
HAL Id: hal-02310059
https://hal.science/hal-02310059v1

Submitted on 8 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Boolean-Based Dependency Management for the Eclipse
Ecosystem

Daniel Le Berre, Pascal Rapicault

To cite this version:
Daniel Le Berre, Pascal Rapicault. Boolean-Based Dependency Management for the Eclipse
Ecosystem. International Journal on Artificial Intelligence Tools, 2018, 27 (01), pp.1840003.
�10.1142/S0218213018400031�. �hal-02310059�

https://hal.science/hal-02310059v1
https://hal.archives-ouvertes.fr

Boolean-based Dependency Management for the

Eclipse Ecosystem

Daniel Le Berre
CRIL-CNRS UMR 8188, Université d’Artois

Pascal Rapicault
Rapicorp, inc.

Abstract

In June 2008, the Eclipse open platform released a new dependency
management system called p2. That system was based on the translation
of the dependency management problem into a pseudo-Boolean optimiza-
tion problem, to be handled by the Sat4j solver. Since then, p2 has been
more tightly integrated with Sat4j, the platform opened a public plugin
repository (the Eclipse marketplace) which relies on p2 to install the avail-
able plugins and their dependencies, and became the favorite way to in-
stall plugins in the Eclipse community. This paper summarizes the issues
raised by Eclipse dependency management, its pseudo-Boolean encoding
within p2, its extension for Linux package management with p2cudf, and
concludes with lessons learned on using research software in production
systems.

1 Introduction

Eclipse1 is a very popular open platform mainly written in Java and designed
from the ground up as an integration platform for software development tools
but also for “rich client” applications[31]. As the Eclipse ecosystem becomes
more and more important, the Eclipse platform itself and the various tools built
on Eclipse all rely on the concept of extensibility, and as such the necessity for a
mechanism to acquire those extensions is primordial. To that end, almost since
its inception, Eclipse featured an extension acquisition mechanism named Up-
date Manager. However, over time, as inter plug-in dependencies became more
complex and expressed at a finer grain, and more versions of each component
were made available, limitations were discovered in Update Manager which were
hindering the adoption and retention of Eclipse. Since Software Dependency
Management was shown NP-Complete[32, 26], this should not come as a sur-
prise. However, incomplete approaches have been used successfully since the
very beginning for Linux package management with tools like dpkg and rpm,

1http://www.eclipse.org/

1

http://www.eclipse.org/

and their limitations only showed up when the number of available packages be-
came extremely large [34, 26]. The term “plug-in hell” was used in the Eclipse
community to express the difficulty to manage a product based on plugins line-
up. It was at that time that we started to work on Eclipse p2 with the goal
of building a “right-grained” provisioning platform attempting to address the
challenges that Update Manager had been faced with. We built p2 on top of
SAT technologies.

The first challenge was heterogeneity in the set of things being deployed,
since it had become clear over time that most OSGi-2 and Eclipse-based appli-
cations needed to have a manageable way to interact with their environment
(e.g JRE, Windows registry keys, etc.).

The second challenge was the need to address in one platform the diversity
of provisioning scenarii and offer a solution that would work against controlled
repositories -similar to the case of linux packages managed by a specific Linux
distribution- or uncontrolled repositories, would allow for fully automated solu-
tions or user-driven ones, or would sport the delivery of extensions as well as
complete products.

The final and most important challenge was to solve the “plug-in hell”, i.e.,
the difficulty for the end user to install a plug-in and its requirements. That
problem was partially rooted in the non modular way of acquiring components
used in the Update Manager: it forced extensions to be installed by a special ab-
straction, one level above the actual extension itself. The term “right-grained”
provisioning is a response to this problem and indicates that p2 is not an ob-
struction to the granularity of what a user would want to make available or
obtain.

In order to achieve this goal of “right-grained” provisioning, the efficiency,
reliability and scalability of the dependency resolver were key requirements.
Having learnt from our experience of authoring the OSGi runtime resolver for
Equinox, it was obvious that we would need to base our dependency analysis
mechanism on reliable solver techniques. Coincidentally, later that year, the
work of OPIUM[34] and EDOS[26] backed up our intuition on the usability
and maturity of a SAT-based approach to address the problem. The main
contribution in p2 compared to that existing work was to deal with the more
complex dependencies of Eclipse and to have built a solution that is currently
running in production on millions of computers. The dependency problem for
Eclipse is closer to the problem addressed by the follow-up to EDOS project,
the Mancoosi Project[1, 33], that is the problem of updating complex open
source environments. The original translation of Eclipse dependency problems
into pseudo-Boolean optimization problems found in the tool p2 was described
during IWOCE 2009 workshop[23]. The adaptation of p2 in the context of Linux
dependencies and the Mancoosi project in the tool p2cudf was presented during
LoCoCo 2010 workshop[8]. In this paper we present the concepts behind those
tools and the details of the implementation of p2 which is used in Eclipse since

2Open Service Gateway initiative is a standard component architecture in Java, used in
Eclipse since release 3.0.

2

release 3.6 in June 2010. The Eclipse platform has been downloaded more that
180 million of times from Eclipse web site3 since the first release of p2 in June
2008. Finally, we conclude with lessons learned while using research software in
production systems.

2 Preliminaries on Boolean decision and opti-
misation problems

In this paper, we model our problems with constraints over Boolean variables
V . Boolean values are interpreted as 0 (false) or 1 (true) in this context. A
variable is satisfied if it is assigned value 1 and falsified if assigned value 0.
A literal is a Boolean variable (v) or is negation (¬v). A literal is satisfied if
it represents a satisfied variable or the negation of a falsified variable, else it is
falsified. We consider in this paper two types of constraints: clauses and pseudo-
Boolean constraints. A clause is a disjunction of literals (e.g., ¬v1 ∨ ¬v2 ∨ v3).
A clause ¬a∨ b can also be represented by the implication a→ b, denoting that
if a is true then b must be true. We use both notations in this document. A
pseudo-Boolean constraint is a constraint of the form

∑n
i=1 wi × li ⊕ k where li

are literals, wi are integers and ⊕ ∈ {≤,≥}, i.e. it is a linear inequality over
Boolean variables. A specific case is when all wi are equal to 1. We call those
constraints cardinality constraints, since satisfying those constraints amount to
count the number of satisfied literal: for instance, l1 + l2 + l3 + l4 + l5 ≥ 2 means
that at least two of the five literals must be satisfied. One should note that a
cardinality constraint

∑n
i=1 li ≥ 1 is equivalent to the clause l1 ∨ l2 ∨ ... ∨ ln.

Thus pseudo-Boolean constraints generalize clauses, so we can assume all our
constraints to be pseudo-Boolean constraints.

Given a set of constraints C = {c1, c2, ..., cn}, we are interested in four related
problems.

