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Asymptotic behavior for the Vlasov-Poisson1

equations with strong uniform magnetic field and2

general initial conditions3

Mihäı BOSTAN ∗
4

(June 2, 2019)5

Abstract6

We investigate the Vlasov-Poisson equations perturbed by a strong external7

uniform magnetic field. We study the asymptotic behavior of the solutions, based8

on averaging techniques. We analyze the case of general initial conditions. By9

filtering out the oscillations, we are led to a profile. We prove strong convergence10

results and establish second order estimates.11

Keywords: Vlasov-Poisson system, two-scale analysis, averaging, homogenization.12

AMS classification: 35Q75, 78A35, 82D10.13

1 Introduction14

We consider a population of charged particles of mass m, charge q, whose density is15

denoted by f = f(t, x, v), depending on time t, position x and velocity v. In order to16

study the magnetic confinement, we focus on the asymptotic behavior of the Vlasov-17

Poisson equations, with strong external magnetic field [16, 17, 18, 24, 25, 11, 13, 22, 3,18

4, 5, 6, 14, 19, 15, 12].19

Neglecting the curvature of the magnetic lines, that is Bε = (0, 0, Bε) = (0, 0, B/ε),20

we are led to21

∂tf
ε + v · ∇xf

ε +
q

m

{
E[f ε(t)](x) +Bε ⊥v

}
· ∇vf

ε = 0, (t, x, v) ∈ R+ ×R2 ×R2. (1)

The notation ⊥(·) stands for the rotation of angle −π/2 of the velocity v = (v1, v2),
i.e., ⊥v = R(−π/2)v = (v2,−v1), v = (v1, v2) ∈ R2 and ε > 0 is a small parameter
related to the ratio between the cyclotronic period and the advection time scale. The
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electric field E[f ε(t)] = −∇xΦ[f ε(t)] derives from a potential, satisfying the Poisson
equation

−ε0∆xΦ[f ε(t)] = q

∫
R2

f ε(t, x, v) dv, (t, x) ∈ R+ × R2

where ε0 represents the electric permittivity. Appealing to the fundamental solution1

z → − 1
2π

ln |z|, z ∈ R2 \ {0}, we have2

Φ[f ε(t)](x) = − q

2πε0

∫
R2

∫
R2

ln |x− x′|f ε(t, x′, v′) dv′dx′ (2)

and3

E[f ε](x) =
q

2πε0

∫
R2

∫
R2

f ε(x′, v′)
x− x′

|x− x′|2
dv′dx′. (3)

For any particle density f = f(x, v), we denote by E[f ] the Poisson electric field4

associated to the charge density ρ[f ] = q
∫
R2 f(·, v) dv. We also use the notation5

j[f ] = q
∫
R2 f(·, v)v dv for the current density of f . We complete the above system by6

the initial condition7

f ε(0, x, v) = fin(x, v), (x, v) ∈ R2 × R2. (4)

Very recently, the Vlasov-Poisson equations with strong external non homogeneous8

magnetic field have been studied, when considering well prepared initial densities [9,9

14]. As usual, we are looking for quantities with small variations over a cyclotronic10

period (the guiding center), and we average with respect to the fast cyclotronic motion11

in order to obtain the effective Vlasov equation. Following this strategy, most of12

the previous studies provided formal or rigorous (based on compactness arguments)13

gyrokinetic approximations for the transport of charged particles under the action of14

strong external magnetic fields. The subject matter in [9] was to derive second order15

regular reformulations of the Vlasov-Poisson equations with strong magnetic field and16

to perform the error analysis. One of the key point was to split the advection field17

of the Vlasov equation into a fast and slow dynamics, such that the guiding center is18

left (exactly) invariant by the fast dynamics. It was shown that in this case the fast19

dynamics becomes periodic (even for a non homogeneous magnetic field), and therefore20

the homogenization procedure simplifies a lot : instead of taking ergodic means, it is21

enough to average over one period.22

When the magnetic field is uniform, it is possible to go further in our analysis, by23

considering smooth initial particle densities, not necessarily well prepared. We mention24

that most of the studies concentrate only on models with well prepared initial particle25

densities. We intend to extend the analysis in [9] for general initial conditions. The26

asymptotic behavior is more complicated because the particle densities (f ε)ε>0 present27

fast oscillations in time. We appeal to a two scale approach by working in a extended28

phase space supplemented by a fast time variable s = t/ε. Up to a second order term,29

the oscillations of the family (f ε)ε>0 can be described in terms of a profile solving a30

regular reformulation of the Vlasov-Poisson equations, see also [25].31

Theorem 1.132

Let fin ∈ C2
c (R2 × R2) be a non negative, smooth, compactly supported particle den-33

sity. We denote by (f ε)ε>0 the solutions of the Vlasov-Poisson equations (1), (2) with34
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uniform external magnetic field B
ε
6= 0, corresponding to the initial condition fin. Then1

for any T ∈ R+, there is a constant CT > 0 such that for any ε > 02

sup
t∈[0,T ]


∫
R2

∫
R2

[
f ε(t, x, v)− F̃

(
t, x+ ε

⊥v

ωc
,R(ωc

t

ε
)

(
v − ε

⊥E[F̃ (t)]

B

))]2
dvdx


1/2

≤ CT ε
2

where F̃ is the solution of3

∂tF̃ +ε
⊥E[F̃ (t)]

B
·∇XF̃ +ε

⊥(j[F̃ (t)]− ρ[F̃ (t)]Ṽ )

2ε0B
·∇Ṽ F̃ = 0, (t,X, Ṽ ) ∈ R+×R2×R2

corresponding to the initial condition4

F̃ (0, X, Ṽ ) = fin

(
X − ε

⊥Ṽ

ωc
, Ṽ + ε

⊥E[fin](X)

B

)
, (X, Ṽ ) ∈ R2 × R2.

Our paper is organized as follows. In Section 2 we derive formally the effective Vlasov-5

Poisson equations. We introduce the average operators along the fast dynamics and6

discuss their main properties. The effective model is studied in Section 3, and we sum-7

marize its properties. The well posedness of this model is a direct consequence of the8

well posedness of the vorticity formulation for the 2D incompressible Euler equations.9

Section 4 is devoted to the error analysis. We establish second order estimates, by10

constructing a suitable corrector on the extended phase space, supplemented by the11

fast time variable. Some generalizations are indicated in the last section.12

2 Asymptotic analysis by formal arguments13

The well posedness of the Vlasov-Poisson problem is well known, see [1] for weak14

solutions, and [26, 21, 23, 2] for strong solutions. Essentially the same arguments15

provide the global existence and uniqueness for the strong solution of the Vlasov-16

Poisson problem with external magnetic field cf. Theorem 2.1 [9].17

Theorem 2.1
Consider a non negative, smooth, compactly supported initial particle density fin ∈
C1
c (R2 × R2) and a smooth magnetic field B ∈ C1

b (R2). There is a unique particle
density f ∈ C1(R+ × R2 × R2), whose restriction on [0, T ] × R2 × R2 is compactly
supported for any T ∈ R+, whose Poisson electric field is smooth E[f ] ∈ C1(R+×R2),
satisfying

∂tf + v · ∇xf +
q

m

(
E[f(t)] +B ⊥v

)
· ∇vf = 0, (t, x, v) ∈ R+ × R2 × R2

E[f(t)](x) =
q

2πε0

∫
R2

∫
R2

f(t, x′, v′)
x− x′

|x− x′|2
dv′dx′, (t, x) ∈ R+ × R2

f(0, x, v) = fin(x, v), (x, v) ∈ R2 × R2.

