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Abstract

The clustering of longitudinal data from a Bayesian perspective is consid-
ered, with particular attention to the selection of the number of components.
Instead of using asymptotic criteria (e.g. BIC), we propose to directly maxi-
mize an exact quantity based on conjugated prior distributions of the model
parameters. The prior parameters are estimated by gradient descent, via
automatic differentiation. Using simulated data, we demonstrate that, in
terms of accuracy of the obtained clustering, our approach is comparable
to two frequentist approaches commonly used in this setting, and it outper-
forms them in selecting the actual number of clusters.

1 Framework
We consider longitudinal data with D measurements for N individuals. Thus, a
vector yi ∈ RD keeps track of the measurements for the i-th individual. In the
following, it is assumed that measurements are taken at the same times across
individuals and that the number of measurements for each individual is always
equal to D. This assumptions plays a crucial role in Section 3. The j-th measure-
ment for the i-th individual (yij) is taken at time tj, with j ≤ D. The following
generative model is adopted

yij = φ(tij)Tβzi
+ σεij, ∀i ≤ N, j ≤ D, (1)

where zi is a latent random variable labeling the group (cluster) of the i-th indi-
vidual, φ(·) : R → RK is a user defined feature map (e.g. identity, polynomial,
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etc.), β1, . . . , βQ are parameters in RK and σ is the scalar standard deviation of
the noise term. The residuals εij are all independent and Gaussian distributed
N (0, 1). The following more compact notation will also be employed

yi = Φβzi
+ σεi, (2)

where Φ : RD → RD×K is the design matrix, whose j-th row is φ(tij)T and εi ∈ RD

follows a multivariate isotropic Gaussian distribution. In the following, y1, . . . , yN
are assumed independent.

Remark 1. Notice that, as long as the number of measurements and the measure-
ment times are the same for each individual, Φ does not depend either on i or zi.

Remark 2. The generative model detailed so far can be extended straightforward
by assuming that the standard deviation σ also depends on zi. All the results
reported in this paper will still be valid.

1.1 A frequentist approach and some related drawbacks
Assuming that z1, . . . , zN are i.i.d. random variables such that

P(zi = q) = πq, ∀q ≤ Q (3)

where πq ∈ [0, 1] and ∑q πq = 1 and thanks to Remark 1, it is easy to see that
y1, . . . , yN are i.i.d. following the mixture distribution

p(yi|θ,Q) =
Q∑
q=1

πqg(yi; Φβq, σ2ID), (4)

where zi was integrated out, θ := {βq, πq, σ2}q≤Q denotes the set of the model
parameters and g(·;µ,Σ) denotes the pdf of a multivariate Gaussian distribution
with mean µ and covariance matrix Σ. A standard approach to estimate the
parameters of the model described so far (included Q) would consist into (see for
instance Muthén and Shedden, 1999; Muthén and Asparouhov, 2008):

1. maximizing the log-likelihood ∑N
i=1 log p(yi|θ,Q) with respect to θ, for in-

stance via an EM algorithm. Once obtained θ̂ML, the posterior distribution
p(zi|yi, θ̂ML, Q) could be computed for all i and used to cluster the observa-
tions. Then,

2. the number of components Q might be estimated via some model selection
criterion (e.g. AIC or BIC).

2



There are drawbacks to using AIC/BIC for selecting the number of latent
mixture components. For example, BIC is an asymptotic criterion needing a large
number of observations to be given and some relevant assumptions to be fulfilled
by the data that may not be straightforward in case of longitudinal observations.
In addition, BIC was shown to possibly overestimate of the number of components
in mixture models (Biernacki et al., 2000; Baudry et al., 2010).

