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LARGE FAMILIES OF PSEUDORANDOM SUBSETS

FORMED BY POWER RESIDUES

Cécile Dartyge — András Sárközy

ABSTRACT. In an earlier paper the authors introduced the measures of pseudo-
randomness of subsets of the set of the positive integers not exceeding N , and they
also presented two examples for subsets possessing strong pseudorandom proper-
ties. One of these examples included permutation polynomials f(X) ∈ Fp[X] and
d-powers in Fp. This construction is not of much practical use since very little is
known on permutation polynomials and there are only very few of them. Here the
construction is extended to a large class of polynomials which can be constructed
easily, and it is shown that all the subsets belonging to the large family of subsets
obtained in this way possess strong pseudorandom properties. The complexity of
this large family is also studied.

Communicated by Christian Mauduit

1. Introduction

This paper is the third of a series of articles devoted to the study of pseudo-
random subsets. Let N be a positive integer and R ⊂ {1, . . . , N}. We associate

with this subset the sequence EN = (e1, . . . , eN ) ∈
{

1− |R|
N , |R|N

}N

defined by

en =

{
1− |R|

N for n ∈ R
− |R|

N for n 6∈ R (n = 1, . . . , N). (1.1)
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We introduced in [4] two measures of pseudorandomness for the sequence R.
The first one is the well distribution measure :

W (R, N) = max
a,b,t

∣∣∣
t−1∑

j=0

eaj+b

∣∣∣,

where the maximum is over all a, b, t ∈ N such that 1 ≤ b ≤ b + (t− 1)a ≤ N .
The second measure is the correlation measure of order k :

Ck(R, N) = max
M,D

∣∣∣
M∑

n=1

en+d1 · · · en+dk

∣∣∣,

where the maximum is taken over all D = (d1, . . . , dk) and M such that
0 ≤ d1 < . . . < dk ≤ N − M . If these two measures are small, i.e., are o(N),
then we will say that the subset R has strong pseudorandom properties.

These two measures are closely related to the measures of pseudorandom-
ness of binary sequences introduced by Mauduit and Sárközy [9] and of the
p-pseudorandomness binary sequences defined by Hubert and Sárközy [6]. See
[4] for a detailed bibliography.

In [4] we gave two examples of subsets with strong pseudorandom properties,
but these examples generated a few number of such subsets.

Recently Elie Mosaki and the authors [3] constructed the following large fam-
ily of pseudorandom subsets.

For a prime number p, a polynomial f(x) ∈ Fp[X] of degree d ≥ 2, and some
integers r ∈ Z, s ∈ N, such that s < p/2, they defined the subset R ⊂ {1, . . . , p}
by

{
n ∈ R if ∃h ∈ {r, r + 1, . . . , r + s− 1} with f(n) ≡ h (mod p)
n 6∈ R otherwise.

(1.2)

We proved
W (R, p) < 2d

√
p log2 p (1.3)

and, for 2 ≤ k ≤ d− 1,

Ck(R, p) < 2d
√

p(1 + log p)k+1. (1.4)

We also gave a construction of a large family of pseudorandom subsets using
the multiplicative inverse.

In this paper we extend and generalize the first construction of pseudorandom
subsets given in [4]. This will provide another large and rich family of subsets
with strong pseudorandom properties.
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Let p ≥ 2 be a prime number, d|p − 1 and f ∈ Fp[X]. We will denote
the algebraic closure of Fp by F̄p. We would like to study the pseudorandom
properties of the set

Vf = {x ∈ Fp,∃y ∈ Fp \ {0} : f(x) ≡ yd (mod p)}.
In [4], we proved that if f is a permutation polynomial whose unique zero in Fp

has a multiplicity coprime with d, then the subset Vf of Fp has strong pseudo-
random properties. This result was inspired by a construction of Mauduit and
Sárközy [9] for binary pseudorandom sequences; they considered the sequence(

f(n)
p

)
, n = 1, . . . , p, where f is a permutation polynomial whose zero in Fp

has odd multiplicity and
(

x
p

)
is the Legendre symbol. The weak point of these

constructions is that we know only very little on permutation polynomials.
In [5], Goubin, Mauduit and Sárközy proved that if f ∈ Fp[X] is a polynomial

of degree k > 0 and with no multiple roots in F̄p then the sequence {un}n∈N
defined by

un =

{(
f(n)

p

)
for (p, f(n) = 1,

1 if p|f(n),

satisfies

max
a,b,t

∣∣∣
t−1∑

j=0

uaj+b

∣∣∣ < 10k
√

p log p,

where the maximum is over all a, b, t ∈ N such that 1 ≤ a ≤ a(t − 1) + b ≤ p.
For the correlations measure of order ` they proved that if one of the following
assumptions holds:

(i) ` = 2;
(ii) ` < p and 2 is a primitive root modulo p;
(iii) (4k)` < p;

then the correlation measure of order ` satisfies

max
M,D

∣∣∣
M∑

n=1

un+d1 · · ·un+d`

∣∣∣ < 10k`
√

p log p,

where the maximum is taken over all D = (d1, . . . , d`) and M such that
0 ≤ d1 < . . . < d` ≤ p−M .

In the present paper we will adapt this idea for constructing pseudorandom
subsets and generalize it to d-th power residues for a divisor d|p− 1.

First we will state a general result on the cardinality of Vf .
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Theorem 1.1. Let f be a polynomial in Fp[x] of degree k and with m distinct
zeros in Fp. We write f = fα1

1 · · · fαr
r for the factorization into irreducible

factors in F̄p. We suppose that the degrees α1, . . . , αr satisfy

(d, α1, . . . , αr) = 1. (1.5)

Then the cardinality of Vf is
∣∣∣|Vf | − (p−m)

d

∣∣∣ < 9k
√

p log p. (1.6)

For these polynomials we will show that the well-distribution measure is small:

Theorem 1.2. Under the same conditions as in Theorem 1.1, we have

W (Vf , p) ≤ 20k
√

p log p. (1.7)

The main tool in the proofs of Theorem 1.1 and Theorem 1.2 is an estimate
(Lemma 2.1 below) on short character sums with polynomial argument like∑

X<n≤X+Y χ(g(n)). To apply this result we have to check that the involved
polynomial g is not a d-th power, more precisely we have to check a condition
on the degrees of the irreducible factors of g.

When we compute the correlation, the corresponding polynomial g is compli-
cated thus we cannot apply Lemma 2.1 directly.

Goubin, Mauduit and Sárközy [5] solved this problem by giving a condition
for k, p and the order ` of correlation. They defined the notion of admissible
triple (k, `, p). They proved that every triple (k, `, p) verifying (i), (ii) or (iii) is
admissible.

In this paper we will follow this strategy. We will define the notion of d-
admissible triple (k, `, p) which is a generalization of the admissible triples of [5].
This new definition is a little more complicated, but the cost of this complication
is not too high; we will see that the different types of admissible triples found
by [5] are also d-admissible if d is a prime factor of p− 1.

Definition 1.3. If k, `, d ∈ N and p is a prime number such that d|p − 1, the
triple (k, `, p) is said to be d-admissible if, for all A ⊂ Fp, |A| ≤ k, r ≤ `,
0 ≤ d1 < · · · < dr < p, 1 ≤ Di < d for i = 1, . . . , r and (D1, . . . , Dr) = 1, we
have :

(d, α(1), . . . , α(p)) = 1,

where α(b) are the weights defined by

α(b) =
∑

a∈A
1≤j≤r

a+dj≡b (mod p)

Dj .
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The definition of admissible triples of [5] corresponds to d = 2. (And in this
case the Dj are equal to 1.)

Under a d-admissibility condition, we will prove that the subset Vf has strong
PR properties.

Theorem 1.4. Let f ∈ Fp[X] of degree k with no multiple roots in F̄p. If
(k, `, p) is a d-admissible triple, then

C`(Vf , p) ≤ `k
(
1 +

20k log p√
p

)`

+ 9
(d− 1

d

)`(
1 +

10k log p√
p

)`

`k
√

p log p. (1.8)

In Theorem 4.1 in section 4, we will give sufficient conditions for a triple being
d-admissible. Combining Theorem 1.4 and Theorem 4.1 we get:

Theorem 1.5. Let k, ` ∈ N be such that one of the following conditions is
satisfied

(i) ` = 2;
(ii) d is a prime divisor of p− 1, and (4`)k < p;
(iii) the polynomial Xp−1+· · ·+X+1 is irreducible in Fd[X] and max(k, `) < p.