Moreover, if for some integer k ≥ 2 we have fin ∈ Ck
c (R2 × R2), B ∈ Ck

b (R2), then18

f ∈ Ck(R× R2 × R2) and E[f ] ∈ Ck(R+ × R2).19
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We assume that the initial particle density is smooth

fin ≥ 0, fin ∈ C2
c (R2 × R2)

and that the magnetic field is uniform Bε = B/ε 6= 0. We know by Theorem 2.1 that for
every ε > 0, there is a unique strong solution f ε ∈ C2(R+×R2×R2) (whose restriction
on [0, T ]×R2×R2 is compactly supported for any T ∈ R+), Eε := E[f ε] ∈ C2(R+×R2)
for the Vlasov-Poisson problem with external magnetic field Bε = B/ε. By standard
arguments, we also have uniform estimates with respect to ε > 0 for the L∞ norm of the
electric field Eε|[0,T ]×R2 and the size of the support of the particle density f ε|[0,T ]×R2×R2 .
Let us denote by (Xε, V ε)(t; t0, x, v) the characteristics associated to (1)

dXε

dt
=V ε(t; t0, x, v),

dV ε

dt
=
q

m

[
Eε(t,Xε(t; t0, x, v)) +

B

ε
⊥V ε(t; t0, x, v)

]
1

Xε(t0; t0, x, v) = x, V ε(t0; t0, x, v) = v.

The strong external magnetic field induces a large cyclotronic frequency with respect2

to the reciprocal advection time scale, and therefore a fast dynamics. Indeed, by3

introducing the characteristic scales (t, x, v) for time, length, velocity, we have t = x/v4

and ωεct ∼ 1/ε. We use the notations ωεc = qBε/m = ωc/ε, ωc = qB/m ∼ 1/t.5

It is well known that the guiding center, Xε(t) + ε ⊥V ε(t)/ωc has small variations6

over one cyclotronic period [14, 22, 25]. Another quantity having small variations is7

R (ωct/ε) [V ε(t)− ε
⊥Eε(t,Xε(t))

B
], see [20].8

Lemma 2.19

The following quantities10

Xε(t) + ε ⊥V ε(t)/ωc, R (ωct/ε)

[
V ε(t)− ε

⊥Eε(t,Xε(t))

B

]
have small variations in time.11

Proof.
By direct computations we have

d

dt

[
Xε(t) + ε

⊥V ε(t)

ωc

]
= ε

⊥Eε(t,Xε(t))

B
.

Notice also that

d

dt

[
V ε(t)− ε

⊥Eε(t,Xε(t))

B

]
=
ωc
ε
⊥
[
V ε(t)− ε

⊥Eε(t,Xε(t))

B

]
− ε d

dt

[⊥Eε(t,Xε(t))

B

]
and therefore

d

dt

{
R (ωct/ε)

[
V ε(t)− ε

⊥Eε(t,Xε(t))

B

]}
= −εR (ωct/ε)

d

dt

[⊥Eε(t,Xε(t))

B

]
.

12
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Motivated by the above calculation, we introduce the relative velocity with respect to1

the electric cross field drift2

ṽ = v − ε
⊥Eε(t, x)

B
(5)

and the new particle density3

f̃ ε(t, x, ṽ) = f ε
(
t, x, ṽ + ε

⊥E[f ε(t)](x)

B

)
, (x, ṽ) ∈ R2 × R2. (6)

It is easily seen that4

ρ[f̃ ε(t)] = q

∫
R2

f̃ ε(t, ·, ṽ) dṽ = q

∫
R2

f ε(t, ·, v) dv = ρ[f ε(t)], t ∈ R+

and5

j[f ε(t)] = q
∫
R2 f

ε(t, ·, v)v dv = q
∫
R2 f̃

ε(t, ·, ṽ)
(
ṽ + ε

⊥Eε(t)
B

)
dṽ

= j[f̃ ε(t)] + ε
⊥Eε(t)
B

ρ[f̃ ε(t)], t ∈ R+.

Therefore the Poisson electric fields corresponding to the particle densities f ε, f̃ ε coin-6

cide7

E[f ε(t)] = E[f̃ ε(t)], t ∈ R+

and we can use the same notation Eε(t) for denoting them. We introduce the notations

B0 := |B| > 0, ω0 := |ωc| > 0.

Observe that the new particle densities (f̃ ε)ε>0 are smooth, f̃ ε ∈ C2(R+ × R2 × R2)
and that the restrictions to [0, T ]× R2 × R2 are compactly supported, uniformly with
respect to ε ∈]0, 1], for any T ∈ R+. We obtain the following problem in the new
coordinates (x, ṽ)

∂tf̃
ε +

(
ṽ + ε

⊥Eε

B

)
· ∇xf̃

ε − ε
[
∂t

(⊥Eε

B

)
+ ∂x

(⊥Eε

B

)(
ṽ + ε

⊥Eε

B

)]
· ∇ṽf̃

ε

+
ωc
ε
⊥ṽ · ∇ṽf̃

ε = 0, (t, x, ṽ) ∈ R+ × R2 × R2

f̃ ε(0, x, ṽ) = fin

(
x, ṽ + ε

⊥E[fin](x)

B

)
, (x, ṽ) ∈ R2 × R2.

Thanks to the continuity equation8

∂tρ[f ε] + divxj[f
ε] = 0

the time derivative of the electric field Eε can be written in terms of the particle density
f ε (or f̃ ε)

∂tE[f ε] =
1

2πε0

∫
R2

∂tρ[f ε(t)](x− x′) x′

|x′|2
dx′

= − 1

2πε0

∫
R2

divxj[f
ε](x− x′) x′

|x′|2
dx′

= − 1

2πε0
divx

∫
R2

x′

|x′|2
⊗ j[f ε(t)](x− x′) dx′

= − 1

2πε0
divx

∫
R2

x− x′

|x− x′|2
⊗
(
j[f̃ ε(t)](x′) + ε

⊥Eε(t, x′)

B
ρ[f̃ ε(t)](x′)

)
dx′.
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The change of coordinates (5), (6) leads to the problem1

∂tf̃
ε + εaε[f̃ ε(t)] · ∇x,ṽf̃

ε +
bε(x, ṽ)

ε
· ∇x,ṽf̃

ε = 0, (t, x, ṽ) ∈ R+ × R2 × R2 (7)

f̃ ε(0, x, ṽ) = fin

(
x, ṽ + ε

⊥E[fin](x)

B

)
, (x, ṽ) ∈ R2 × R2

where bε · ∇x,ṽ = εṽ · ∇x + ωc
⊥ṽ · ∇ṽ and for any particle density f̃ , aε[f̃ ] · ∇x,ṽ stands

for the vector field

aε[f̃ ] · ∇x,ṽ =
⊥E[f̃ ]

B
· ∇x +

1

2πε0B
divx

∫
R2

⊥(x− x′)
|x− x′|2

⊗

(
j[f̃ ] + ε

⊥E[f̃ ]

B
ρ[f̃ ]

)
(x′) dx′ · ∇ṽ

− ∂x

(
⊥E[f̃ ]

B

)(
ṽ + ε

⊥E[f̃ ]

B

)
· ∇ṽ.