The first one is deciding if it is possible to find an assignment satisfying
all those constraints. If such assignment exists, the set of constraints is said
satisfiable (SAT), else it is said unsatisfiable (UNSAT). When C contains only
clauses, this problem is called SAT[13], and was shown NP-complete in the
general case[15]. Since any Boolean formula can be translated into an equivalent
conjunctive normal form (set of clauses), then the complexity of the satisfiability
for pseudo-Boolean constraints is still NP-complete. However, finding efficient
ways to perform such translation in practice is an active research topic (see e.g.,
[17, 21] for CNF encoding of cardinality constraints).

The second one applies only when C is found unsatisfiable. In that case, we
would like to compute an explanation of the unsatisfiability, i.e. a subset C ′ ⊆ C
of the constraints which is unsatisfiable and for which no proper subset is unsat-
isfiable. Take for instance C = {a∨ b,¬a,¬b, a∨ c,¬a∨ d}. C ′ = {a∨ b,¬a,¬b}
is an unsatisfiable subset of C. All subsets of C ′ are satisfiable. We will call
such C ′ a minimal unsatisfiable subformula (MUS).

3http://www.eclipse.org/downloads/

3

http://www.eclipse.org/downloads/

The third problem is to find the “best” assignment satisfying those con-
straints, which means solving the optimization problem

minimize f(V) given C

where f(V) is a linear fonction over the Boolean variables V . This problem
is called pseudo-Boolean Optimization[27] in the SAT community or zero-one
linear programming in the Operational Research Community.

The fourth problem is yet another optimisation variant of the first one.
In this case, the constraints in C are associated with a weight (an integer)
representing the cost to pay if the constraint cannot be satisfied, so C =
{(w1, c1), (w2, c2), ..., (wn, cn)}. We aim at finding an assignment of the vari-
ables which maximizes the sum of the weights of satisfied constraints or min-
imizes the weights of falsified constraints. A specific weight, ∞, denote that
the constraint must be satisfied. So the first problem could be written C =
{(∞, c1), (∞, c2), ..., (∞, cn)} in that context: all constraints must be satisfied.
Constraints with weight∞ are called hard while the others are called soft. When
all the constraints are soft clauses, and the weights are all 1, that problem is
called MaxSAT. If some of the clauses are hard, it is called Partial MaxSAT.
When all the constraints are soft clauses, without restriction on the weights,
the problem is called Weighted MaxSAT. If some of the clauses are hard, it is
called Weighted Partial MaxSAT (WPMS)[24].

It is possible to translate a PBO problem as a WPMS problem. Given a
linear optimisation function to minimize f(V) = w1× l1 +w2× l2 + ...+wm× lm
and a set of constraints C, we can build the set of weighted constraints C ′ such
that C ′ = {(∞, c′)|c ∈ C, c′ ∈ CNF (c)} ∪ {(w1, l1), (w2, l2), ..., (wn, lm) where
CNF (c) denote a function translating pseudo-Boolean constraints into a set of
clauses and l denote the opposite literal of l (v = ¬v and ¬v = v).

It is also possible to translate a WPMS problem into a PBO problem. We
need to introduce in that case new variables called “selector variables”, which
will disable the original soft constraint when its selector variable is satisfied.
Given a set of weighted clauses C, we build a set of clauses C ′ = {ci|(∞, ci) ∈
C} ∪ {si ∨ ci|(wi, ci) ∈ C,wi 6=∞}. All hard clauses are unchanged. Only soft
clauses are modified. Let S be the set of the selector variables. The following
PBO will answer the original PWMS problem:

minimize
∑
si∈S

wi × si given C ′

One can note that PBO and WPMS are completely equivalent if the pseudo-
Boolean constraints of the PBO problem are just clauses (no need to translate
those constraints into CNF) and the weighted soft clauses of the WPMS problem
are unit (in that case, we can directly use those unit clauses in the objective

4

function[22]). Thus when the input is a CNF and an objective function to
minimize.

In practice, there exists numerous solvers available for tackling those prob-
lems, mainly thanks to the regular SAT4, MAXSAT5 or PBO6 competitions.
The efficiency of MUS solvers has greatly improved in recent years in the SAT
community[11, 19, 20, 30], especially since the organization of an MUS track in
the SAT competition in 2011, i.e. several years after the work presented here.

In this paper, we will use Sat4j7[22], an open source Java library for solving
both decision (like SAT) or optimisation (like PBO and WPMS) Boolean prob-
lems. Being written in Java, it’s purpose is not to be the fastest solver around
but to provide to the end user easily embeddable cutting-edge SAT technology.
It is also an experimental research platform for devising new PBO algorithms.
Sat4j is one of the few platforms which combine in a single library solvers for
tackling all the above problems.

3 Problem input: p2 metadata

The concept of metadata is at the core of most installers that deal with com-
posable systems (e.g RPM8, Debian9, etc.). One of the goals of this metadata
is to capture the dependencies that exist between the various components of
the system. A resolver uses that metadata to detect missing dependencies or
to validate the dependencies of the system before it is modified: its aim is to
ensure that the modified system will work properly.

As described previously, p2 is intended to deal with more than just the
typical Eclipse constructs of OSGi bundles. As such, despite the presence of
dependency information in the OSGi bundles composing most of Eclipse ap-
plications, p2 abstracts dependencies from the elements being delivered in an
entity called an Installable Unit (also referred to as IU). We now introduce the
two most widely used kinds of installable units that p2 defines.

3.1 Anatomy of an installable unit

An installable unit, the simplest construct, has the following attributes:

An identifier A string naming the installable unit.

A version The version of the installable unit. The combination identifier and
version is treated like a unique ID. We will refer to versions of an installable

4http://www.satcompetition.org/
5http://www.maxsat.udl.cat
6http://www.cril.univ-artois.fr/PB16/
7http://www.sat4j.org/
8http://rpm.org
9https://www.debian.org/doc/manuals/debian-reference/ch02.en.html

5

http://www.satcompetition.org/
http://www.maxsat.udl.cat
http://www.cril.univ-artois.fr/PB16/
http://www.sat4j.org/
http://rpm.org
https://www.debian.org/doc/manuals/debian-reference/ch02.en.html

unit to mean a set of installable units sharing the same identifier but a
different version attribute.

A set of capabilities A capability is the way for the installable unit to expose
to the rest of the world what it has to offer. This is just a namespace, a
name and a version. Namespace and name are strings. The namespace is
here to prevent name collision and avoid having everyone adhere to name
mangling conventions.

A set of requirements A conjunction of requirements. A requirement is the
way for the IU to express its needs. Requirements are satisfied by capa-
bilities. A requirement is composed of a namespace, a name and a version
range10. In addition to these usual concepts, a requirement can have a
filter which allows for its enablement or disablement depending on the
environment where the IU will be installed, and it can also be marked
optional meaning that failing to satisfy the requirement does not prevent
the IU from being installable. Finally there is a concept of greed discussed
later in this section.