Let f ∈ Fp[X] be a polynomial of degree k with no multiple roots in F̄p. Then
we have

C`(Vf , p) ≤ `k
(
1 +

20k log p√
p

)`

+ 9
(d− 1

d

)`(
1 +

10k log p√
p

)`

`k
√

p log p. (1.9)

Note that Johnsen [7] and Choi and Zaharescu [2] (in particular, see Lemma
2) studied the distribution of the d-powers in finite fields Fq. The f(X) = X
special case of our results covers the distribution of the d-powers in Fp, thus some
of ours results (in particular (1.9) above) are extensions and generalizations of
the q = p special case of some results in [7] and [2].

In cryptography we need to know how rich is the structure of a large family
of pseudorandom subsets. In particular we would like to be sure that a subset is
not determined by just a few elements of it. To study this problem, Ahlswede,
Khachatrian, Mauduit and Sárközy [1] defined a complexity measure for families
of pseudorandom sequences. They applied it to the family of the sequences(

f(n)
p

)
defined in [5] and they showed that the complexity of this family is

large.
Mosaki and the authors [3] introduced a similar definition of complexity of

families subsets. They applied it to the families of subsets defined by (1.2) and
proved that the complexity is large.

In the last section of this paper we will use the definition of complexity given
in [3] to study the complexity of the family of subsets Vf for all polynomial f of
degree at most k and with no multiple roots in F̄p.
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Definition 1.6. Let F be a family subsets of {1, . . . , N}. Then the family
complexity K(F) of F is defined as the greatest k ∈ N such that for every
A ⊂ {1, . . . , N} with |A| = k and every partition A = B ∪ C, B ∩ C = ∅, there is
an R ∈ F such that R∩A = B.

(This implies that writing Rc = {1, . . . , N} \ R, we have Rc ∩ A = C.) We
will prove that our family of pseudorandom subsets is rich.

Theorem 1.7. Let F(k) denote the family of the subsets Vf formed with all
polynomials f ∈ Z[X] of degree ≤ k and with no multiple roots in F̄p. For all
t ≤ k + 1 such that

(2t− 3)pt−1 <
(p− 1

d

)t

, (1.10)

the complexity of F(k) is ≥ t.

To prove this theorem, we use the Lagrange interpolation polynomials. The
difficulty is that we have to find some suitable polynomials with no multiple
roots. In [1], the authors solved this problem by showing that any polynomial
f ∈ Fp[X] may be written in the form f = h2f∗ with h, f∗ ∈ Fp[X] and such

that f∗ has no multiple roots in F̄p; so that
(

f(n)
p

)
=

(
f∗(n)

p

)
.

This argument doesn’t work in our problem. We will use a different approach.
We will apply the Lagrange interpolation method to many suitable sequences
and we will use an algebraic lemma of Ore [11] (see also [8] Theorem 6.13 p.
275) to prove that at least one of these polynomials has no multiple roots.

In [3] we already met this difficulty of finding interpolation polynomial with-
out multiplicative roots. We worked in a general situation and the result we
obtained by combinatorial arguments could be applied here. It would give The-
orem 1.7 with (1.10) replaced by t ≤ p−1

d

(
1− p−1

dp

)
.

We decided to present here our alternative proof because it is a little shorter
and gives a different point of view.

2. The cardinality of Vf and the distribution measure:
proofs of Theorem 1.1 and Theorem 1.2

The main tool of the proof of these two theorems is the following upper bound
for short character sums.
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Lemma 2.1. Suppose that p is a prime number, χ is a non-principal character
modulo p of order d (so that d|p−1), f(x) ∈ Fp[X] has the factorization f(X) =
b(X − x1)d1 · · · (X − xs)ds (where xi 6= xj for i 6= j) in F̄p with

(d, d1, . . . , ds) = 1. (2.1)

Let X, Y be real numbers with 0 < Y ≤ p. Then∣∣∣∣
∑

X<n≤X+Y

χ(f(n))
∣∣∣∣ < 9s

√
p log p.

This is Lemma 2 in [12], it is a slightly modified form of Theorem 2 in [9],
and it was derived from A. Weil’s theorem [13].