Notice that the vector fields aε[f̃ ] · ∇x,ṽ and bε · ∇x,ṽ are divergence free. The charac-2

teristic flow of the vector field bε · ∇x,ṽ = εṽ · ∇x + ωc
⊥ṽ · ∇ṽ3

dXε

ds
= εṼε(s;x, ṽ),

dṼε

ds
= ωc

⊥Ṽε(s;x, ṽ), Xε(0;x, ṽ) = x, Ṽε(0;x, ṽ) = ṽ

is given by4

Xε(s;x, ṽ) = x+ ε[I2 −R(−ωcs)]
⊥ṽ

ωc
, Ṽε(s;x, ṽ) = R(−ωcs)ṽ, ωc =

qB

m
. (8)

It is periodic, and has the same period as the characteristic flow (X(s;x, ṽ) = x, Ṽ(s;x, ṽ) =5

R(−sωc)ṽ) of the vector field b(x, ṽ) · ∇x,ṽ = ωc
⊥ṽ · ∇ṽ6

Sε(x, ṽ) = S(x, ṽ) = S, S :=
2π

|ωc|
, (x, ṽ) ∈ R2 × R2, ε > 0.

The properties of these flows are summarized below. The proof details are left to the7

reader (see also Proposition 3.1 [9]).8

Proposition 2.19

We denote by (Xε(s;x, ṽ), Ṽε(s;x, ṽ)) the characteristic flow of the autonomous vector10

field bε(x, ṽ) · ∇x,ṽ11

dXε

ds
= εṼε(s;x, ṽ),

dṼε

ds
= ωc

⊥Ṽε(s;x, ṽ), Xε(0;x, ṽ) = x, Ṽε(0;x, ṽ) = ṽ

and by (X(s;x, ṽ), Ṽ(s;x, ṽ)) the characteristic flow of the autonomous vector field12

b(x, ṽ) · ∇x,ṽ = ωc
⊥ṽ · ∇ṽ13

dX

ds
= 0,

dṼ

ds
= ωc

⊥Ṽ(s;x, ṽ), X(0;x, ṽ) = x, Ṽ(0;x, ṽ) = ṽ.

1. For any (x, ṽ) ∈ R2 × R2 and ε > 0, the characteristic s → (Xε, Ṽε)(s;x, ṽ) is14

S-periodic, with S = 2π/ω0.15

6



2. For any (x, ṽ) ∈ R2 × R2 and ε > 0 we have1

|Xε(s;x, ṽ)− X(s;x, ṽ)| = |Xε(s;x, ṽ)− x| ≤ ε
2

ω0

|ṽ|, s ∈ R

and2

Ṽε(s;x, ṽ) = Ṽ(s;x, ṽ) = R(−sωc)ṽ, s ∈ R.

3. For any continuous function u ∈ C(R2 × R2) we define the averages along the3

flows of b · ∇x,ṽ, b
ε · ∇x,ṽ4

〈u〉 (x, ṽ) =
1

S

∫ S

0

u(X(s;x, ṽ), Ṽ(s;x, ṽ)) ds, (x, ṽ) ∈ R2 × R2

5

〈u〉ε (x, ṽ) =
1

S

∫ S

0

u(Xε(s;x, ṽ), Ṽε(s;x, ṽ)) ds, (x, ṽ) ∈ R2 × R2.

For any Rx, Rṽ ∈ R+ we have6

‖ 〈u〉 ‖L∞(B(Rx)×B(Rṽ)) ≤ ‖u‖L∞(B(Rx)×B(Rṽ))

7

‖ 〈u〉ε ‖L∞(B(Rx)×B(Rṽ)) ≤ ‖u‖L∞(B(Rεx)×B(Rṽ)), Rε
x = Rx + 2εRṽ/ω0

where B(R) stands for the closed ball of radius R in R2.8

4. If u is Lipschitz continuous, then for any (x, ṽ) ∈ R2 × R2 and ε > 0 we have

| 〈u〉ε (x, ṽ)− 〈u〉 (x, ṽ)|
ε

≤ Lip(u)
2

ω0

|ṽ|.

5. For any function u ∈ C1
c (R2 × R2) we have the inequality9

‖u− 〈u〉 ‖L2(R2×R2) ≤
2π

ω0

‖b · ∇x,ṽu‖L2(R2×R2).

6. For any function u ∈ C1(R2 × R2), we have 〈u〉 ∈ C1(R2 × R2) and10

〈∇xu〉 = ∇x 〈u〉 , ṽ · ∇ṽ 〈u〉 = 〈ṽ · ∇ṽu〉 , ⊥ṽ · ∇ṽ 〈u〉 = 0.

In order to filter out the fast oscillations corresponding to the vector field bε(x,ṽ)
ε
· ∇x,ṽ,11

we perform one more change of coordinates12

f̃ ε(t, x, ṽ) = F̃ ε(t,X, Ṽ ), (X, Ṽ ) = (Xε, Ṽε)(−t/ε;x, ṽ). (9)

By applying the chain rule, we obtain13

∂tF̃
ε + ε∂x,ṽ(X

ε, Ṽε)(−t/ε; (Xε, Ṽε)(t/ε;X, Ṽ ))aε[F̃ ε(t)−t/ε]t/ε · ∇X,Ṽ F̃
ε = 0 (10)

where we have used the notations14

F̃ ε(t)−t/ε = F̃ ε(t)◦(Xε, Ṽε)(− t
ε

), aε[F̃ ε(t)−t/ε]t/ε = aε[F̃ ε(t)◦(Xε, Ṽε)(− t
ε

)]◦(Xε, Ṽε)(
t

ε
).

7



As the characteristic flow (Xε, Ṽε) in (8) is linear, the jacobian matrix simply writes1

for any (x, ṽ) ∈ R2 × R2
2

∂x,ṽ(X
ε, Ṽε)(−t/ε;x, ṽ) =

(
I2

ε
ωc
R(−π/2)[I2 −R(ωct/ε)]

O2 R(ωct/ε)

)
and therefore (10) becomes

∂tF̃
ε + ε

{
aεx[F̃

ε(t)−t/ε]t/ε +
ε

ωc
R(−π/2)[I2 −R(ωct/ε)]a

ε
ṽ[F̃

ε(t)−t/ε]t/ε

}
· ∇XF̃

ε

+ εR(ωct/ε)a
ε
ṽ[F̃

ε(t)−t/ε]t/ε · ∇Ṽ F̃
ε = 0, (t,X, Ṽ ) ∈ R+ × R2 × R2.