An enablement filter An enablement filter indicates in which contexts an
installable unit can be installed. Here again the filter will pass or fail
depending on the environment in which the IU will be installed. Eclipse
being multi-platform, the operating system may be used for instance to
filter out some IUs.

A singleton flag This flag, when set to true, will prevent a system from con-
taining another version of the installable unit with the same identifier.

An update descriptor The identifier and a version range identifying prede-
cessors to this IU. Making this relationship explicit allows us to deal with
IUs being renamed or avoid undesirable update paths.

An example of an Installable Unit representing Eclipse Standard Widget Toolkit
(SWT) bundle is given in Figure 1. The few things to notice are:

1. the usage of namespace to avoid clashes between the Java packages and
the IU identifier;

2. the usage of singleton because no two versions of this bundle can be in-
stalled in the same eclipse instance;

3. the “typing” of the IU as being a bundle (see org.eclipse.equinox.p2.type
namespace valued to bundle);

4. and the identification of the IU by providing a capability in the org.eclipse.equinox.p2.iu
namespace.

Now, let us come back to requirements and detail the semantics of “greed”
and “optional”. By default, a requirement is “strong”11 (optional is false,

10A version range is expressed by two version number separated by a comma, and surrounded
by an angle bracket, meaning value included, or a parenthesis, meaning value excluded.

11Strong is weaker in our context than the notion of strong dependency for Linux[7]

6

id=org.eclipse.swt, version=3.5.0, singleton=true

Capabilities:

{namespace=org.eclipse.equinox.p2.iu, name=org.eclipse.swt, version=3.5.0}

{namespace=org.eclipse.equinox.p2.eclipse.type name=bundle version=1.0.0}

{namespace=java.package, name=org.eclipse.swt.graphics, version=1.0.0}

{namespace=java.package, name=org.eclipse.swt.layout, version=1.2.0}

Requirements:

{namespace=java.package, name=org.eclipse.swt.accessibility2,

range=[1.0.0,2.0.0), optional=true, filter=(&(os=linux))}

{namespace=java.package, name=org.mozilla.xpcom,

range=[1.0.0, 1.1.0), optional=true, greed=false}

Updates:

{namespace=org.eclipse.equinox.p2.iu, name=org.eclipse.swt,

range=[0.0.0, 3.5.0)}

Figure 1: An IU representing the SWT bundle

Table 1: Greed and optional interaction.

Greed Optional Semantics

true false this is a “strong” requirement.
true true this is a “weak” requirement.
false true this is a “weakest” requirement, where the match will not be

brought in.
false false this indicates a case where the requirement has to be satisfied

but the IU with this requirement wants this to be brought in
by another one.

greed is true). This means that the IU can only be installed if the requirement
is met. Note that if a requirement is guarded by a filter that does not pass,
that requirement is simply ignored. If the optional flag is set to true, then a
requirement becomes “weak” and it does not have to be satisfied for the IU to
be installed. However, any IU potentially satisfying this requirement will be
considered, and a best effort will be made to satisfy the requirement.

When it comes to greed, this is a rather atypical concept that we have added
to control the addition of IUs as part of the potential IUs to install in order to
satisfy the user request. When the greed is true (default case, and the case
for strong requirements), the IUs satisfying the dependencies are added to the
pool of potential candidates. However, when the greed is set to false, such a
requirement relies on other dependencies from its own IU or others to bring in
what is necessary for its satisfaction. This is used in Figure 1 to capture the fact
that even though we have an optional dependency on org.mozilla.xpcom we
do not want to try to satisfy it eagerly. As such, this optional and non greedy
requirement is weaker than a typical optional dependency. Table 1 reviews the
four combinations of greed and optionality.

7

3.2 Installable unit patch

3.2.1 The need for patches

So far, the concept of IU is pretty much on par with what most package man-
agers are offering. However, what is interesting is the different usage we have
observed of this metadata and the implication it has on the rest of the system.
Indeed, most people building on top of Eclipse are delivering “products” or
“subsystems”, and, as such, they want to guarantee that their customer is get-
ting what has been tested. Failing to do this could result in a unstable product,
maintenance nightmare and unsatisfied customers. However, in an ecosystem
where products can be mixed and where repositories can not be used as control
points12, guaranteeing a functional system is harder. Consequently, to miti-
gate these possible problems, product producers are using installable units as a
grouping mechanism (also referred to as group) serving three goals:

1. Facilitate the reusability of a set of functionality by aggregating under one
group a set of installable units.

2. Capture a particular configuration of the system, and thus group under
one IU an extensible element and a default implementation.

3. Lock down the dependencies on installable units being used, which limits
the variability of what can be installable and thus guarantees reproducibil-
ity of an installation independently of the content of the repository.

The counter part of the lock down which is used extensively throughout
Eclipse, is that it makes the delivery of software fixes (e.g., the replacement of
a particular IU by another one) complex for the following reasons:

1. Products are often made of groups, themselves recursively composed of
other groups, which can lead to a rather vast ripple effect throughout the
system when a low level component needs to be serviced.

2. Not all groups deployed on the user’s machine are in the control of the
same organization. For example, someone can be running a composition of
Company A and Company B products (both including the Eclipse Plat-
form group), but the Platform group is controlled by the Eclipse open
source community. Therefore when the Platform team needs to deliver
a fix to a user, it simply can not require all the referring groups to be
updated.

3. Not all the dependencies on a particular IU are known ahead of time.

It is in order to overcome these limitations that we have introduced the
concept of IU patch. An IU patch can be seen as a mechanism that rewrite the
dependencies of existing IUs and provide its own capabilities which allows for
the replacement of IUs without redelivering the whole application.

12Controlled repository is the approach taken by a majority of Linux distributions.

8

3.3 Overview of the solving process

Before detailing the overall solver, it is worth mentioning how p2 manages the
installed software. p2 has a concept of profile which keeps track of two key pieces
of information: the list of all the Installable Units already installed, and the set
of root installable units. The root IUs are not a new kind of installable units,
they are installable units that are remembered as having been explicitly asked
for installation, in contrast with installable units which have been installed to
satisfy the dependencies of the root IUs. These roots are essential for installa-
tion, uninstallation and update, since they are used as strict constraints that
can not be violated, thus for example avoiding the uninstallation of an IU when
installing another one.

p2 resolution process is logically organized in 5 phases:

Change request processing Given a change request capturing the desire to
install or uninstall an installable unit, a future root set representing the
application of this request over the initial root set is produced.

Slicing For each element in the future root set, the slicing produces a transitive
closure of all the IUs (referred to as slice) that could potentially be part
of the final solution of the resolution process by consulting all repositories
also passed in. This transitive closure is done with only taking into account
enough context13 to evaluate the various filters but without worrying if
any IU being added could be colliding with any others. That slicing stage
proved essential in practice for two reasons: limiting the number of IUs to
consider for the next stage to reduce the size of the encoding, and avoiding
to update an IU which is not related to the change request. That stage
is similar to the “cone of influence” approach used in Bounded Model
Checking[12].