We denote by χ0 the principal character over Fp. By the orthogonality of
characters of order d, we have for x ∈ Fp :

∑

χd=χ0

χ(x) =

{
d if ∃ y ∈ Fp \ {0} : x = yd

0 otherwise.
(2.2)

By Lemma 2.1 we have

card Vf =
∑

x∈V

1 =
1
d

∑

χd=χ0

∑

x∈Fp

χ(f(x))

=
1
d

∑

x∈Fp

χ0(f(x)) +
1
d

∑

χd=χ0
χ 6=χ0

∑

x∈Fp

χ(f(x))

=
p−m

d
+ O(k

√
p log p),

where the implicit constant in the Landau symbol is in absolute value less than 9.
This proves Theorem 1.1.
The basic ideas of the proof of Theorem 1.2 are the same as the proof of (3.5)

of Theorem 3.1 in [4] but in some steps there are differences arising from the fact
that here f is not assumed to be a permutational polynomial. The associated
sequence {en}1≤n≤p defined by (1.1) is

en =

{
1− α if n ∈ Vf

−α if n 6∈ Vf ,

with
α =

card Vf

p
=

1
d
− m

dp
+ 9θkp−1/2 log p, (2.3)

with some θ satisfying |θ| ≤ 1.
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We also define

β :=
1
d
− α so that |β| ≤ m

dp
+

9k log p√
p

.

Let a, b, t be positive integers such that b + a(t− 1) ≤ p. Using the orthogo-
nality formula (2.2) we proved in [4] the equality

t−1∑

j=0

eaj+b =
1
d

∑

χd=χ0

∑

0≤j≤t−1

χ(f(aj + b))− αt.

The contribution of χ0 is t/d minus the number of 0 ≤ j ≤ t− 1 such that
f(aj + t) ≡ 0 (mod p). There are at most m such integers j, thus we have

∣∣∣1
d

t−1∑

j=0

χ0(f(aj + b))− αt
∣∣∣ ≤ m

d
+ tβ ≤ 11k

√
p log p. (2.4)

It remains to compute the contribution of the non-trivial characters. By Lemma
2.1 we have
∣∣∣1
d

∑

χd=χ0
χ6=χ0

∑

0≤j≤t−1

χ(f(aj+b))
∣∣∣ ≤ 1

d

∑

χd=χ0
χ6=χ0

9k
√

p log p ≤ 9k
(d− 1)

d

√
p log p. (2.5)

The upper bounds (2.4) and (2.5) give (1.7).

3. The correlation: proof of Theorem 1.4

In this section we will denote by m the number of zeros of f in Fp. The
beginning of the computation of the correlation is nearly the same as in [4].

Let ` ≥ 2. We have to compute

C`(V, p) = max
M,D

∣∣∣
M∑

n=1

en+d1 · · · en+d`

∣∣∣,

where the maximum is over all M and D = (d1, . . . , d`), 0 ≤ d1 ≤ . . . ≤ d` such
that M + d` ≤ p.
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By (2.2)

en+d1 · · · en+d`
=

=
∏̀

j=1

[
(1− α)

1
d

∑

χd=χ0

χ(f(n + dj))− α
(
1− 1

d

∑

χd=χ0

χ(f(n + dj))
)]

.

=
∏̀

j=1

[1
d

∑

χd=χ0

χ(f(n + dj))− α
]
.

In the following step we will compute the perturbations arising from the integers
n such that

∏
1≤j≤` f(n + dj) ≡ 0 (mod p). If f(n + dj) 6≡ 0 (mod p) for all

1 ≤ j ≤ ` then

en+d1 · · · en+d`
=

∏̀

j=1

[1
d

∑

χd=χ0
χ 6=χ0

χ(f(n + dj)) + β
]

=
1
d`

∏̀

j=1

[ ∑

χd=χ0
χ 6=χ0

χ(f(n + dj)) + dβ
]
.

If there exists some j, 1 ≤ j ≤ ` such that f(n + dj) ≡ 0 (mod p) then

en+dj =




−α if f(n + dj) ≡ 0 (mod p),
1
d

[∑
χd=χ0
χ 6=χ0

χ(f(n + dj)) + dβ
]

otherwise.

In this last case we have
∣∣∣en+d1 · · · en+d`

− 1
d`

∏̀

j=1

[ ∑

χd=χ0
χ 6=χ0

χ(f(n + dj)) + dβ
]∣∣∣ =

=
∏

1≤j≤`
f(n+dj) 6≡0 (mod p)

∣∣∣1
d

∑

χd=χ0
χ 6=χ0

χ(f(n + dj)) + β
∣∣∣

∏
1≤j≤`

f(n+dj)≡0 (mod p)

| − α + β|.