We have obtained a two scale problem and we expect that the asymptotic behavior3

when ε becomes small will follow by averaging with respect to the fast time variable4

s = t/ε. As we are looking for second order approximations, we only need to average,5

with respect to s, when ε is small6

aεx[F̃
ε(t)−s]s · ∇XF̃

ε and R(ωcs)a
ε
ṽ[F̃

ε(t)−s]s · ∇Ṽ F̃
ε

up to terms of order ε. By the second statement in Proposition 2.1, observe that

E[F̃ ε(t)−s]s(X, Ṽ ) =
q

2πε0

∫
R2

∫
R2

F̃ ε(t, (Xε, Ṽε)(−s;x′, ṽ′)) Xε(s;X, Ṽ )− x′

|Xε(s;X, Ṽ )− x′|2
dṽ′dx′

=
q

2πε0

∫
R2

∫
R2

F̃ ε(t,X ′, Ṽ ′)
Xε(s;X, Ṽ )− Xε(s;X ′, Ṽ ′)

|Xε(s;X, Ṽ )− Xε(s;X ′, Ṽ ′)|2
dṼ ′dX ′

= E[F̃ ε(t)](X) +O(ε) (11)

and therefore we deduce that7

ωc
2π

∫ 2π/ωc

0

aεx[F̃
ε(t)−s]s · ∇XF̃

ε(t) ds =
⊥E[F̃ ε(t)](X)

B
· ∇XF̃

ε +O(ε). (12)

We concentrate now on the average of R(ωcs)a
ε
ṽ[F̃

ε(t)−s]s · ∇Ṽ F̃
ε. We only need to

consider the contributions of order 1 in aεṽ[F̃
ε(t)−s]s, that is, those of

q

2πε0B

(
divx

∫
R2

∫
R2

⊥(· − x′)

| · − x′|2
⊗ ṽ′F̃ ε(t, (Xε, Ṽε)(−s;x′, ṽ′)) dṽ′dx′

)
(Xε(s;X, Ṽ ))

=
q

2πε0B
divX

∫
R2

∫
R2

⊥(Xε(s;X, Ṽ )− Xε(s;X ′, Ṽ ′))

|Xε(s;X, Ṽ )− Xε(s;X ′, Ṽ ′)|2
⊗R(−ωcs)Ṽ ′F̃ ε(t,X ′, Ṽ ′) dṼ ′dX ′

and8

−

(
∂x

(
⊥E[F̃ ε(t)−s]

B

)
ṽ

)
s

(X, Ṽ ) =
R(π/2)

B
∂XE[F̃ ε(t)−s]sR(−ωcs)Ṽ .

8



Notice that, up to terms of order ε, the average of the first contribution writes

ωc
2π

∫ 2π
ωc

0

R(ωcs)
q

2πε0B
divX

∫
R2

∫
R2

⊥(X −X ′)
|X −X ′|2

⊗R(−ωcs)Ṽ ′F̃ ε(t,X ′, Ṽ ′) dṼ ′dX ′ds

=
qR(−π/2)

2πε0B
divX

∫
R2

∫
R2

ωc
2π

∫ 2π
ωc

0

R(ωcs)(X −X ′)
|X −X ′|2

⊗R(−ωcs)Ṽ ′dsF̃ ε(t,X ′, Ṽ ′) dṼ ′dX ′

=
qR(−π/2)

2πε0B
divX

∫
R2

∫
R2

(X −X ′)⊗ Ṽ ′ − ⊥(X −X ′)⊗ ⊥Ṽ ′

2|X −X ′|2
F̃ ε(t,X ′, Ṽ ′) dṼ ′dX ′

=
qR(−π/2)

2πε0B

∫
R2

∫
R2

(X −X ′)⊗ Ṽ ′ − ⊥(X −X ′)⊗ ⊥Ṽ ′

2|X −X ′|2
∇X′F̃ ε(t,X ′, Ṽ ′) dṼ ′dX ′.

By using the properties of the fundamental solution z → − 1
2π

ln |z|, it is easily seen1

that2

divX′
(X −X ′)⊗ Ṽ ′ − ⊥(X −X ′)⊗ ⊥Ṽ ′

2|X −X ′|2
= 0, X 6= X ′

and thus the above computations lead to

qR(−π/2)

2πε0B
lim
r↘0

∫
R2

∫
|X−X′|>r

(X −X ′)⊗ Ṽ ′ − ⊥(X −X ′)⊗ ⊥Ṽ ′

2|X −X ′|2
∇X′F̃ ε(t,X ′, Ṽ ′) dX ′ dṼ ′

=
qR(−π/2)

2πε0B
lim
r↘0

∫
R2

∫
|X−X′|=r
F̃ ε (X −X ′)⊗ Ṽ ′ − ⊥(X −X ′)⊗ ⊥Ṽ ′

2|X −X ′|2
X −X ′

|X −X ′|
dσ(X ′) dṼ ′

=
qR(−π/2)

2πε0B
lim
r↘0

1

2r

∫
|X−X′|=r

∫
R2

F̃ ε(t,X ′, Ṽ ′)Ṽ ′ dṼ ′dσ(X ′)

=
⊥j[F̃ ε(t)](X)

2ε0B
. (13)

Similarly, up to terms of order ε, the second contribution is, thanks to (11)

ωc
2πB

∫ 2π/ωc

0

R(π/2)R(ωcs)∂XE[F̃ ε(t)]R(−ωcs)Ṽ ds = −trace(∂XE[F̃ ε(t)])

2B
⊥Ṽ

= −divXE[F̃ ε(t)]

2B
⊥Ṽ = −ρ[F̃ ε(t)]⊥Ṽ

2ε0B
. (14)

Combining (13), (14) we obtain

ωc
2π

∫ 2π/ωc

0

R(ωcs)a
ε
ṽ[F̃

ε(t)−s]s · ∇Ṽ F̃
εds =

⊥{j[F̃ ε(t)]− ρ[F̃ ε(t)]Ṽ }
2ε0B

· ∇Ṽ F̃
ε +O(ε).

(15)

Thanks to (12), (15) we are led to the model3

∂tF̃ +ε
⊥E[F̃ (t)]

B
·∇XF̃ +ε

⊥{j[F̃ (t)]− ρ[F̃ (t)]Ṽ }
2ε0B

·∇Ṽ F̃ = 0, (t,X, Ṽ ) ∈ R+×R2×R2

(16)
which is supplemented by the initial condition4

F̃ (0, X, Ṽ ) = fin

(
X − ε

⊥Ṽ

ωc
, Ṽ + ε

⊥E[fin](X)

B

)
, (X, Ṽ ) ∈ R2 × R2. (17)

9



3 The effective Vlasov-Poisson equations1

We expect that solving (16) together with the initial condition (17), will provide a2

second order approximation for (1), (2). Although the above solution depends on ε,3

we use the notation F̃ , saying that it is an approximation, when ε becomes small.4

The well posedness of the limit model (16), (17) is a direct consequence of the well5

posedness of the vorticity formulation for the 2D incompressible Euler equations, see6

also Lemma 3.3 [25]. Indeed, integrating (16) with respect to the velocity leads to the7

Euler equations8

∂tρ[F̃ ]+
⊥E

Bε
·∇Xρ[F̃ ] = 0, E(t,X) =

1

2πε0

∫
R2

ρ[F̃ (t)](X ′)
X −X ′

|X −X ′|2
dX ′, (t,X) ∈ R+×R2

which allows us to determine ρ and E. Multiplying (16) by Ṽ and integrating with9

respect to the velocity give a transport equation for the current density as well10

∂tj[F̃ ] +

(⊥E
Bε
· ∇X

)
j[F̃ ] = 0

and finally the particle density F̃ comes by solving the linear transport equation (16),11

with smooth advection field12

⊥E

Bε
· ∇X +

1

2ε0Bε
⊥(j − ρṼ ) · ∇Ṽ .