Projection/encoding The goal of the projection phase is to transform all the
installable units of the slice and their dependencies into a pseudo-Boolean
optimization problem (see section 4 for details).

PBO-solving The result of the projection is passed to the pseudo-Boolean
solver Sat4j[22] which is responsible for finding an assignment. Note that
for efficiency and reproducibility reasons, the solver does not look for an
optimal solution, but for the best solution found within a given number
of conflicts (a measure which is computer independent).

Solution extraction From the assignment returned by the solver, a solution
is extracted. In case of failure, the solver is invoked to produce an expla-
nation (see section 4.3).

13The context can be seen as a map of key/value pairs.

9

4 Translation into a Pseudo-Boolean Optimiza-
tion problem

In the following, we describe the encoding of the p2 installation problem into
a Pseudo-Boolean Optimization problem, i.e. clauses or cardinality constraints
and an objective function. We also provide some examples of problems gener-
ated with that encoding. In the following, IUv

x will denote the installable unit
x in version v. We will use the same notation to represent the propositional
variables. We will simply write IUx when no information is provided for the
version. prov(IUx) denotes the set of capabilities provided by the installable
unit IUx and req(IUx) denotes the set of capabilities required by the installable
unit IUx. alt(cap) = {IUk|cap ∈ prov(IUk)} denotes the set of IUs providing a
given capability cap. Finally, optReq(IUx) denotes the optional requirements of
a given IUx, and versions(IUx) denotes the sequence of IUs sharing the same
identifier as IUx but having different version attribute (IUx ∈ versions(IUx)),
from the latest to the oldest.

4.1 Basic encoding

Each requirement of the form “IUi requires capability capj” is represented by
a simple binary (Horn) clause

IUi → capj

So, for each IUi the requirements are expressed by a conjunction of binary
clauses ∧

capj∈req(IUi)

IUi → capj

The alternatives for a given capability is given by the clause

capj → IU
vj1
j1
∨ IU

vj2
j2
∨ ... ∨ IU

vjn
jn

where IUvx
x ∈ alt(capj).

Since we are only interested in the IUs to install, the above two constraints
can be aggregated into a conjunction of constraints:

f(IUi) =
∧

capj∈req(IUi),

(IUi →
∨

IUv
x∈alt(capj)

IUv
x) (1)

Note that there is the specific case of alt(capj) = ∅ which means that IUi

cannot be installed due to missing requirements. In that case, the unit clause
¬IUi is generated.

Some installation units cannot be installed together (e.g., because of the
singleton attribute set to true). This can be modeled either with a conjunction

10

of binary negative clauses14 ∧
versions(IUx)=<IU

v1
x ,...,IUvn

x >,1≤i<j≤n

(¬IUvi
x ∨ ¬IUvj

x)

or equivalently with a single cardinality constraint:

(
∑

IU
vj
x ∈versions(IUx)

IUvj
x) ≤ 1 (2)

We use the second option because our solver Sat4j[22] manages those con-
straints natively and because it makes the explanation support easier to imple-
ment (see 4.3 for details).

Finally, the user wants to install the installable units identified by the roots.
This is modeled with unit clauses: ∧

UIj
i
∈rootIUs

UIji (3)

Summing up, the constraints (1), (2) and (3) together form an instance of the
classical NP- complete SAT problem. This encoding is basically the encoding
presented in Edos[26] and Opium [34] and used more recently in OpenSuse 1115.

4.2 Eclipse specific encoding

One of the specificity of p2 is the semantic of “weak” dependencies expressed
using the greed and optional attributes.

4.2.1 Encoding of optionality

An IU IUi may have optional dependencies to IU IUj meaning that IUj is not
mandatory to use IUi, so IUi can be installed successfully if IUj is not available.
However, it is expected that p2 should favor the installation of optional packages
if possible, i.e., that all optional packages that could be installed are indeed
installed. In Figure 1, one can see that SWT has two optional dependencies on
SWT accessibility2 and Mozilla XPCOM. The encoding of optional packages is
done by creating two specific propositional variables: Abscap denotes the fact the
capability cap is optional, and NoopIUi

is a variable to be satisfied in case none
of the optional capabilities of IUi can be installed. The first set of constraints
expresses how to satisfy the optional capabilities:∧

capj∈optReq(IUi)

(Abscapj
→

∨
IUx∈alt(capj)

IUx) (4)

14There are many other more efficient ways to encode the above cardinality constraint with
clauses, using additional propositional variables[17, 21].

15http://en.opensuse.org/Package_Management/Sat_Solver/Basics

11

http://en.opensuse.org/Package_Management/ Sat_Solver/Basics

The second set of constraints expresses that if NoopIUi is true then all the
abstract capability variables must be false, i.e. that NoopUIi can only be set to
true when none of the optional dependencies could be installed.∧

capj∈optReq(IUi)

(NoopIUi
→ ¬Abscapj

) (5)

Finally, we express that IUi has optional dependencies using a disjunction
ending with the NoopIUi

variable. That way, even if none of the optional
requirements can be installed, the constraint can still be satisfied by setting
NoopIUi

to true.

IUi →
∨

capj∈optReq(IUi)

Abscapj ∨NoopIUi (6)

Satisfying as much as possible the optional requirements can thus be done by
minimizing the number of satisfied Noop variables, i.e. by adding those Noop
variable in the objective function of our optimization problem.

In practice, it happened that such approach had the consequence to favor
the installation of IUs found in the optional requirements of an IU IUi even
if that IUi was not installed. We solved it using a non linear optimization
function: each Absx variable gets a reward to favor the installation of optional
dependencies when the requiring package IUj is installed:

∑
−K×Abscapi

×IUj .
−K is the reward for installing both IUj and its optional requirement capi.

Example 1 Let us see how to encode the optional dependencies of SWT on
accessibility2 and xpcom shown in Figure 1:
Absaccessibility2 → IU1.0

accessibility2

Absxpcom → IU1.1
xpcom

min : −K ×Absacessibility2 × IUSWT −K ×Absxpcom × IUSWT

Note that Sat4j does not support non linear optimization functions. It relies
on the introduction of new variables yk ↔ Absx× IUj where yk replaces Absx×
IUj in the objective function and where the additional constraints yk → Absx∨
IUj , Absx → yk, IUj → yk are added to the solver.