Under a Bayesian model-based clustering framework, we propose a model selec-
tion criterion that is both more conservative than BIC and exact (i.e., not based
on asymptotic theory). A natural choice is the Integrated Classification Likeli-
hood (ICL, Biernacki et al., 2000). See Appendix A for a formal definition of ICL
and the proof that ICL is a lower bound of BIC.1

In Section 2, we propose a Bayesian framework to perform longitudinal data
clustering and model selection based on Eq. (2). Then, is Section 3 we detail an
original inference procedure not sampling based and prove some results allowing
us to dramatically speed up the estimation algorithm. Finally, in Section 4 we
report simulation study results demonstrating that our method outperforms some
frequentist alternative methods. A final section concludes the paper

2 A Bayesian perspective
In this section, we detail a Bayesian framework allowing us to i) cluster the ob-
servations y1, . . . , yN in Q groups and ii) select Q in a non asymptotic framework.
The target probability distribution, that we would like to maximize with respect
to the pair (Z,Q) is

p(Z,Q|Y ) =
∫
p(Z,Q|Y, θ)p(θ)dθ (5)

where Z := (z1, . . . , zN), Y := (y1, . . . , yN) and the model parameters θ are seen as
random variables and integrated out. Note that, from a full Bayesian perspective,
the number of clusters Q is also view as a random variable in the above equation.
In order to develop an estimation algorithm that is reasonably fast, we choose not
to implement MCMC algorithms to simulate the above posterior distribution and
present in the following an alternative strategy. Thanks to the Bayes rule it holds
that

p(Z,Q|Y ) = p(Y, Z|Q)p(Q)
p(Y ) .

1As another alternative to BIC we also cite the slope heuristic (Birgé and Massart, 2007), a
criterion whose penalty has a multiplicative factor that can be estimated from the data. However,
this method requires to compute several log-likelihoods (one for each candidate Q) and will not
be considered in this paper.
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Since the denominator does not depend on (Z,Q), if we further assume that the
prior distribution of Q is uniform (p(Q) ∝ 1) it holds that

arg max
(Z,Q)

p(Z,Q|Y ) = arg max
(Z,Q)

p(Y, Z|Q) (6)

2.1 A closed form complete data integrated log-likelihood
The complete data integrated log-likelihood on the right hand side of Eq. (6) is

p(Y, Z|Q) =
∫
p(Y, Z|θ,Q)p(θ|Q)dθ, (7)

where we recall that θ := {βq, πq, σ2}q. Note that this quantity is the one that
the ICL criterion seeks to approximate (see Appendix A). To keep the notation
uncluttered, we denote β := {βq}q and π := {πq}q. Assuming that the prior
distribution factorizes over the model parameters, namely

p(β, σ, π) = p(β, σ)p(π),

the integrated log-likelihood in Eq. (7) factorizes too

p(Y, Z|Q) = p(Y |Z,Q)p(Z|Q). (8)

By adopting prior conjugated distributions for β, σ and π, the above likelihood
can be expressed in a closed form. Thus, it is first assumed that, conditionally on
σ2, β1, . . . , βQ follow independent Gaussian prior distributions

βq ∼ N
(
0, σ2ηqIK

)
, (9)

where η1, . . . , ηq are positive parameters and IK is the identity matrix of order
K. The βqs are further assumed to be independent from εi, for all i. Then, σ2 is
assumed to follow an Inverse Gamma prior distribution

σ2 ∼ IΓ(a, b), (10)

where a, b > 0. Finally, π is assumed to follow a Dirichlet prior distribution

π ∼ Dir(α1, . . . , αQ) (11)

where αq > 0 for all q. We will see how to maximize p(Y, Z|Q) in Eq. (8) with
respect to Z and Q in the next section.

First, we focus on the first term on the right hand side of the equality in Eq. (8),
p(Y |Z,Q).
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2.1.1 Integrating with respect to β

By integrating out βq in Eq. (2), we obtain the marginal conditional density of yi

yi|zi, σ2 ∼ N
(
0, σ2

(
ηzi

ΦΦT + ID
))
. (12)

By the law of iterated expectations it follows that

Cov(yi, yj|zi, zj, σ2) = E
[
yiy

T
j |zi, zj, σ2

]
= E

[
Φβzi

βTzj
ΦT |zi, zj, σ2

]
= σ2ηzi

ΦΦT1zi=zj
,

where 1A(·) denotes the indicator function over a set A. The above equation has an
important consequence: after βq is integrated out, the random vectors yi sharing
the same cluster are no longer independent, as they were in the frequentist model.
Moreover, let us denote by

y(q) := {yi|i ≤ N, zi = q}, (13)

the q-th cluster, whose cardinality is denoted by Cq. Since all vectors in y(q) are
Gaussian distributed, their joint conditional density can be specified as

Yq|Z, σ ∼ N
(
0, σ2Gq

)
, (14)

where Yq ∈ RDCq is a column vector obtained by concatenating all the observa-
tions in cluster y(q) and Gq ∈ RDCq×DCq is a block matrix. The blocks on the
main diagonal are of the form

(
ηqΦΦT + ID

)
, whereas the blocks outside the main

diagonal look like
(
ηqΦΦT

)
.