The proof details are left to the reader.13

Theorem 3.1 Consider a non negative, smooth, compactly supported initial particle14

density F̃in ∈ C1
c (R2×R2) and a uniform magnetic field Bε = B

ε
6= 0. There is a unique15

particle density F̃ ∈ C1(R+×R2×R2) whose restriction on [0, T ]×R2×R2 is compactly16

supported for any T ∈ R+, whose Poisson electric field is smooth E[F̃ ] ∈ C1(R+×R2),17

satisfying (16), (17). Moreover, if for some integer k ≥ 2 we have F̃in ∈ Ck
c (R2 ×R2),18

then F̃ ∈ Ck(R+ × R2 × R2) and E[F̃ ] ∈ Ck(R+ × R2).19

The properties of the above limit model are summarized below : conservation of the20

total kinetic energy, conservation of the total electric energy, invariance of 1
2
|j[F̃ ] −21

ρ[F̃ ]Ṽ |2, invariance under the rotations in the velocity space.22

Remark 3.123

1. The total kinetic energy is conserved. Indeed, multiplying (16) by m|Ṽ |2/2 and
integrating with respect to velocity yields

∂t

∫
R2

m
|Ṽ |2

2
F̃ dṼ +

⊥E[F̃ (t)]

Bε
· ∇X

∫
R2

m
|Ṽ |2

2
F̃ dṼ

=
m

2ε0Bε

∫
R2

⊥(j[F̃ (t)]− ρ[F̃ (t)]Ṽ ) · Ṽ F̃ dṼ = 0

and our conclusion follows by integrating also with respect to X.24
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2. The total electric energy is conserved. Using the fundamental solution of the
Poisson equation in R2, we have

d

dt

1

2ε0

∫
R2

∫
R2

e(X −X ′)ρ[F̃ (t)](X)ρ[F̃ (t)](X ′) dX ′dX

=
1

ε0

∫
R2

∫
R2

e(X −X ′)ρ[F̃ (t)](X ′)∂tρ[F̃ (t)](X) dX ′dX

=

∫
R2

Φ[F̃ (t)](X)∂tρ[F̃ (t)](X) dX −
∫
R2

Φ[F̃ (t)](X)divX

(
ρ[F̃ (t)]

⊥E[F̃ (t)]

Bε

)
dX

=

∫
R2

∇XΦ[F̃ (t)] ·
⊥E[F̃ (t)]

Bε
ρ[F̃ (t)](X) dX = 0.

3. The function (X, Ṽ )→ 1
2
|j[F̃ (t)](X)−ρ[F̃ (t)](X)Ṽ |2 is an invariant of the trans-

port operator in (16). Indeed, thanks to the mass and momentum balances, we
deduce that(

∂t +
⊥E[F̃ (t)]

Bε
· ∇X +

⊥(j[F̃ (t)]− ρ[F̃ (t)]Ṽ )

2ε0Bε
· ∇Ṽ

)
|j[F̃ (t)]− ρ[F̃ (t)]Ṽ |2

2

= −ρ[F̃ (t)]
⊥(j[F̃ (t)]− ρ[F̃ (t)]Ṽ )

2ε0Bε
· (j[F̃ (t)]− ρ[F̃ (t)]Ṽ ) = 0.

4. The model (16), (17) is invariant under rotation in the velocity space. More1

exactly, if F̃ solves (16), (17), then F̃θ(t,X, Ṽ ) = F̃ (t,X,R(θ)Ṽ ) solves (16)2

together with the initial condition3

F̃θ(0, X, Ṽ ) = F̃in(X,R(θ)Ṽ ), (X, Ṽ ) ∈ R2 × R2.

In particular, if the initial particle density satisfies b · ∇X,Ṽ F̃in = 0, then, thanks4

to the uniqueness, we have b · ∇X,Ṽ F̃ (t) = 0 at any time t ∈ R+.5

4 The error analysis6

The solution of (16), (17) will allow us to describe the asymptotic behavior of the7

family (f ε)ε>0 corresponding to the initial condition fin, when ε becomes small. Let us8

introduce the particle density9

f̃(t, s, x, ṽ) = F̃ (t, (X, Ṽ)(−s;x, ṽ)), (t, s, x, ṽ) ∈ R+ × R× R2 × R2

where F̃ solves (16), (17) and (X, Ṽ) is the characteristic flow associated to the vector10

field b(x, ṽ)·∇x,ṽ = ωc
⊥ṽ·∇ṽ, see Proposition 2.1. The idea is to compare f̃ ε(t, x, ṽ) with11

respect to f(t, x + ε⊥ṽ/ωc, ṽ), where f(t, x, ṽ) = f̃(t, t/ε, x, ṽ). By direct computation12

we check that13

∂tf + ε

(⊥E[f(t)]

B
· ∇xf +

⊥(j[f(t)]− ρ[f(t)]ṽ)

2ε0B
· ∇ṽf

)
+
b(x, ṽ)

ε
· ∇x,ṽf = 0. (18)
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We introduce the application T ε(x, ṽ) = (x + ε ⊥ṽ/ωc, ṽ). Notice that f(0) ◦ T ε is a
second order approximation of f̃ ε(0) in L2(R2 × R2){∫

R2

∫
R2

[
f̃ ε(0, x, ṽ)− f

(
0, x+ ε

⊥ṽ

ωc
, ṽ

)]2
dṽdx

}1/2

(19)

=

{∫
R2

∫
R2

[
fin

(
x, ṽ + ε

⊥E[fin]

B
(x)

)
− F̃

(
0, x+ ε

⊥ṽ

ωc
, ṽ

)]2
dṽdx

}1/2

=

{∫
R2

∫
R2

[
fin

(
x, ṽ + ε

⊥E[fin]

B
(x)

)
− fin

(
x, ṽ + ε

⊥E[fin]

B
(x+ ε ⊥ṽ/ωc)

)]2
dṽdx

}1/2

≤ Cε2.

By introducing a corrector term, we will prove that f ◦ T ε is a second order approxi-1

mation of f̃ ε in L∞loc(R+;L2(R2×R2)). We mention that the asymptotic behavior for a2

very similar problem has been investigated in Theorem 1.2 [25], but without indicating3

the convergence rate. Our goal is to complete the asymptotic analysis by justifying4

the second order approximation. The arguments developed for well prepared initial5

particle densities in [9] apply for general initial particle densities as well, justifying the6

robustness of our method. For any smooth particle density f̃ ∈ C1
c (R2 × R2) we use7

the notations8

a[f̃ ] · ∇x,ṽ =
⊥E[f̃ ]

B
· ∇x +

[
divx

2πε0B

∫
R2

⊥(x− x′)
|x− x′|2

⊗ j[f̃ ](x′) dx′ − ∂x

(
⊥E[f̃ ]

B

)
ṽ

]
· ∇ṽ

and9

〈a〉 [f̃ ] · ∇x,ṽ =
⊥E[f̃ ]

B
· ∇x +

⊥(j[f̃ ]− ρ[f̃ ]ṽ)

2ε0B
· ∇ṽ.