We have, for all n ∈ N,
∣∣∣1
d

∑

χd=χ0
χ 6=χ0

χ(f(n + dj)) + β
∣∣∣ ≤ 1− 1

d
+ |β| ≤ 1 +

m

dp
+

9k log p√
p

,

and

| − α + β| = | − 1
d

+ 2β| ≤ 1
d

+
2m

dp
+

18k log p√
p

.
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Finally we have
∣∣∣en+d1 · · · en+d`

− 1
d`

∏̀

j=1

[ ∑

χd=χ0
χ 6=χ0

χ(f(n + dj)) + dβ
]∣∣∣ ≤

(
1 +

20k log p√
p

)`

.

For any 1 ≤ j ≤ `, there are m integers in Fp such that f(n + dj) ≡ 0 (mod p).
Thus there are at most `m integers n ∈ {1, . . . , p} such that

∏`
j=1 f(n+ dj) ≡ 0

(mod p).
So we have

∣∣∣
M∑

n=1

en+d1 · · · en+d`
− Z

∣∣∣ ≤ `m

(
1 +

20k log p√
p

)`

, (3.1)

with

Z =
1
d`

M∑
n=1

∏̀

j=1

[ ∑

χd=χ0
χ 6=χ0

χ(f(n + dj)) +
1
p

]
. (3.2)

In the rest of the proof we will give an upper bound for Z. We compute this
product :

Z =

1
d`

∑̀
r=0

1
p`−r

∑

1≤j1<...<jr≤`

∑
χj1

6=χ0

χd
j1

=χ0

· · ·
∑

χjr
6=χ0

χd
jr

=χ0

M∑
n=1

χj1(f(n + dj1)) · · ·χjr (f(n + djr )).

We have to obtain an upper bound for the innermost sums of type
M∑

n=1

χj1(f(n + dj1)) · · ·χjr (f(n + djr )),

where 0 ≤ r ≤ ` and χj1 , . . . χjr are non-principal characters of order dividing d.
A simpler form of the following step was already done in [4] and it is in fact

an adaptation of some ideas of [12]. We rewrite here the argument because we
need precise information on the order of the characters.

Since F∗p is cyclical, each χjh
is of form χjh

= χδh , where χ is a character of
order p− 1 and 1 ≤ δh < p− 1. Let δ = (δ1, . . . , δr), and δi = δDi for 1 ≤ i ≤ r;
we have (D1, . . . , Dr) = 1. Since χd

ji
= χ0, we have dδi ≡ 0 (mod p− 1).

We write χ∗ = χδ. It is proved in (16) in [12] that χ∗ 6= χ0, more precisely,
the order D of χ∗ is D = (p− 1)/(p− 1, δ) and in our case, D|d. Furthermore,
there exists µ such that δ = µ(p− 1)/d. We have δi = µ(p− 1)Di/d < p− 1 for
all 1 ≤ i ≤ r. Thus 1 ≤ Di < d, for all 1 ≤ i ≤ r.
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The computations in p. 383 of [12] yield

M∑
n=1

χj1(f(n + dj1)) · · ·χjr
(f(n + djr

)) =
M−1∑
n=0

χ∗
(
f(n + dj1)

D1 · · · f(n + djr
)Dr

)
.

(3.3)
We write f(X) = bg(X), b ∈ Fp, g ∈ Fp[X] a unitary polynomial. Let

B =
∏r

i=1 bDi . The roots of f and g are the same. The sum (3.3) becomes :

M∑
n=1

χj1(f(n + dj1)) · · ·χjr (f(n + djr )) =

= χ∗(B)
M−1∑
n=0

χ∗
(
g(n + dj1)

D1 · · · g(n + djr
)Dr

)
.

We would like to apply Lemma 2.1 to the polynomial

F (X) =
r∏

λ=1

g(n + djλ
)Dλ .

We have to check whether F satisfies condition (2.1). For this, we follow the
proof of Lemma 2 in [5] to show that if (k, `, p) is d-admissible then we can
apply Lemma 2.1. Like in the proof of this Lemma 2 in [5] we will say that two
polynomials ϕ,ψ ∈ Fp[X] are equivalent and write ϕ ∼ ψ if there exists a ∈ Fp

such that ψ(X) = ϕ(X + a). Let f1, . . . , ft be the irreducible factors of g over
Fp. This irreducible factors are distinct because we have supposed that f has
no multiple roots. We group these factors so that in each group the equivalent
factors are collected.