Remark 3. The assumption formulated in Eq. (9) can be rephrased be saying that
all the yi’s in the same cluster y(q) are obtained as random perturbations around a
same signal. This signal is a Gaussian process.

Remark 4. Depending on the nature of the feature map Φ, the generative model
detailed so far can be expressed in the very same way in kernel terms. For instance,
if φ is defined as the identity function, then ΦΦT corresponds to the linear kernel,
whose entry (j, l) is ηqtjtl.
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2.1.2 Integrating with respect to σ2

In the previous section we saw that the marginal conditional density p(Y |Z, σ2, Q)
is

p(Y |Z, σ2, Q) =
Q∏
q=1

p(Yq|Z, σ2)

= 1
(2πσ2)

DN
2
∏Q
q=1

√
det(Gq)

× exp
− 1

2σ2

Q∑
q=1

Y T
q (Gq)−1Yq

 ,
where Gq ∈ RDCq×DCq is the block matrix introduced in Eq. (14). Since, Eq. (10)
states that

p(σ2|a, b) = ba

Γ(a)

( 1
σ2

)a−1
exp

(
− b

σ2

)
1(σ2)]0,∞[,

when looking at the joint conditional density p(Y, σ2|Z,Q) as a function of σ2 we
recognize the pdf of an Inverse Gamma distribution IΓ

(
a+ DN

2 , b+ 1
2
∑Q
q=1 Y

T
q G

−1
q Yq

)
.

Therefore, σ2 can be integrated out to obtain

p(Y |Z,Q) = 1
(2π)ND

2
∏
q

√
det(Gq)

ba

Γ(a)

×
Γ
(
DN

2 + a
)

(
b+ 1

2
∑
q Y T

q (G−1
q )Yq

)DN
2 +a

.

(15)

2.1.3 Integrating with respect to π

The second integral on the right hand side of Eq. (8) can be computed in a similar
fashion. Due to Eq. (11), the posterior distribution functions p(π|Z,Q) is still a
Dirichlet. It can easily be seen that

p(Z|Q) =
Γ
(∑Q

q=1 αq
)

∏Q
q=1 Γ(αq)

∏Q
q=1 Γ(Cq + αq)

Γ
(
N +∑Q

q=1 αq
) (16)

3 Inference
As shown in the previous section, the conjugate prior distributions on θ allowed us
to obtain the integrated log-likelihood log p(Y, Z|Q) in a closed form, depending
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on the hyper-parameters ι := {η, a, b, α}. If the number of groups Q is assumed
to vary in a range {1, . . . , Qmax}, for a given Q, we aim at estimating

Z∗Q := arg max
Z|Q

log p(Y, Z|Q).

Then, the Q leading to the highest value of log p(Y, Z∗Q|Q) will be retained as the
estimated number of clusters (see Section 2).

The estimation of Z∗Q is challenging. The strategy that we propose relies on a
greedy maximization of log p(Y, Z|Q). Similar approaches where used by Côme and
Latouche (2015); Corneli et al. (2016), for instance, in the context of graph data
clustering. The approach slightly changes depending on whether ι is considered as
a fixed hyper-parameter or a parameter to optimize.

3.1 Optimizing with respect to parameters ι
In order to estimate Z∗Q, for a given Q, we rely on the following two steps:

1. Classification Step (CS). Assume that ι is fixed to some value and a con-
figuration Z|Q is given. We compute changes in the integrated log-likelihood
obtained by switching yi from its current cluster to any other cluster, and
retain the movement leading to the highest increase in the log-likelihood. All
the vectors y1, . . . , yN are switched once in such a way. Notice that, since Q
is given, if yi is alone in its cluster, no movement is allowed.

2. Maximization Step (MS). Holding fixed the configuration Z|Q obtained
in the previous step, ι is optimized via automatic differentiation (stochastic
gradient descent).