For constructing the corrector, we need essentially to invert the transport operator ∂s+10

b ·∇x,ṽ on the subspace of functions with zero average with respect to the characteristic11

flow of the vector field ∂s+ b ·∇x,ṽ, see [7, 8]. The expression of the corrector is explicit12

and follows by direct computations. Its smoothness and uniform boundedness with13

respect to the fast time variable will be crucial when establishing the error estimate.14

We consider particle densities depending also on the fast time variable and therefore15

we work in the phase space (s, x, ṽ) ∈ R× R2 × R2.16

Proposition 4.1 Assume that f̃ = f̃(s, x, ṽ) ∈ C1(R × R2 × R2) is S = 2π
|ωc| periodic17

and uniformly compactly supported in (x, ṽ) with respect to s ∈ R, such that18

∂sf̃ + b(x, ṽ) · ∇x,ṽf̃ = 0, (s, x, ṽ) ∈ R× R2 × R2.

Then we have the equality19

a[f̃(s)] · ∇x,ṽf̃ − 〈a〉 [f̃(s)] · ∇x,ṽf̃ + (∂s + b(x, ṽ) · ∇x,ṽ)f̃
2 = 0

12



where

f̃ 2 =
cos(2ωcs)

8ωcπε0B
divx

∫
R2

[⊥(x− x′)
|x− x′|2

⊗ ⊥j[F̃ ] +
x− x′

|x− x′|2
⊗ j[F̃ ]

]
dx′ · ∇Ṽ F̃ (x,R(ωcs)ṽ)

+
sin(2ωcs)

8ωcπε0B
divx

∫
R2

[
(x− x′)
|x− x′|2

⊗ ⊥j[F̃ ]−
⊥(x− x′)
|x− x′|2

⊗ j[F̃ ]

]
dx′ · ∇Ṽ F̃ (x,R(ωcs)ṽ)

+
cos(2ωcs)

4ωc

[
R(π/2)∂x

(
E[F̃ ]

B

)
+ ∂x

(
E[F̃ ]

B

)
R(−π/2)

]
: ⊥∇Ṽ F̃ ⊗R(ωcs)ṽ

− sin(2ωcs)

4ωc

[
∂x

(
E[F̃ ]

B

)
−R(π/2)∂x

(
E[F̃ ]

B

)
R(−π/2)

]
: ⊥∇Ṽ F̃ ⊗R(ωcs)ṽ.

Proof. The particle density f̃ satisfies the constraint (∂s+ b ·∇x,ṽ)f̃ = 0 and therefore1

we have2

f̃(s, x, ṽ) = f̃(0, (X, Ṽ)(−s;x, ṽ)), (s, x, ṽ) ∈ R× R2 × R2.

Therefore there is a function F̃ ∈ C1
c (R2 × R2) such that3

f̃(s, x, ṽ) = F̃ (x,R(ωcs)ṽ), (s, x, ṽ) ∈ R× R2 × R2.

Observe that ρ[f̃(s)] = ρ[F̃ ], j[f̃(s)] = R(−ωcs)j[F̃ ] and4

∇ṽf̃(s, x, ṽ) = R(−ωcs)∇Ṽ F̃ (x,R(ωcs)ṽ), (s, x, ṽ) ∈ R× R2 × R2.

Notice that

1

2πε0B
divx

∫
R2

⊥(x− x′)
|x− x′|2

⊗ j[f̃(s)](x′) dx′ · ∇ṽf̃(s)−
⊥j[f̃(s)]

2ε0B
· ∇ṽf̃(s) (20)

=
divx

2πε0B

∫
R2

R(ωcs)
⊥(x− x′)
|x− x′|2

⊗R(−ωcs)j[F̃ ](x′) dx′ · (∇Ṽ F̃ )(x,R(ωcs)ṽ)

−
⊥j[F̃ ](x)

2ε0B
· (∇Ṽ F̃ )(x,R(ωcs)ṽ).

As already observed in (13), the average with respect to s of5

1

2πε0B
divx

∫
R2

R(ωcs)
⊥(x− x′)
|x− x′|2

⊗R(−ωcs)j[F̃ ](x′) dx′

coincides with ⊥j[F̃ ]/(2ε0B), and therefore we have

divx
2πε0B

∫
R2

R(ωcs)
⊥(x− x′)
|x− x′|2

⊗R(−ωcs)j[F̃ ](x′) dx′ −
⊥j[F̃ ](x)

2ε0B

=
divx

2πε0B

∫
R2

[
cos2(ωcs)−

1

2

] ⊥(x− x′)
|x− x′|2

⊗ j[F̃ ] +

[
sin2(ωcs)−

1

2

]
x− x′

|x− x′|2
⊗ ⊥j[F̃ ] dx′

+
divx

2πε0B

∫
R2

cos(ωcs) sin(ωcs)

[⊥(x− x′)
|x− x′|2

⊗ ⊥j[F̃ ] +
(x− x′)
|x− x′|2

⊗ j[F̃ ]

]
dx′

13



whose zero average primitive with respect to s is

sin(2ωcs)

8ωcπε0B
divx

∫
R2

[⊥(x− x′)
|x− x′|2

⊗ j[F̃ ]− x− x′

|x− x′|2
⊗ ⊥j[F̃ ]

]
dx′

−cos(2ωcs)

8ωcπε0B
divx

∫
R2

[⊥(x− x′)
|x− x′|2

⊗ ⊥j[F̃ ] +
x− x′

|x− x′|2
⊗ j[F̃ ]

]
dx′.

Coming back to (20), and taking into account that ∇Ṽ F̃ (x,R(ωcs)ṽ) belongs to the
kernel of ∂s + b ·∇x,ṽ, since it depends only on the invariants x,R(ωcs)ṽ of ∂s + b ·∇x,ṽ,
it is easily seen that

divx
2πε0B

∫
R2

⊥(x− x′)
|x− x′|2

⊗ j[f̃(s)] dx′ · ∇ṽf̃(s)−
⊥j[f̃(s)]

2ε0B
· ∇ṽf̃(s) + (∂s + b · ∇x,ṽ)f̃

2
I = 0

where

f̃ 2
I =

cos(2ωcs)

8ωcπε0B
divx

∫
R2

[⊥(x− x′)
|x− x′|2

⊗ ⊥j[F̃ ] +
x− x′

|x− x′|2
⊗ j[F̃ ]

]
dx′ · ∇Ṽ F̃ (x,R(ωcs)ṽ)

+
sin(2ωcs)

8ωcπε0B
divx

∫
R2

[
(x− x′)
|x− x′|2

⊗ ⊥j[F̃ ]−
⊥(x− x′)
|x− x′|2

⊗ j[F̃ ]

]
dx′ · ∇Ṽ F̃ (x,R(ωcs)ṽ).