Note that a much simpler solution appeared to us, when we finally noticed
that the optional requirements are typically soft constraints, like in MaxSAT:
one would like to satisfy as many of them of possible. The translation from
PWMS to pseudo-Boolean Optimization described in section 2 can be applied
here. As such (4), (5) and (6) could simply replaced by

g(IUi) =
∧

capj∈optReq(IUi),

NoopUIi,capj
∨ (IUi →

∨
IUv

x∈alt(capj)

IUv
x) (7)

Let us take the problematic case of imbricated optional dependencies[23].
Suppose that IUa has an optional dependency on capability b provided by IUb

12

that has in turn an optional dependency on the capability c provided by IUc

for which we have alt(c) = ∅. We would generate the following constraints:

NoopIUa,b ∨ (IUa → IUb) ≡ NoopIUa,b ∨ ¬IUa ∨ IUb

NoopIUb,c ∨ (IUb → ∅) ≡ NoopIUb,c ∨ ¬IUb

In that case, the resolver has the possibility to install or not IUb, depending
of the value of the objective function.

4.2.2 Encoding of non greedy requirements

In the original encoding, the non greedy requirements were simply managed
during the slicing stage and ignored in the resolving stage. However, it appeared
that in order to allow a finer control of non-greedy requirements, it was better
to let the resolver manage those requirements. The encoding of non greedy
requirements is based on the introduction of new propositional variables NG X
that are satisfied iff IU X is provided by a greedy requirement. Each requirement
of the form “IUi requires non greedily capability capj” is encoded the following
way:

f(IUi) =
∧

capj∈reqNonGreedy(IUi),

(IUi →
∨

IUv
x∈alt(capj)

NG Uv
x) (8)

Then, the non greedy IUs are associated to the IUs that require them greedily:

NG Uv
x →

∨
IUv

x∈alt(capj),capj∈req(IUj
i
)

U j
i (9)

One can note that such encoding will favor the installation of IUs providing non
greedy requirements. In case no such IUs are found, the NG X variables will
be set to false, thus falsifying equation 8.

A similar approach is used for optional non greedy dependencies, by intro-
ducing NG X variables in equation 4.

4.2.3 Encoding of patches

Applying a patch from the encoding point of view only applies to requirements
changes (see section 3.2), i.e., it means to enable or disable some dependencies
according to the application or not of a given patch. Adding or removing ca-
pabilities or requirements is not implemented in p2, but it does not bring any
difficulty from an encoding point of view. We denote by patchedReqs(IU, p) the
set of pairs < old, new > of the installable unit IU denoting the rewriting rules
of patch p in the requirements of IUs.

We associate to each patch a new propositional variable. We introduce that
variable in dependency constraints (1) and (4) the following way:

• Negatively to express the new dependency brought by the patch.

13

• Positively to express the initial dependency. In that case, all patches
changing that dependency should appear positively in the constraints: if
none of them are applicable, the initial dependency is applied.

It can be summarized in this way:∧
<old,new>∈patchedReqs(IU,p)

(¬p∨encode(new))∧(
∨

<old,newi>∈patchedReqs(IU,pi)

pi∨encode(old))

where encode(x) denote the encoding of a regular or an optional dependency.
The patch encoding changes only the encoding of the requirements affected by
a patch.

4.3 When things go wrong: explanation

Explanation is key in helping the user understand why a change request cannot
be fulfilled. In the above encoding, one can note that there are only two reasons
that could prevent a request from succeeding:

• At least one of the required IUs is missing.

• The request requires two IUs sharing the same identifier but with different
versions that cannot be installed together due to the singleton attribute
on at least one of those IUs.

As a consequence, it is not hard to check why a request cannot be completed.
However, users expect the explanation to be returned in terms of IUs they know
about, the root IUs and the IUs that they are trying to install, and would be
confused if provided with just the low level dependency errors. In practice, it
means that knowing why a problem occurred is not sufficient. It is important
to be able to detail the whole dependencies from the root to the actual cause of
the problem.

Let S be the set of the constraints encoding presented in the previous sec-
tions. Let S′ be an MUS of S. S′ is an explanation of the impossibility to fulfill
the request. If the subset contains a negated literal (specific case of Equation
(1), ¬UIx ∈ S′) then the global explanation is a missing requirement, i.e., the
request cannot be completed because IUx cannot be found in the user’s repos-
itories. If the subset contains a cardinality constraint (

∑
IUx

v ≤ 1 ∈ S′), then
the global explanation is a singleton attribute violation, i.e., the request cannot
be completed because it requires several versions of IUv. Note that if we de-
cided to use a clausal encoding instead of the cardinality constraints encoding,
we would have lost the one to one mapping between the original dependencies
and the constraints of our encoding.

4.4 From decision to optimisation

When all the constraints can be satisfied, there are usually many possible so-
lutions, that are not of equal quality for the end user. Here are a few remarks
regarding the quality of the expected solution:

14

1. An IU should not be installed if there is no dependency to it.

2. If several versions of the same bundle exist, the latest one should preferably
be used.

3. When optional requirements exist, the optional requirements should be
satisfied as much as possible.

4. User installed patches should be applied independently of the consequences
of its application (i.e., the version of the IUs forced, the number of instal-
lable optional dependencies, etc.).

5. Updating an existing installation should not change packages unrelated
from the request being made.

We are now looking for the “best” solution, not just any solution. Furthermore,
we need to solve a multi-criteria optimization problem since it is likely that
several IUs do have optional requirements and that several IUs are available in
multiple versions. The optimization criteria we are dealing with here are much
more complex than the ones presented for Linux with Opium[34].

To solve our problem, we build a linear optimization function to minimize in
which the propositional variables are either given a penalty (positive integer) or
a reward (negative integer) to prevent or favor their appearance in the computed
assignment.

• Already installed packaged and Root Installable Units should be kept in-
stalled whenever possible. However, it should be possible to update the
packages found in the transitive closure of the requirements of the Root
IUs: ∑

IUi
v∈(Installed\transitiveClosure(Root))∪Root

1× IU i
v (10)

• Each version of an IU gets a penalty as a power of P = max(|Installed|+
1, 2) proportional to its age, the older it is the more penalized it is:∑

IUi
v∈versions(IUv)\(Installed∪Root)

P i × IU i
v (11)

That way, each installation of an IU raises a penalty at least by one, thus
expressing that only required IUs should be installed.

• We have seen that we need to add a non linear combination of Boolean
variables in our objective function for managing optional dependencies:∑
−PK+1 × Abscapi

× IUj . The problem is that our solver does not
propose yet an easy way to work with non linear optimization functions.
A solution based on the introduction of new variables fixes that issue:∑

−PK+1 × yk with yk ↔ Abscapi
× IUj (12)

15

• Each patch variable gets a reward of n×−PK+3 if it is applicable (where
n denotes the number of applicable patches), else a penalty of PK+2∑

pi∈applicablePatches()

n×−PK+3pi +
∑

pi 6∈applicablePatches()

PK+2pi (13)

The objective function of our optimization problem is thus to minimize (10)
+ (11) + (12) + (13).