The two steps are repeated alternatively until no further increase of log p(Y, Z|Q)
is possible. We stress that the algorithm described so far in not guaranteed to
converge to a global optimum. Indeed both the CS (being a greedy step) and the
MS could lead to a local maximum of the integrated log-likelihood. In order to
reduce this risk, either the algorithm should be run several times (for each Q),
with different initialization, or the algorithm might be provided with a “clever”
initialization of Z, for instance obtained by k-means clustering. This latter solution
is adopted in the experiments in Section 4.

Finally, we notice that the two-step algorithm described in this section is rem-
iniscent of the Classification EM algorithm (C-EM, Celeux and Govaert, 1991).
Variational extensions of the C-EM algorithm have recently been used for cluster-
ing and co-clustering purposes (see e.g. Bouveyron et al., 2016; Bergé et al., 2019).
However, the algorithm described in this section exhibits a fundamental difference
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with respect to C-EM algorithm(s). Indeed, while the latter optimizes the com-
plete data log-likelihood with respect to model parameters, the former optimizes
with respect to the prior distributions parameters, since the model parameters
have been integrated away. Moreover, in the above cited works, the M step of the
algorithm has a closed form, whereas our MS relies on stochastic gradient descent.

3.2 Fixed hyper-parameters ι
When the dataset is small or a strong prior knowledge about the modeled phe-
nomenon is available, it might be advisable to use fixed values for the hyper-
parameters ι. In this case, Z∗Q can be estimated via the CS only, which is repeated
until no further increase in the integrated log-likelihood is possible. Notice also
that an intermediate approach will always be possible by only fixing some hyper-
parameters in ι and optimizing with respect to the others.

3.3 Classification Step
Consider the observation yi ∈ RD and assume it currently belongs to the q-th
cluster, namely zi = q. The change in the integrated log-likelihood due to a switch
of yi from the q-th cluster to the l-th cluster can be computed as

∆i:q→l
ll : = log p(Y, Za|Q)− log p(Y, Zb|Q)

= log p(Y |Za, Q)− log p(Y |Zb, Q)
+ log p(Za|Q)− log p(Za|Q),

(17)

where Za and Zb denote the configurations after and before the switch, respec-
tively. As it can be seen by looking at Eqs. (15)-(16), the calculation of ∆i:q→l

ll

basically boils down to compute i) the determinant of Gq and ii) the quadratic
term Y T

q G
−1
q Yq, for all q ≤ Q. We report in the following some results allowing us

to speed up the calculation of these two terms.

First term. First, recall that

Gq =


Bq Aq . . . Aq
Aq Bq . . . Aq

Aq Aq
. . . Aq

Aq . . . . . . Bq

 (18)

where Aq = ηqΦΦT ∈ RD×D and Bq = Aq + ID. Since the size of Gq changes
whenever an observation is switched from one cluster to another, we need a fast way
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to compute det(Gq)2. Theorem 1 in Silvester (2000), whose precise formulation is
reported in Appendix B (additional material), can help us. This theorem basically
allows us to compute det(Gq) in two steps:

1. a first intermediate determinant (IDq) is computed as if Aq, Bq in Eq. (18)
where numbers

IDq := det(Gq) ∈ RD×D, (19)

where the over line is used to differentiate this determinant from the real
one, that we are actually trying to compute. Then,

2. since IDq is itself a matrix, det(Gq) is computed as

det(Gq) = det(IDq). (20)

According to Theorem 1 in Silvester (2000), the above equality holds as long as
all the possible matrix products between two blocks in Gq are commutative. This
condition is fulfilled as stated in the following

Proposition 1. The product between each pair of blocks of Gq is commutative.

Proof. For simplicity, in this proof the subscript q is removed from Aq and Bq,
since not needed. Clearly the products AA and BB are commutative. Moreover,

AB = A(A+ ID) = AA+ A = (A+ ID)A = BA

and the proposition is proven.

Now we can state the following Theorem

Theorem 1. The determinant of Gq can be computed in O(D) as

det(Gq) =
D∏
j=1

(1 + Cqλ
(q)
j ), (21)

where λ(q)
1 , . . . , λ

(q)
D are the eigenvalues of Aq.