(21)

Similarly we obtain1

−∂x

(
⊥E[f̃(s)]

B

)
ṽ · ∇ṽf̃ +

ρ[f̃(s)]

2ε0B
⊥ṽ · ∇ṽf̃ + (∂s + b · ∇x,ṽ)f̃

2
II = 0

where

f̃ 2
II =

cos(2ωcs)

4ωc

[
R(π/2)∂x

(
E[F̃ ]

B

)
+ ∂x

(
E[F̃ ]

B

)
R(−π/2)

]
: ⊥∇Ṽ F̃ ⊗R(ωcs)ṽ

− sin(2ωcs)

4ωc

[
∂x

(
E[F̃ ]

B

)
−R(π/2)∂x

(
E[F̃ ]

B

)
R(−π/2)

]
: ⊥∇Ṽ F̃ ⊗R(ωcs)ṽ.

(22)

Our conclusion follows by combining (21), (22).2

Remark 4.1 Notice that f̃ 2 = f̃ 2(s, x, ṽ) is continuous, S = 2π
|ωc| periodic and uni-3

formly compactly supported in (x, ṽ) with respect to s. Moreover, if f̃ ∈ Ck(R×R2×R2)4

for some integer k ≥ 2, then f̃ 2 ∈ Ck−1(R× R2 × R2).5

We appeal to the application T ε(x, ṽ) = (x+ ε ⊥ṽ/ωc, ṽ). We have6

∂T εbε = b ◦ T ε, b · ∇x,ṽ = ωc
⊥ṽ · ∇ṽ, bε · ∇x,ṽ = εṽ · ∇x + ωc

⊥ṽ · ∇ṽ. (23)

Finally we are ready to prove that f(t) ◦ T ε, where f(t, x, ṽ) = F̃ (t, x,R(ωct/ε)ṽ), is a7

second order approximation of f̃ ε(t, x, ṽ).8
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Proof. (of Theorem 1.1)1

Estimating the error between f̃ ε(t), f(t) ◦T ε is not of all obvious. A direct comparison2

between the above densities does not lead to the desired error estimate. We have to3

use a corrector term. More exactly, for any t ∈ R+, the particle density (s, x, ṽ) →4

f̃(t, s, x, ṽ) = F̃ (t, (X, Ṽ)(−s;x, ṽ)) belongs to C2(R × R2 × R2), is S = 2π
|ωc| periodic5

with respect to s and uniformly compactly supported in (x, ṽ), with respect to s ∈ R6

and t ∈ [0, T ], T ∈ R+. By definition, for any t ∈ R+, the particle density f̃(t) satisfies7

the constraint (∂s + b · ∇x,ṽ)f̃(t) = 0. Thanks to Proposition 4.1, there is f̃ 2(t, s, x, ṽ)8

such that9

a[f̃(t, s)] · ∇x,ṽf̃ − 〈a〉 [f̃(t, s)] · ∇x,ṽf̃ + (∂s + b · ∇x,ṽ)f̃
2 = 0. (24)

It is easily seen, by the explicit formula of f̃ 2, that the corrector f̃ 2 belongs to C1(R+×
R×R2×R2), is S = 2π

|ωc| periodic with respect to s, and uniformly compactly supported

in (x, ṽ) with respect to s ∈ R and t ∈ [0, T ], T ∈ R+. Taking s = t/ε in (24),
multiplying by ε and combining with (18) yield

d

dt

{
f(t) + ε2f̃ 2(t, t/ε)

}
+ εa[f(t)] · ∇x,ṽf(t) +

b

ε
· ∇x,ṽ

{
f(t) + ε2f̃ 2(t, t/ε)

}
= ε2∂tf̃

2(t, t/ε, x, ṽ).

Using the corrector f̃ 2 led to a model similar to (7), nevertheless the transport operators

appearing in the terms b
ε
· ∇x,ṽ

{
f(t) + ε2f̃ 2(t, t/ε)

}
, bε

ε
· ∇x,ṽf̃

ε are different, and the

key point is to take advantage of the map T ε. After composition with T ε, the above
equation becomes, thanks to (23)

d

dt

{
f(t) ◦ T ε + ε2f̃ 2(t, t/ε) ◦ T ε

}
+ εa[f(t)] ◦ T ε · (∇f(t)) ◦ T ε

+
bε

ε
· ∇
{
f(t) ◦ T ε + ε2f̃ 2(t, t/ε) ◦ T ε

}
= ε2∂t{f̃ 2(t, t/ε) ◦ T ε}.

Combining with (7) and using the notation rε(t) = f̃ ε(t)− f(t) ◦T ε− ε2f̃ 2(t, t/ε) ◦T ε,
lead to

∂tr
ε + εaε[f̃ ε(t)] · ∇x,ṽf̃

ε − ε(a[f(t)] · ∇f(t)) ◦ T ε +
bε

ε
· ∇x,ṽr

ε = −ε2∂tf̃ 2(t, t/ε) ◦ T ε.
(25)

As the magnetic field is uniform, the vector fields aε[f̃ ε], bε are divergence free and
therefore∫
R2

∫
R2

εaε[f̃ ε(t)] · ∇x,ṽf̃
εrε dṽdx =

∫
R2

∫
R2

εaε[f̃ ε(t)] · ∇(f(t) ◦ T ε + ε2f̃ 2(t, t/ε) ◦ T ε)rε dṽdx

∫
R2

∫
R2

bε

ε
· ∇x,ṽr

ε rε dṽdx = 0.
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Multiplying (25) by rε(t, x, ṽ) and integrating with respect to (x, ṽ) imply

1

2

d

dt
‖rε(t)‖2L2 + ε

∫
R2

∫
R2

aε[f̃ ε(t)] · ∇(f(t) ◦ T ε)rε dṽdx

− ε
∫
R2

∫
R2

(a[f(t)] · ∇f(t)) ◦ T εrε dṽdx

= −ε2
∫
R2

∫
R2

∂tf̃
2(t, t/ε) ◦ T εrε dṽdx− ε3

∫
R2

∫
R2

aε[f̃ ε(t)] · ∇(f̃ 2(t, t/ε) ◦ T ε)rε dṽdx

and by Bellman lemma one gets

‖rε(t)‖L2 ≤ ‖rε(0)‖L2 + ε

∫ t

0

‖aε[f̃ ε(t′)] · ∇(f(t′) ◦ T ε)− (a[f(t′)] · ∇f(t′)) ◦ T ε‖L2 dt′

+ ε2
∫ t

0

‖∂tf̃ 2(t′, t′/ε) ◦ T ε‖L2 dt′ + ε3
∫ t

0

‖aε[f̃ ε(t′)] · ∇(f̃ 2(t′, t′/ε) ◦ T ε)‖L2 dt′.

(26)

We are working for t ∈ [0, T ], T ∈ R+, and we denote by C any constant depending on1

m, ε0, q, T, B and the initial particle density fin, but not on ε. Thanks to (19) we have2

‖rε(0)‖L2 ≤ ‖f̃ ε(0)− f(0) ◦ T ε‖L2 + ε2‖f̃ 2(0, 0) ◦ T ε‖L2

and thus clearly ‖rε(0)‖L2 ≤ Cε2. Using the C1
c regularity of f̃ 2 which comes from the3

C2
c regularity of F̃ , it is straightforward that4

ε2
∫ T

0

‖∂tf̃ 2(t, t/ε) ◦ T ε‖L2 dt′ + ε3
∫ T

0

‖aε[f̃ ε(t)] · ∇(f̃ 2(t, t/ε) ◦ T ε)‖L2 dt ≤ Cε2.

