish�S29-S45
(C), Akirin-V5 (D), or BAP55-HA-FLAG (E). Cell extracts were immunoprecipitated (IP) and immunoblotted (WB) with the indicated antibodies. Empty vector
transfection (�) and single overexpression of either construct were used as controls. 1% of the volume of cell lysate was used as input.
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sion. Our laboratory previously reported that the evolutionarily
conserved nuclear protein Akirin modulates the activation of
Relish in Drosophila by an as yet unknown mechanism (18). We
show here that DMAP1 interacts with both Relish and Akirin,
suggesting that Akirin and DMAP1 act together to regulate
Relish activity. DMAP1 also interacts with BAP55, hinting that
the Brahma complex participates in Relish regulation. The con-
nection between DMAP1 and BAP55 may explain the increased
activation of Toll and JAK-STAT pathways observed upon
silencing of DMAP1 as the Brahma complex was previously
identified as a negative regulator of these pathways in genome-
wide RNAi screens (35, 36). Interestingly, the activity of
another transcription factor, Twist, was recently shown to be
regulated by both Akirin and the Brahma complex (37).
Although acting in different contexts (e.g. immunity for Relish
and development for Twist), both transcription factors regulate
a large panel of genes in various tissues and require a tight
control for gene expression. Several Twist-regulated genes in
Drosophila embryo are not affected by silencing of Akirin (37)
and, in mice, deficiency of Akirin2 affects some but not all
NF-�B-regulated genes (18). This indicates that Akirin is only
required for expression of a subset of Twist or NF-�B-regulated
genes, suggesting that it may serve as a context-dependent
modulator or selector of expression of downstream genes.
We propose that DMAP1 is part of this modulator/selector
complex.

In conclusion, we have identified a novel function for the
SANT domain protein DMAP1 in innate immune signaling.
The picture emerging from our data is that a chromatin remod-
eling process involving Akirin, DMAP1, and the Tip60 and
Brahma complexes participates in the regulation of Relish
activity in response to infection.
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