Proof. The proof of this Theorem relies on Lemma 1 in Appendix B (additional
material), stating that IDq in Eq. (19) is

IDq = ID + CqAq,

2 For instance, the cost of computing det(Gq) via an LU decomposition is O(D3N3) and this
approach is used by most linear algebra libraries.
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which is a matrix in RD×D. Now, since Aq is symmetric it admits a diagonal
representation Aq = QqΛqQ

T
q , where Λq ∈ RD×D is a diagonal matrix whose non

null entries are the eigenvalues of Aq andQq is an orthogonal matrix whose columns
are the corresponding eigenvectors. Thus

det(IDq) = det(ID + CqQqΛqQ
T
q )

= det
(
Qq(ID + CqΛq)QT

q

)
= det (ID + CqΛq)

=
D∏
j=1

(1 + Cqλ
(q)
j ).

Second term. The quadratic form
Y T
q G

−1
q Yq (22)

is now considered. Adopting the notation in Eq. (18), Theorem 3 in Appendix B
(additional material) states that the inverse matrix G−1

q is also a diagonal block
matrix

G−1
q =


Vq Wq . . . Wq

Wq Vq . . . Wq

Wq Wq
. . . Wq

Wq . . . . . . Vq


where

Wq : = −(ID + CqAq)−1Aq,

Vq : = Wq + ID.
(23)

Thus, to compute the quadratic form in Eq. (22) it is not required to invert the
whole Gq but only the matrix (ID +CqAq). Notice that the computational cost of
this operation is independent of the number of observations N3. Moreover

Y T
q G

−1
q Yq =

Cq∑
i=1

y
(q)
i

T
Vqy

(q)
i +

Cq∑
i=1

Cq∑
j=1
j 6=i

y
(q)
i

T
Wqy

(q)
j

=
Cq∑
i=1

y
(q)
i

T
Idy

(q)
j +

Cq∑
i=1

Cq∑
j=1

y
(q)
i

T
Wqy

(q)
j

= ‖Yq‖2
2 +

 Cq∑
i=1

y
(q)
i

T

Wq

 Cq∑
j=1

y
(q)
j

 ,
3For instance, relying on the Gauss-Jordan elimination, the computational cost of the inver-

sion would be O(D3), which is smaller than O(ND3) required to invert Gq.
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Figure 1: Figure 1a shows random trajectories around four signals (case γ = 0.3).
Figure 1b shows a range of curves for the four signals as γ increases up to 0.7,
with darker blue lines corresonding to higher values of γ.

where ‖·‖2 denotes the Euclidean norm and we denoted by y
(q)
i ∈ RD the i-th

column vector in cluster y(q). Since the sum of all observations in cluster y(q)

(namely ∑Cq

j=1 y
(q)
j ) can be pre-computed before and after each switch and Wq does

not depend on i, the last term on the right hand side of the above equation can
be computed in O(D2) that can be sensibly smaller than O(N2D2) needed for a
direct calculation of Y T

q G
−1
q Yq.

4 Experiments on simulated data
Based on a simulation study, this section compares the Bayesian approach de-
scribed with two frequentist alternatives. The comparison focuses both on the
accuracy of clustering for given Q and on model selection when Q is unknown. In
our Bayesian framework, model selection is performed via the procedure described
in Section 3. For the other two methods both BIC and ICL are computed.

The function flexmix in the eponymous R package (https://cran.r-project.
org/web/packages/flexmix/index.html) fits mixtures of generalized linear mod-
els, thus it can be used to fit the generative model in Eq. (4), but with σ also
depending on the cluster of the observation. That model is very similar to the
frequentist version of the generative model introduced in Section 2. Since longi-
tudinal data can be seen as high dimensional data, clustering and model selection
can also be performed via the function hddc in the R package HDclassif (https:
//cran.r-project.org/web/packages/HDclassif/index.html) based on a la-
tent mixture model which fits high dimensional data in group-specific subspaces
(Bouveyron et al., 2007; Bergé et al., 2012).
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The simulation study is based on Q = 4 signals being the probability den-
sity functions of the four Gaussian distributions: N (−0.83, γ), N (−0.83, 0.7),
N (0.91, γ) and N (0.91, 0.7). Here, the standard deviation γ is a free parame-
ter varying in the range [0.3, 0.7]. The four smooth dark curves in Figure 1a show
the four signals with γ = 0.3. We use a regular grid of 40 time points between -1.5
and 1.5 and, for each time point, we sample 50 Gaussian perturbations around
each signal in that point, with a standard deviation σ = 0.2. In total, N = 200
trajectories are sampled (colored curves in Figure 1a). Note that model selection
becomes harder as γ increases up to 0.7. Eventually, as Figure 1b shows, only two
distinct signals can be detected.