The weights in (11) are not satisfactory since they do not provide a total
order on the final solution. Suppose that we have two IUs, IUa and IUb, that
are available in 3 and 2 versions, respectively (namely IU3

a , IU2
a , IU1

a and IU2
b ,

IU1
b) with P = 2. The objective function for those IUs is thus

2× IU3
a + 4× IU2

a + 8× IU1
a + 2× IU2

b + 4× IU1
b

The best solution for such objective function if both IUa and IUb must be
installed is obviously to install IU3

a and IU2
b . However, if those two IUs cannot

be installed together, the solver will answer that the best option is either to
install IU3

a and IU1
b or IU2

a and IU2
b .

The common approach to solve this problem is to rank each IUs in a total
order, IU1 < IU2 < ... < IUm, meaning that IUi is more important than
IUj iff IUj < IUi. Then the coefficients of the optimization function should
be generated in such a way that the sum of the coefficients of IUj should be
smaller than the smallest coefficient of IUi. In our example, it would mean for
instance to use the following optimization function:

IU3
a + 2× IU2

a + 4× IU1
a + 8× IU2

b + 16× IU1
b

In that case, the best option is still to install IU3
a and IU2

b , but the second best
option is to install IU2

a and IU2
b .

Unfortunately, as noted before, we are in the context of uncontrolled repos-
itories, so there is no obvious/easy way to order the IUs in a total order, so it
was decided to keep the initial solution (11) instead of arbitrarily ranking the
IUs.

Equation (10) has been introduced at the users’ request. Indeed, some “sta-
bility” is needed for vendors building their tools on top of the Eclipse platform,
for quality assurance for instance. The idea of keeping as much as possible the
already installed packages was designed for that reason. However, in the open
source world, it is often desired that installing a new software also updates its
dependencies. This is the reason why the installable units found in the transitive
closure of the requirements of the Root IUs are not “glued” to their installed
version.

16

CUDF
Request

CUDF
Solution

p2cudf.jar

cudf2p2

p2
Request

p2 Sat4j-PB

OPB
Problem

OPB
Mapping

1

2

3 4

5

6

Figure 2: Flow diagram of p2cudf to get a solution from a CUDF instance.

5 p2cudf: From Eclipse to Linux dependency
management

The aim of the p2cudf resolver16 was to use the p2 resolver in the context of
the Linux distribution to see if our approach was reusable in another context.
The Mancoosi project[1], and its Mancoosi International Solver Competition
(MISC)[6, 3] has been a great opportunity to compare our approach to other
ones[18, 28, 8]. The competition had a common input format called Common
Upgradeability Description Format (CUDF). p2 could be reused “as is” since
there are just a few differences between CUDF and Eclipse metadata, the main
ones being the use of ranges in the version of the packages, and the notion of
optional and non greedy dependencies between packages. However, in order to
allow the integration of the various criteria defined for the competition[6], and
to avoid modifying a software running in production, a simplified version of p2
code was used. The organization of the solver is depicted in Figure 2.

The first step is to translate the CUDF request into a p2 request: each
CUDF package is translated into an Installable Unit. Once the translation is
finished, the p2 resolver translates the request into a pseudo-Boolean optimiza-
tion problem. It can either directly feed Sat4j solver or output it in a file with
the corresponding mapping. In the former case, the p2 resolver gets a solution
from Sat4j. That solution is then translated into a simplified CUDF universe
(with only the package name, version and installation status).

The next sections describe more formally the constraints used in p2 and the
way the optimization functions have been designed to implement the Mancoosi
optimization criteria[6].

16https://wiki.eclipse.org/Equinox/p2/CUDFResolver

17

https://wiki.eclipse.org/Equinox/p2/CUDFResolver

5.1 Original constraints

In the following, pvi will denote package pi in version v. We will use the same
notation to represent the propositional variables. We will simply write pi when
no information is provided for the version. versions(pi) will denote the set of
available versions of the package pi in the universe. Installed and NonInstalled
will represent the versions of the packages that are respectively installed or not
in the universe.

CUDF constraints are translated as follows:

• pxi depends on p
xj

j , j ∈ [1..n] is translated into a clause ¬pxi ∨p
x1
1 ∨ ...∨pxn

n

• pxi conflicts with p
xj

j (i 6= j) is translated into the binary clause ¬pxi ∨¬p
xj

j

• In case a specific package pxi conflicts with pi, which means that no more
than one version of the same package can be installed, we use a cardinality
constraint

∑
x∈versions(pi)

pxi ≤ 1 which is natively supported in Sat4j[22].

• A package pvi that cannot be found in the universe will be denoted by the
negative literal ¬pvi

• A package pvi that is requested to be installed or updated will be denoted
by the positive literal pvi

5.2 Handling inconsistency of installed packages

One of the big differences between Eclipse metadata and Linux metadata is
that an Eclipse profile (the current installation) is always consistent with the
metadata while a Linux installation might not be consistent with the metadata
(the user may force the installation of a package). This is partly due to the
fact that in the Linux world, dependencies are meant to describe what has been
validated by QA: they denote preferred configurations, i.e. violating those con-
straints may still end up with a runnable system. In the Eclipse ecosystem, the
dependencies describe the requirements of the classloader: if those dependencies
cannot be satisfied then the dependent package will not be activated.

As a consequence, when a CUDF universe denotes a set of installed packages,
those packages dependencies might not be satisfied: mapping each installed
package pvi to the positive literal pvi – as it is the case in the Eclipse encoding
– would end up in that case with an inconsistent pseudo-Boolean optimization
problem.

For that reason, the packages marked as “installed” in the CUDF universe
are considered as “optional requirements” in the Eclipse p2 terminology: the
solver will try to install as many of them as possible, but will not fail if none of
them can be installed.

This is achieved by the following constraints, for which we introduce a Noop
propositional variable that will prevent the clause to be falsified if none of op-

18

tional requirements can be installed:

Root→ pv11 ∨ pv22 ∨ ... ∨ pvnn ∨Noop for pvii ∈ Installed

Noop→ ¬pvi
i for i ∈ [1..n]

The fact that a maximum of pvii ∈ Installed will be installed will be managed
by the optimization function.

5.3 Objective functions

The most important part of the translation is to correctly express the criteria
used in the competition. We are using here a translation of the lexicographic
preference into a single optimization function. This is possible because our
pseudo-Boolean engine does support arbitrary precision coefficients. For each
measure used in a criterion, we introduce new variables and constraints between
those new variables and existing ones in order to express the optimization cri-
teria only on newly introduced variables.