Let ϕ1, . . . , ϕt be the representants of the each equivalence classes of factors.
Then g can be written as

g(X) =
t∏

i=1

si∏

j=1

ϕi(X + ai,j),

si being the number of irreducible factors of g equivalent to ϕi (1 ≤ i ≤ t) so
that

∑t
i=1 si = k.

Since f has no multiple roots, condition (2.1) in Lemma 2.1 is not satisfied if
and only if there exists q, a prime factor of d, dividing the multiplicity of each
root of F . Let u be a zero of F . There exists one and only one 1 ≤ i ≤ t such
that u belongs to the equivalence class of ϕi. There exists c ∈ Fp such that u is
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a zero of the polynomial ϕi(X + c). Thus the multiplicity of u is
si∑

j=1

∑
1≤λ≤r

ai,j+dλ≡c (mod p)

Dλ.

Finally we cannot apply Lemma 2.1 if and only if, there exists a prime q|d such
that for all c ∈ Fp and 1 ≤ i ≤ t

si∑

j=1

∑
1≤λ≤r

ai,j+dλ≡c (mod p)

Dλ ≡ 0 (mod q).

This does not hold if (k, `, p) is d-admissible.
Thus we may apply Lemma 2.1 and end the computation as in [4] to obtain

the result.

4. Admissible triples

In this section we will generalize the ideas of [5] to provide sufficient conditions
for d-admissibility.

Theorem 4.1. (i) For every prime p and d such that d|p− 1, and for all k ∈ N
the triple (k, 2, p) is d-admissible.

(ii) If k, ` ∈ N∗ and d is a prime divisor of p − 1, such that (4`)k < p, then
(k, `, p) is d-admissible.

(iii) If the polynomial Xp−1 + · · ·+X +1 is irreducible in Fq[X] for all prime
factors q of d then (k, `, p) is d-admissible if max(k, `) < p.

P r o o f. (i) We suppose that the result is false. There exist A ⊂ Fp with car-
dinality ≤ k, 1 ≤ d1 < d2 ≤ p, 1 ≤ D1, D2 < d with (D1, D2) = 1 and a prime
factor q of d such that for all c ∈ Fp we have α(c) ≡ 0 (mod q).

If q|D1 then q - D2 since (D1, D2) = 1. In this case, for all c ∈ Fp,

α(c) ≡
{

D2 if c ∈ A+ d2

0 otherwise
(mod q).

In particular α(c) 6≡ 0 (mod q) if c ∈ A+ d2. Thus q - D1D2.
We write b = d2 − d1. Since q - D1, every element of A + d1 must belong to

A + d1 + b. It follows that A + d1 = A + d1 + b. In [5] it is shown that this
implies A+ d1 = Fp.
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(ii) Goubin, Mauduit and Sárközy proved that if (k, `, p) satisfies the condition
(ii), then there exists c ∈ Fp such that the equation a+dj ≡ c (mod p) has only
one solution. For this c, we have α(c) = Dj 6≡ 0 (mod p).

It remains to prove (iii). We adapt the proof of Theorem 3 of [5]. Let q be a
prime factor of d.

We consider the polynomial in Fq[X] defined by P (X) =
∑

c∈C DcX
s(c) where

s(c) denotes the least non negative element of the residue class c modulo p.
For 0 ≤ u < p we have u+s(c) ≡ s(c + u) (mod p). More precisely, s(u+c) =

u + s(c) or u + s(c) − p. Since Xp ≡ 1 (mod Xp − 1), we have XuP (X) ≡∑
c∈C DcX

s(u+c) (mod Xp − 1).
We obtain :

∑

a∈A
Xa

r∑

j=1

DjX
s(dj) ≡

∑
1≤j≤r

a∈A

DjX
s(a+dj) (mod Xp − 1)

≡
∑

b∈Fp

Xs(b)α(b) (mod Xp − 1).

We have q|(d, α(b) : b ∈ Z) if and only
∑

b∈Fp
α(b)Xb = 0 in Fq[X]. When P

is a polynomial of degree less than p we see that P = 0 if and only if P ≡ 0
(mod Xp − 1).