Clustering. First we focus on the accuracy of clustering, without considering
model selection. We sampled 10 datasets of 200 trajectories, one dataset for each
value of γ ∈ [0.3, 0.7]. Each clustering algorithm was run on each dataset provided
with the actual value of Q = 4 and an initial value of Z obtained via k-means
clustering4. However, note that they do not share the very same initial value of Z,
since hddc (for instance) run a k-means internally. Adjusted Rand indexes (ARIs,
Rand, 1971) are used to asses the obtained cluster assignments. We recall that, in
clustering analysis, when comparing two label vectors Z1 and Z2, the ARI takes
values in [0, 1], where 1 means Z1 = Z2 (up to label switching) and 0 means that Z1
and Z2 are as far as two independent, purely random cluster assignments. Results
can be seen in Figure 2. The orange curve refers to the k-means used to initialize
our clustering algorithm (blue curve, henceforth called “Bayes”). As it can be
seen, Bayes can always slightly improve the ARI obtained by k-means and it works
particularly well for values of γ in [0.5, 0.6]. On the contrary, hddc and flexmix are
slightly stronger for higher values of γ > 0.6. However the differences in the ARIs
of the three algorithms on the whole range [0.3, 0.7] do not seem significant and
they might be attributed to the initialization. We feel that the three algorithms
have very similar performances in terms of clustering. Some technical details about
how Bayes was set. A polynomial kernel of order 6 was employed (same settings
for flexmix). See in Figure 3 the MAP estimates of the means of the predictive
distributions on time (case γ = 0.41). The initial values of the parameters ι were
set as ηq = 1, for all q and a = b = 1. In our simulated experiments, we found that
different initial values for these parameters did not impact on the final result. The
Dirichlet parameter α is less trivial to set. This point will be discussed in next
section. Regarding the Maximization Step (Section 3.1), maybe due to a lack of
regularity of the integrated log-likelihood, we needed to fix the learning rate of the

4Equivalent results to those reported in this section were obtained when providing each algo-
rithm with ten random initializations and retaining the estimates corresponding to the highest
log-likelihood (not reported).
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Figure 2: Adjusted Rand indexes obtained by the clustering algorithms for different
values of γ.

SGD algorithm to the small value of 2e-04 and we stopped the last MS after 100
epochs. An example of the prior parameters estimates after optimization can be
seen in Table 1.

Table 1: Final values of the prior parameters after optimization (γ = 0.3).

Parameter Initial value Final value
η (1.0, 1.0, 1.0, 1.0) (0.99, 0.95, 0.96, 0.97)
a 1.0 1.14
b 1.0 0.74
α 100 92.22

Model Selection. Concerning the choice of Q, the three clustering algorithms
were run again on each simulated dataset, testing Q in {1, 2, 3, 4, 5, 6}. Being
other settings as before, the value of Q leading to the highest value of the model
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Figure 3: Data clustered via Bayes algorithm. The solid dark lines are the means
of the predictive distributions on time, with prior parameters estimated by Bayes
(case γ = 0.41). The dashed lines delimit the 95% empirical confidence regions.

selection criterion (BIC or ICL) was retained. The final estimates of Q are reported
in Figure 4. BIC and asymptotic ICL selected the very same value of Q = 2 for
hddc. The green curve reports the value of Q selected by the BIC for flexmix.
When adopting ICL, the same values of Q were selected except for the fifth value
of γ (γ = 0.51) where ICL selected Q = 3 instead of Q = 4. So we only reported
the best choice. In the light of Figure 2, it is surprising that hddc never detects
more then Q = 2 clusters, since its clustering abilities are comparable to those of
the other algorithms. On the contrary, flexmix tends to overestimate Q for smaller
values of γ, both with BIC or ICL. We re-run flexmix several times with different
initial values of Z, random or k-means, but, at some point it always selects a value
of Q higher than 4. As expected, the exact ICL from Eqs (8)-(15)-(16) selects
Q = 4 groups for small values of γ and no algorithm or model selection criterion
selects more than two clusters since γ = 0.6 onward.
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Figure 4: The estimated number of groups with decreasing γ.