5.3.1 Common definitions

A package is removed in the solution if it was installed but is no longer available
in any version. For any package pi installed in the original CUDF, we introduce
a new variable removedpi such that

removedpi ≡
∧

px
i
∈versions(pi)

¬pxi , pi ∈ Installed

A package is changed in the solution if the status of one of its versions
(installed or not) has changed. For any package pi in the original problem, we
introduce a new variable changedpi

that is true iff the status of any version of
pi has changed:

changedpi
≡

∨
px
i
∈Installed∩V ersions(pi)

¬pxi
∨

px
i
∈NonIntalled∩V ersions(pi)

pxi , pi ∈ U

A package is not up to date if that package is installed but the latest ver-
sion available is not installed. For any package pi in the original problem, we
introduce a new variable notuptodatepi such that

notuptodatepi ≡ ¬latest(pi) ∧ (
∨

px
i
∈versions(pi)\latest(pi)

pxi), pi ∈ U

.
A package is new if the package was not installed but appears installed in

the solution. For any package pi that was not installed in the original CUDF,
we introduce a new variable newpi such that

newpi
≡

∨
px
i
∈versions(pi)

pxi , pi ∈ NonInstalled

19

5.3.2 Paranoid criterion

The paranoid criterion is a lexicographic preference on the number of packages
removed and then on the number of changed packages. In that context, our
optimization function on |Installed|+ |U | variables is

(|U |+ 1)×
∑

removedpi +
∑

changedpj

5.3.3 Trendy criterion

The trendy criterion is a lexicographic preference on the number of packages
removed, the number of packages that are not up-to-date and the number of
newly introduced packages. In that context, our optimization function on 2×|U |
variables is

(|U |+1)× (|U |+1)×
∑

removedpi
+(|U |+1)×

∑
notuptodatepj

+
∑

newpk

5.4 p2cudf against the other solvers

During the three editions of the MISC competitions (2010, 2011 and 2012),
p2cudf has been compared to different other solvers, namely ASPCUD[18] based
on the ASP solver CLASP, UNSA[28] based on the MILP solver CPLEX, inesc
[8] based on the Maxsat solver MSUNCORE. The complete raw results can be
found online[3]. They are also discussed in details[6].

p2cudf performed correctly on medium size instances, but had trouble scal-
ing up when the number of packages becomes large. The best approach during
the competition was UNSA, based on CPLEX, a commercial solver. We demon-
strated that the experience gained when working on Eclipse dependency man-
agement could be helpful in the context of Linux package management. Some
features of p2, such as the slicing stage, proved to be quite useful in practice for
MISC too.

6 Conclusion and perspectives

We presented the Boolean optimization encoding used in Eclipse p2, a “right-
grained” provisioning platform aimed at solving the diversity of provisioning
requirements in a componentized world. The initial encoding has evolved over
the years to include both user’s feedback and modeling improvements.

We can report that this approach has been running for nine years now,
and that is has been used by millions of users worldwide. It has proven to be
reliable, efficient and scalable even when faced with repositories containing more
than 10000 installable units and solution involving about 3000 installable units.
Since 2010, a plugin “market” has been made available https://marketplace.

eclipse.org to the Eclipse users: more than 26 million of plugins have been
installed that way. Eclipse marketplace takes into account plugin dependencies
thanks to p2.

20

https://marketplace.eclipse.org
https://marketplace.eclipse.org

The feasibility tests done in late 2007 to investigate the use of SAT technol-
ogy inside the Eclipse platform revealed that most of the dependencies could be
resolved with few backtracking. The main issue was not to find a solution, but
to find the expected solution, i.e., to correctly model as a Boolean optimization
problem the expected behavior of the resolver. The initial solution based on
the pseudo-Boolean solver as a black box was not satisfactory from a modeling
point of view: using the common input format defined for the pseudo-Boolean
evaluations is not user friendly, especially for software engineers. The intro-
duction one year later of a tighter integration with the Sat4j library allowed to
model directly the constraints on Java objects, which proved to be much easier
to improve the Boolean optimization encoding.

While the size of the repositories available in the Eclipse world is compatible
with our current implementation, scaling is an issue for the future. We used
a similar approach to resolve some Linux upgradeability problems proposed by
the Mancoosi European project within p2cudf. Those problems are basically
one order of magnitude bigger than the Eclipse ones (up to 50K packages).
While adapting our work to the Linux world allowed us to quickly provide a
correct tooling for solving those problems, some classes of problems were really
challenging to our implementation.

The integration of Sat4j in Eclipse is a success story: it is probably one of the
most significant adoptions of SAT technology in a widely used software product.
We believe it happened for two independent but key reasons. First, the Eclipse
community decided that the “plugin hell” had to be sorted out, by all means,
once for all. The principle to delegate that work to an external tool instead
of relying on an in house solver was key toward that goal. Second, Sat4j was
developed from the beginning to be used in production software, and designed
in the open source spirit. For instance, Sat4j has been developed within the
ObjectWeb, now OW2, consortium since 2005. The eligibility of Sat4j as a
reliable third party component for the Eclipse platform was simplified by such
open development model. Note also that Sat4j was built from the beginning
using Eclipse, which motived us to work on this problem.

In this context, Eclipse had a problem and looked for a solution from academia.
This has been possible because the development of Eclipse is governed by a cen-
tral body, the Eclipse Foundation. Linux has the very same issue with its pack-
age management, but its distributed nature prevented so far a similar solution
to be adopted[4]. A solution to that problem has been proposed as outcome
of the Mancoosi European Project: the Mancoosi Package Manager[5]. Unfor-
tunately, this package manager is not currently used by default on most Linux
distributions. New generations of package managers do appear. Dandified Yum
(DNF)17 for instance is SAT-based, but relies on a tailored SAT-solver, not an
off-the-shelf solver as proposed in MPM. We hope that the case study reported
in this article will favor in the future the integration of research tools in large
open source software.

17https://github.com/rpm-software-management/dnf

21

https://github.com/rpm-software-management/dnf

Acknowledgements

The authors would like to thank the anonymous reviewers’ valuable comments
and suggestions on the improvement of this article.

References

[1] Mancoosi, Managing the Complexity of the Open Source Infrastructure.
http://www.mancoosi.org.

[2] OSGi Service Platform. http://www.osgi.org/Specifications.

[3] Mancoosi International Solver Competition website http://www.

mancoosi.org/misc/

[4] Pietro Abate, Roberto Di Cosmo. Adoption of Academic Tools in Open
Source Communities: The Debian Case Study. In Proceedings of Open
Source Systems: Towards Robust Practices - 13th IFIP WG 2.13 Interna-
tional Conference (OSS 2017), pp 139–150, 2017.

[5] Pietro Abate, Roberto Di Cosmo, Ralf Treinen, Stefano Zacchiroli. A mod-
ular package manager architecture. Information & Software Technology
55(2): 459-474, 2013.

[6] Pietro Abate, Roberto Di Cosmo, Ralf Treinen, Stefano Zacchiroli. Depen-
dency solving: A separate concern in component evolution management.
Journal of Systems and Software 85(10): 2228-2240, 2012.

[7] Pietro Abate, Jaap Boender, Roberto Di Cosmo, and Stefano Zacchiroli.
Strong dependencies between software components. Technical Report 2,
Mancoosi - Seventh Framework Programme, May 2009.