We suppose that 1 + X + · · · + Xp−1 is irreducible in Fq[X] and that there
exists A ⊂ Fp, |A| ≤ k, D = (d1, . . . , dr) with 0 ≤ d1 < . . . < dr < p,
1 ≤ D1, . . . , Dr < d such that q|(α(b) : b ∈ Fp). We write PA(X) =∑

a∈AXa and PD(X) =
∑r

j=1 DjX
s(dj). If q divides all the weights α(b) then

(Xp−1)|PA(X)PD(X). In particular Φp(X) = 1+X+· · ·+Xp−1|PA(X)PD(X).
Since Φp is irreducible in Fq[X] this implies Φp|PA or Φp|PD. In the first case
we should have A = Fp and in the second case ` = p. These two cases are
impossible. This ends the proof of Theorem 4.1. ¤

5. The complexity of the family Vf : proof of Theorem 1.7

Let A ⊂ Fp be a set of cardinality t ≤ k + 1. If t = 1, A = {a} we take
the polynomial f = 1 if we impose that f(a) is a d-power residue and f = 0
otherwise.

Now we suppose that t ≥ 2. Let B ∪ C = A be a partition of A. We write

A = {a1, . . . , ar, ar+1, . . . , at},
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with B = {a1, . . . , ar} and C = {ar+1, . . . , at}. We have to find a polynomial f
of degree ≤ k with no multiple roots such that for 1 ≤ i ≤ r, f(ai) is a non-zero
d-power residue and for r + 1 ≤ i ≤ t, f(ai) is not a non-zero d-power residue.

Let G denote the set of the different non-zero d-power residues and Gc its
complementary in Fp.

The set G is G = ϕ(F∗p) where ϕ is the homomorphism F∗p → F∗p defined by
ϕ(x) = xd.

Thus |G| = card F∗p/| kerϕ| = (p− 1)/d and |Gc| = p− (p− 1)/d.

Let u = (u1, . . . , ut) ∈ Ft
p with u1, . . . , ur ∈ G and ur+1, . . . , ut ∈ Gc. There

exists a polynomial f ∈ Z[X] of degree ≤ t− 1 ≤ k such that f(ai) = ui for all
1 ≤ i ≤ t.

Using the Lagrange interpolation formula this polynomial is

fu(X) =
t∑

i=1

ui

∏
1≤j≤t

j 6=i

(X − aj)(ai − aj), (5.1)

where (ai − aj) denotes the multiplicative inverse of ai − aj in Fp.

The difficulty is that these polynomials fu may have multiple roots in F̄p.

Anyway in this way we find ((p − 1)/d)r(p − (p − 1)/d)t−r polynomials fu

such that
{

ai ∈ Vfu for 1 ≤ i ≤ r

ai 6∈ Vfu for r + 1 ≤ i ≤ t.

We will show that at least one of these polynomials has no multiple roots.

For u = (u1, . . . , ut) ∈ Gr × (Gc)t−r, let D(u) denote the discriminant of the
interpolation polynomial fu defined by (5.1). Its degree is at most 2t− 3. This
polynomial belongs to Fp[u1, . . . , ut].

We will use the following theorem of Ore [11]. A proof may be also found in
the book of Lidl and Niederreiter [8] theorem 6.13 p. 275.

Theorem 5.1. Let f ∈ Fq[x1, . . . , xn] a polynomial with degree d ≥ 0. Then
the equation f(x1, . . . , xn) = 0 has at most dqn−1 solutions in Fn

q .
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The polynomial D is not identically equal to 0. If we take

u1 =
t∏

j=2

(a1 − aj), u2 = . . . = ut = 0,

then fu =
∏t

j=2(X − aj), has no multiple roots, thus D(u) 6= 0.
By Theorem 5.1 and since (1.10) is assumed,

|{u ∈ Fp : D(u) ≡ 0 (mod p)}| ≤ (2t− 3)pt−1 ≤ |G|t.
Thus there exists u ∈ Fp such that D(u) 6≡ 0 (mod p), i. e., such that fu has
no multiple roots.

Remark. We did not really use the special nature of the set G. In the above
argument we could replace G by an arbitrary subset of Fp. It would be possible
to find a interpolation polynomial fu with no multiple roots, if

(2t− 3)pt−1 ≤ (min(|G|, p− |G|))t.
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