5 Discussion and perspectives
The experiments in the previous section seem to suggest that, whereas our ap-
proach reaches the state of art in terms of clustering, it could bring a net im-
provement in terms of choice of Q. Indeed, practitioners might wish to use it only
as a model selection tool, by simply using either the k-means Z or their own Z
in Eq. (5) and (possibly) estimating other parameters via the MS alone. Further
experiments on simulated and real datasets are needed to confirm such intuitions,
especially in case of non-Gaussian noise.

Some final remarks. In the initialization of the prior parameters, when using a
random initialization for Z, the choice of the Dirichet parameter α had an impact
on the final clustering. For simplicity we assumed the Dirichlet distribution in
Eq. 11 is symmetric. We noticed that the Classification Step detailed in Section 3.3
tended to switch too many observations at once, thus emptying some clusters.
A similar remark was previously made by Côme and Latouche (2015); Corneli
et al. (2016) in the context of graph clustering. However, such a tendency to
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over-switching can be resisted by picking a large value for the initial α (see Ch.4
of Fruhwirth-Schnatter et al., 2019, for a detailed discussion about the Dirichlet
prior hyper-parameters in mixture analysis.). In our our case, we adopted an
initial value of α = 100. The initial value of α is less relevant when the algorithm
is provided with a “smarter” k-means initialization.

As anticipated in the previous section, the potential of the MS is currently
limited due to a lack of regularity of the loss function. Further researches might
focus on possible solutions to this issue. Moreover, we assumed that measure-
ment times are shared across the observations y1, . . . , yN . Although the Bayesian
strategy for clustering and model selection proposed in this paper does not need
this assumption, the results presented in Section 3.3 do. A deep inspection of the
general case, where the design matrix Φ in not the same for all the observations
might be considered.

A ICL and BIC
We consider a standard mixture model where the N observed variables are denoted
by X := (x1, . . . , xN) and the corresponding latent variables by Z = (z1, . . . , zN).
The unknown number of mixing components is K. The (asymptotic) BIC and
ICL criteria are defined as follows

BICK := max
θ

log p(X|θ,K)− ν(K)
2 logN (24)

and
ICLK := max

θ
log p(X,Z|θ,K)− ν(K)

2 logN, (25)

where θ denotes the set of the model parameters, ν(K) is the number of model
parameters and log p(·) denotes the log density of the observations.

Remark 5. The ICL criterion in Eq. (25) is an approximation of the marginal
log-likelihood

log p(X,Z|K) = log
∫
θ
p(X,Z|θ,K)p(θ|K)dθ, (26)

where the model parameters are integrated out (Biernacki et al., 2000). If the prior
distribution p(θ|K) is conjugated, the quantity on the left hand side of the above
equation can be computed explicitly. We sometimes call it exact ICL.

The following notations are adopted

θ̂ = arg max
θ

log p(X|θ,K), (27)

θ = arg max
θ

log p(X,Z|θ,K) (28)
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and we stress that, in general, θ̂ 6= θ.
The following Proposition formally shows that ICLK in Eq. (25) is a lower

bound of BICK . This result was mentioned in (Biernacki et al., 2000; Baudry
et al., 2010) but not formally proven.

Proposition 2.
ICLK ≤ BICK .

Proof.

ICLK −BICK = log p(X,Z|θ)− log p(X|θ̂)

= log p(X,Z|θ)
p(X|θ̂)

= log p(X,Z|θ)p(X|θ̂)
p(X|θ)p(X|θ̂)

log p(Z|X, θ) + log p(X|θ)
p(X|θ̂)

≤ 0,

where the dependence on K was omitted for simplicity and the last inequality
comes from the discrete nature of the random variables Zi and the definition of θ̂
and θ.

B Linear algebra results
Theorem 2 (Silvester (2000)). Let R be a commutative subring of F n×n, where
F is a field and F n×n denotes the set of matrices n× n over F . Let M ∈ Rm×m.
Then

det
F
M = det

F

(
det
R

(M)
)
.