We claim that

ε

∫ t

0

‖aε[f̃ ε(t′)] · ∇(f(t′) ◦ T ε)− (a[f(t′)] · ∇f(t′)) ◦ T ε‖L2 dt′ ≤ Cε2 (27)

+ Cε

∫ t

0

‖f̃ ε(t′)− f(t′) ◦ T ε‖L2 , t ∈ [0, T ].

This part of the proof relies on the smoothness and the uniform estimates of the5

densities (f̃ ε)ε>0, together with the elliptic regularity results. Thanks to the uniform6

bounds7

sup
ε>0,t∈[0,T ]

{‖f̃ ε(t)‖C1(R2×R2) + ‖E[f̃ ε(t)]‖C1(R2)} < +∞

it is easily seen that8

‖(aε[f̃ ε(t)]− a[f̃ ε(t)]) · ∇(f(t) ◦ T ε)‖L2 ≤ Cε, t ∈ [0, T ], ε > 0.

Thanks to elliptic regularity results, the quantity9

‖( a[f̃ ε(t)]− a[f(t) ◦ T ε] ) · ∇(f(t) ◦ T ε)‖L2

is bounded by the L2 norms of the charge and current densities10

‖ρ[f̃ ε(t)]− ρ[f(t) ◦ T ε]‖L2(R2) + ‖j[f̃ ε(t)]− j[f(t) ◦ T ε]‖L2(R2)

16



and thus by the L2 norm of the particle densities ‖f̃ ε(t)−f(t)◦T ε‖L2(R2×R2). We obtain1

the inequality2

‖(a[f̃ ε(t)]−a[f(t)◦T ε])·∇(f(t)◦T ε)‖L2 ≤ C‖f̃ ε(t)−f(t)◦T ε‖L2(R2×R2), t ∈ [0, T ], ε > 0.

The inequality (27) follows immediately, noticing that3

‖a[f(t) ◦ T ε] · ∇(f(t) ◦ T ε)− (a[f(t)] · ∇f(t)) ◦ T ε‖L2(R2×R2) ≤ Cε, t ∈ [0, T ], ε > 0.

Finally (26) writes4

‖rε(t)‖L2 ≤ Cε2 + Cε

∫ t

0

‖f̃ ε(t′)− f(t′) ◦ T ε‖L2 dt′

implying that

‖f̃ ε(t)− f(t) ◦ T ε‖L2 ≤ ‖rε(t)‖L2 + ε2‖f̃ 2(t, t/ε) ◦ T ε‖L2

≤ Cε2 + Cε

∫ t

0

‖f̃ ε(t′)− f(t′) ◦ T ε‖L2 dt′, t ∈ [0, T ], ε > 0.

By Gronwall lemma we deduce5

‖f̃ ε(t)− f(t) ◦ T ε‖L2 ≤ Cε2 exp(Cεt), t ∈ [0, T ], ε > 0.

Clearly we have

‖E[f ε(t)]− E[F̃ (t)]‖L2 = ‖E[f̃ ε(t)]− E[f(t)]‖L2 ≤ ‖E[f̃ ε(t)]− E[f(t) ◦ T ε]‖L2

+ ‖E[f(t) ◦ T ε]− E[f(t)]‖L2 ≤ Cε

and therefore
∫
R2

∫
R2

[
F̃

(
t, x+ ε

⊥v

ωc
,R(ωct/ε)

(
v − ε

⊥E[F̃ (t)]

B

))
− f ε(t, x, v)

]2
dvdx


1/2

=

{∫
R2

∫
R2

[
F̃

(
t, x+

ε

ωc

(
⊥ṽ − εE[f ε(t)]

B

)
,R(ωct/ε)

(
ṽ + ε

⊥E[f ε(t)]− ⊥E[F̃ (t)]

B

))

−f̃ ε(t, x, ṽ)
]2

dṽdx

}1/2

≤ ‖f̃ ε(t)− f(t) ◦ T ε‖L2 +

{∫
R2

∫
R2

[
F̃

(
t, x+ ε

⊥ṽ

ωc
,R(ωct/ε)ṽ

)
−

F̃

(
t, x+ ε

⊥ṽ

ωc
− ε2

ωc

E[f ε(t)]

B
,R(ωct/ε)ṽ + εR(ωct/ε)

⊥E[f ε(t)]− ⊥E[F̃ (t)]

B

)]2
dṽdx


1/2

≤ Cε2 + Cε‖E[f ε(t)]− E[F̃ (t)]‖L2 ≤ Cε2, t ∈ [0, T ], ε > 0.

6
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5 Conclusions1

We presented regular reformulations for the Vlasov-Poisson equations with uniform2

magnetic fields and general initial conditions. The effective model comes by averaging3

over one cyclotronic period, once we have determined a periodic fast dynamics. Cer-4

tainly, in the framework of the magnetic confinement, a much more interesting case is5

that of curved magnetic fields.6

The above results extend to the three dimensional Vlasov-Poisson system, with7

strong external curved magnetic field. The same arguments lead to regular reformu-8

lations and second order estimates for both well prepared and general initial particle9

densities. In the three dimensional setting, we emphasize a fast periodic dynamics10

leaving invariant not only the guiding center and the modulus of the perpendicular11

velocity, but also the parallel velocity. Averaging over one period allows us to obtain12

completely explicit effective models. Nevertheless the analysis is much more elaborated13

due to the combination between the parallel and perpendicular dynamics and to the14

curvature effects. These studies will be the topic of future works [10].15

Another interesting issue will be to handle models with self-consistent magnetic16

field, that is the Vlasov-Maxwell equations, perturbed by a strong external magnetic17

field.18
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[18] E. Frénod, E. Sonnendrücker, The finite Larmor radius approximation, SIAM J.30

Math. Anal. 32(2001) 1227-1247.31

[19] F. Golse, L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic32

field, J. Math. Pures Appl. 78(1999) 791-817.33

[20] D. Han-Kwan, Effect of the polarization drift in a strongly magnetized plasma,34

Math. Model. Numer. Anal. 46(2012) 929-947.35

[21] P.-L. Lions, B. Perthame, Propagation of moments and regularity for the 3-36

dimensional Vlasov-Poisson system, Invent. Math. 105(1991) 415-430.37

19



[22] E. Miot, On the gyrokinetic limit for the two-dimensional Vlasov-Poisson system,1

arXiv:1603.04502.2

[23] K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in 3 di-3

mensions for general initial data, J. Differential Equations 95(1992) 281-303.4

[24] L. Saint-Raymond, The gyro-kinetic approximation for the Vlasov-Poisson system,5

Math. Models Methods Appl. Sci. 10(2000) 1305-1332.6

[25] L. Saint-Raymond, Control of large velocities in the two-dimensional gyro-kinetic7

approximation, J. Math. Pures Appl. 81(2002) 379-399.8

[26] T. Ukai, S. Okabe, On the classical solution in the large time of the two dimensional9

Vlasov equations, Osaka J. Math. 5(1978) 245-261.10

20