[8] Josep Argelich, Daniel Le Berre, Ines Lynce, Pascal Rapicault and Joao
Marques-Silva. Solving Linux Upgradeability Problems Using Boolean Op-
timization. In Proceedings of LoCoCo2010 - Workshop on Logics for Com-
ponent Configuration, 2010.

[9] Josep Argelich, Ines Lynce, and Joao Marques-Silva. On solving Boolean
multilevel optimization problems. In Twenty-First International Joint Con-
ferences on Artificial Intelligence (IJCAI), pages 393–398, Pasadena, Cal-
ifornia, USA, 2009.

[10] Roberto Aśın, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodŕıguez-
Carbonell. Efficient generation of unsatisfiability proofs and cores in sat.
In Iliano Cervesato, Helmut Veith, and Andrei Voronkov, editors, LPAR,
volume 5330 of Lecture Notes in Computer Science, pages 16–30. Springer,
2008.

22

http://www.mancoosi.org/misc/
http://www.mancoosi.org/misc/

[11] Anton Belov, Inês Lynce, João Marques-Silva. Towards efficient MUS ex-
traction. AI Commun. 25(2): 97-116, 2012

[12] Armin Biere, Edmund M. Clarke, Richard Raimi, Yunshan Zhu. Verifiying
Safety Properties of a Power PC Microprocessor Using Symbolic Model
Checking without BDDs. In Proc. of CAV 1999, pp 60-71, 1999.

[13] Handbook of Satisfiability Armin Biere and Marijn Heule and Hans van
Maaren and Toby Walsh Editors Frontiers in Artificial Intelligence and
Applications, vol. 185, 2009

[14] Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. A simple and
flexible way of computing small unsatisfiable cores in SAT modulo theories.
In Joao Marques-Silva and Karem A. Sakallah, editors, SAT, volume 4501
of Lecture Notes in Computer Science, pages 334–339. Springer, 2007.

[15] Stephen A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the Third IEEE Symposium on the Foundations of Computer
Science, pp 151-158, 1971

[16] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proceed-
ings of the Sixth International Conference on Theory and Applications of
Satisfiability Testing, LNCS 2919, pages 502–518, 2003.

[17] Alan M. Frisch and Paul A. Giannoros. SAT encodings of the at-most-k
constraint: Some old, some new, some fast, some slow. In Proceedings of
the The Ninth International Workshop on Constraint Modelling and Refor-
mulation (ModRef 2010), 2010

[18] Gebser, M., Kaminski, R., Schaub, T. aspcud: a Linux package config-
uration tool based on answer set programming. In Drescher, C., Lynce,
I., Treinen, R., (eds.) Proceedings Logics for Component Configuration Lo-
CoCo (2011), 2011.

[19] Éric Grégoire, Jean-Marie Lagniez, Bertrand Mazure. Boosting MUC ex-
traction in unsatisfiable constraint networks. Applied Intelligence 41(4):
1012-1023, 2014

[20] Éric Grégoire, Bertrand Mazure, Cédric Piette: Using local search to find
MSSes and MUSes. European Journal of Operational Research 199(3):
640-646, 2009.

[21] Steffen Hölldobler and Van Hau Nguyen. On SAT-Encodings of the At-
Most-One Constraint. In Proceedings of The Twelfth International Work-
shop on Constraint Modelling and Reformulation (ModRef 2013), Uppsala,
Sweden, September 16-20. pp. 1–17, 2013

[22] Daniel Le Berre and Anne Parrain. The Sat4j library 2.2, System De-
scription. Journal on Satisfiability, Boolean Modeling and Computation,
7:59–64, 2010.

23

[23] Daniel Le Berre and Pascal Rapicault. Dependency Management for the
Eclipse Ecosystem. Proceedings of IWOCE2009 - Open Component Ecosys-
tems International Workshop, August 2009.

[24] Chu Min Li and Felip Manyà. MaxSAT, Hard and Soft Constraints. In
[13], pp 613-631, 2009

[25] Ines Lynce and Joao P. Marques Silva. On computing minimum unsatisfi-
able cores. In SAT, 2004.

[26] Fabio Mancinelli, Jaap Boender, Roberto di Cosmo, Jérôme Vouillon, Berke
Durak, Xavier Leroy, and Ralf Treinen. Managing the complexity of large
free and open source package-based software distributions. In Proceedings of
the 21st IEEE/ACM International Conference on Automated Software En-
gineering (ASE06), pages 199–208, Tokyo, JAPAN, september 2006. IEEE
Computer Society Press.

[27] Olivier Roussel and Vasco M. Manquinho. Pseudo-Boolean and Cardinality
Constraints In [13], pp. 695-733, 2009

[28] Claude Michel and Michel Rueher. Handling software upgradeability prob-
lems with MILP solvers. In: Proceedings of LoCoCo2010 - Workshop on
Logics for Component Configuration, 2010.

[29] Bertrand Mazure, Lakhdar Sais, and Eric Gregoire. Detecting logical in-
consistencies. In Proceedings of the Fourth International Symposium on
Artificial Intelligence and Mathematics(AI/Math’96), pages 116–121, Fort
Lauderdale (FL-USA), jan 1996.

[30] Alexander Nadel, Vadim Ryvchin, Ofer Strichman. Accelerated Deletion-
based Extraction of Minimal Unsatisfiable Cores. JSAT 9: 27-51, 2014.

[31] Mark Powell (NASA) Marc Hoffmann, Gilles J. Iachelini (CSC). Eclipse
on rails and rockets. http://live.eclipse.org/node/750.

[32] Tommi Syrjänen. A rule-based formal model for software configuration.
Master’s thesis, Helsinki University of Technology, 1999.

[33] Ralph Treinen and Stefano Zacchiroli. Solving package dependencies: from
Edos to Mancoosi. In DebConf’8, Argentine, 2008.

[34] Chris Tucker, David Shuffelton, Ranjit Jhala, and Sorin Lerner. Opium:
Optimal package install/uninstall manager. In ICSE, pages 178–188. IEEE
Computer Society, 2007.

24

	Introduction
	Preliminaries on Boolean decision and optimisation problems
	Problem input: p2 metadata
	Anatomy of an installable unit
	Installable unit patch
	The need for patches

	Overview of the solving process

	Translation into a Pseudo-Boolean Optimization problem
	Basic encoding
	Eclipse specific encoding
	Encoding of optionality
	Encoding of non greedy requirements
	Encoding of patches

	When things go wrong: explanation
	From decision to optimisation

	p2cudf: From Eclipse to Linux dependency management
	Original constraints
	Handling inconsistency of installed packages
	Objective functions
	Common definitions
	Paranoid criterion
	Trendy criterion

	p2cudf against the other solvers

	Conclusion and perspectives