Lemma 1. Consider a RN×N square matrix A such that

Aij =

a+ ε if i = j

a otherwise

where a, ε are two real constants. Then

det(A) = εN−1(ε+Na). (29)
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Proof. We proceed by recurrence. For N = 1, A = (a+ ε) and Eq. (29) is verified.
Now, let us assume that Eq. (29) holds for all i ≤ N . The case where N is an even
number is considered at first. Thus

detMN+1 = det


a+ ε a . . . a
a a+ ε . . . a
... . . . ...
a a . . . a+ ε


︸ ︷︷ ︸

N +1 columns

= (a+ ε) det(MN)− aN det


a a . . . a
a a+ ε . . . a
... . . . ...
a a . . . a+ ε


︸ ︷︷ ︸

N columns

= (a+ ε) det(MN)− a2N det(MN−1) + a2N(N − 1) det


a a . . . a
a a+ ε . . . a
... . . . ...
a a . . . a+ ε


︸ ︷︷ ︸

N - 1 columns

and pursuing the recursion we obtain

detMN+1 = (a+ ε) det(MN)

− a2
(
N−2∑
i=0

(−a)i N !
(N − i− 1)! det(MN−i−1)

)
− aN+1N !,

(30)

where the sign of the last term on the right hand side (r.h.s.) of the equality is
due to the assumption of an even N . Thanks to the inductive assumption, the
first term on the r.h.s of the equality is

(a+ ε) det(MN) = (a+ ε)εN−1(ε+Na)
= aεN−1(ε+Na) + εN(ε+Na)
= εN(ε+ (N + 1)a) + a2NεN−1.

Similarly, the inductive assumption can bu used to replace det(MN−i−1) = εN−i−2(ε−
(N − i − 1)a) in the second term on the r.h.s. of Eq. (30). Thus, by developing
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the sum over i we obtain

det(MN−1) = εN(ε+ (N + 1)a)
+ �����
a2NεN−1 −�����

a2NεN−1

+ · · ·+ ����aNεN ! −����aNεN !
= εN(ε+ (N + 1)a).

The case where N is odd is analogous and the lemma is proven.

Lemma 2. Consider a RN×N square matrix A such that

Aij =

a+ ε if i = j

a otherwise

where a, ε are two real constants. Then the inverse A−1 is

A−1
ij =


ε+(N−1)a
ε(ε+Na) if i = j

− a
ε(ε+Na) otherwise

(31)

Proof. It suffices to verify that, given A−1 in Eq. (31), AA−1 = IN .

Theorem 3. Consider an invertible square block matrix M ∈ RDN×DN such that

M =


B A . . . A
A B . . . A

A A
. . . A

A . . . . . . B

 (32)

where the non diagonal blocks A ∈ RD×D are symmetric matrices and the diagonal
blocks are B = A+ ID. Then, the inverse matrix M−1 is still a block matrix

M−1 =


V W . . . W
W V . . . W

W W
. . . W

W . . . . . . V


where the non-diagonal blocks W are

W = −(ID +NA)−1A, (33)

and the diagonal blocks V are

V = (ID +NA)−1(ID + (N − 1)A) = W + ID. (34)
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Proof. We need to prove that MM−1 is a block matrix whose non-diagonal blocks
are matrices in RD×D having zero everywhere (henceforth denoted by 0RD×D) and
whose diagonal blocks are ID. We observe that (ID+NA)−1 =

(
det(M)

)−1
, where

det(·) is defined in Eq. (19) and (ID +NA) is invertible thanks to the assumption
of invertible M combined with Lemma 1 and Theorem 1 in Silvester (2000). Now,
the following notation is introduced

DM := (ID +NA)−1

to simplify the exposition. Moreover, with a slight abuse of notation we denote by
(MM−1)ij the block (and not the real entry!) at position (i, j) in MM−1. Then,
for j 6= i

(MM−1)ij = −BDMA+ ADM(ID + (N − 1)A)
− (N − 2)ADMA

= −DMA+ ADM

= 0RD×D ,

where the last equality comes from

A(ID +NA) = (ID +NA)A ⇒
A = (ID +NA)A(ID +NA)−1 ⇒

(ID +NA)−1A = A(ID +NA)−1.

(35)

Similarly, for i = j

(MM−1)ii = BDM(Id + (N − 1)A)− (N − 1)ADMA

and some easy calculations show that the above quantity is equal to ID.
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