
HAL Id: hal-02310048
https://hal.science/hal-02310048v1

Submitted on 10 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FIFO Buffers in tie Sauce
Franck Pommereau

To cite this version:
Franck Pommereau. FIFO Buffers in tie Sauce. Distributed and Parallel Systems, Sep 2000, Balaton-
füred, Hungary. pp.95-104, �10.1007/978-1-4615-4489-0_13�. �hal-02310048�

https://hal.science/hal-02310048v1
https://hal.archives-ouvertes.fr

FIFO bu�ers in tie saue

Frank Pommereau

LACL, Université Paris 12,

61 avenue du Général de Gaulle,

94010 Créteil, Frane

pommereau�univ-paris12.fr

Abstrat. This paper introdues a new semantis for FIFO bu�ers in a parallel programming

language, B(PN)

2

. This semantis is given in the algebra of M-nets, whih is a proess algebra

with a semantis in terms of labelled high-level Petri nets. The proposed semantis makes usage of

newly introdued asynhronous link operator and repairs some drawbaks of the previous semantis:

hannels are now fully expressible within the algebra, they are onsiderably smaller, and they o�er

several other advantages.

Keywords. Parallel programming, Petri nets, proess algebras, FIFO bu�ers, semantis.

B(PN)

2

[2℄ is a general purpose parallel programming language provided with features like par-

allel omposition, iteration, guarded ommands, ommuniations through FIFO bu�ers (more

usually alled hannels) or shared variables, proedures [4℄ and, more reently, real-time exten-

sions with abortable bloks and exeptions [6℄.

The semantis of B(PN)

2

is traditionally given in terms of Petri nets, using a low-level nets

algebra alled Petri Box Calulus [1℄ or its high-level version, M-nets [℄. These two levels are

related by an unfolding operation whih transforms an M-net in a low-level net having an

equivalent behaviour. In this paper, we fous on M-net semantis sine it is muh more ompat

and intuitive.

Using PEP toolkit [3℄, one may input a B(PN)

2

program and automatially generate its M-

net semantis for simulation purpose or the low-level unfolded net in order to model-hek ones

program against some properties.

The purpose of this paper is to propose a new M-net semantis for hannels in B(PN)

2

.

This semantis uses asynhronous links apabilities newly introdued in M-nets an Petri Box

Calulus [5℄. The proposed semantis has three main advantages: it is ompletely expressible in

the algebra of M-net, its size (in number of plaes in the unfolding) is onsiderably smaller that

2 Frank Pommereau

for the existing semantis and �nally, it avoids the �availability defet� of the existing semantis

(a message sent to a hannel was not immediately available for reeiving).

B(PN)

2

is presented in [℄ and its M-net semantis is fully developed in [℄. In the following, we

fous on the intuition in order to keep the paper ompat but as omplete as possible.

M-nets primer

M-nets form a lass of labelled high-level Petri nets whih were introdued in [℄ and are now

widely used as a semanti domain for onurrent systems spei�ations, programming languages

or protools [℄. The most interesting features of M-nets, with respet to other lasses of high-level

Petri nets, is their full ompositionality, thanks to their algebrai struture. As a onsequene,

an M-net is built out of sub-nets with arbitrary �hand-made� nets as base ases.

A plae in an M-net is labelled with its type (a set of values) whih indiates the tokens it may

hold. (In order to de�ne an algebra over M-nets, eah plae also has a status in fe; i; xg whih

re�ets whether it is an entry, an internal or an exit plae. This partiular point is not ruial for

our purpose.) On the other hand, a transition t is labelled with a triple �(t):�(t):(t) where �(t)

ontains (synhronous) ommuniation ations, �(t) holds (asynhronous) links annotations and

(t) is a guard whih is a ondition for allowing or not the �ring of t. Finally, ars are simply

labelled by multi-sets of values or variables, indiating what they transport.

When a transition t �res, variables in its annotation and on its surrounding ars are bound

to values, aording to the tokens atually available in its input plaes and with respet to its

guard (t). Transition t is allowed to �re only if suh a oherent binding an be found using

available tokens. When �re ours, tokens are onsumed and produed oherently with respet

to the hoosen binding.

M-nets algebra provides various operators for �ow ontrol and ommuniations setup as de-

sribed in �gure 1. Let us give more details about ommuniations.

Soping is the normal mean to perform synhronous ommuniations between transitions in

an M-net. Figure 2 gives an illustration of soping in a trivial ase: in M-net N , transition

t

1

performs an ation A(x) and t

2

an

b

A(y); the M-net resulting from soping [[A : N ℄℄ has one

transition t

1

t

2

whih is a mix of t

1

and t

2

suh that x and y are uni�ed (here to x) in order to

make the ommuniation atual. (x and y may also be onstants in whih ase uni�ation is only

FIFO bu�ers in tie saue 3

N

1

;N

2

sequene N

1

runs then N

2

does

N

1

kN

2

parallel omposition N

1

runs in onurrene with N

2

N

1

N

2

hoie N

1

or N

2

runs but not both

[N

1

�N

2

�N

3

℄ iteration N

1

runs one (initialization), then N

2

runs zero or more times

(iteration) and �nally N

3

runs one (termination)

[[A : N ℄℄ soping sets-up synhronous ommuniations between transitions

N tie b asynhronous links links transitions asynhronously

Fig. 1. Operator on M-nets

.

.

e:f1;2g

t

1

fA(x)g:;:;

x:f�g

x

�

e:f�g

t

2
f

b

A(y)g:;:;

x:f1;2g

�

y

M-net N

.

.

e:f1;2g

x:f�g

e:f�g

x:f1;2g

t

1

t

2

;:;:;

x

�

�

x

M-net [[A : N ℄℄

Fig. 2. An example of soping. (x and y have been uni�ed to x.)

possible when x = y.) In a more omplex M-net, soping is performed pairwise, between ouples

of transitions suh as t

1

and t

2

. In the general ase, annotations � are multi-sets of ations.

Asynhronous links are available through links annotations. A transition may export an item

x on a link symbol b thanks to a link b

+

(x), suh an exported item may be imported later with

a link b

�

(y). (Here again, x and y may be onstants or variables.) Figure 3 gives an example

of a basi asynhronous ommuniation between two transitions. In a more omplex M-net N ,

their would be also a single plae s

b

for all the links on b (there is only one plae s

b

for N tie b

but later, there may be new ones if N tie b is reused in a ontext with new links on b) and all

the transitions in N with a link b

+

(x) (resp. b

�

(y)) would be attahed an ar to (resp. from) s

b

.

Like for synhronous ommuniation ations, annotations � are atually multi-sets of links.

In order to give a type to the plaes added by operator tie, eah link symbol b is assoiated

a type whih beomes the type of any plae reated by an appliation of tie b.

To onlude on ommuniations, let us add that it is possible to perform synhronous and

asynhronous ommuniations on the same transition. We will see an example of this in the

proposed semantis for hannels. Notie also that soping and asynhronous links being om-

mutative (eah one with itself), we use extended notations suh as [[fA;A

0

g : N ℄℄ or N tie fb; b

0

g.

4 Frank Pommereau

.

.

e:f1;2g

t

1

;:fb

+

(x)g:;

x:f�g

x

�

e:f�g

t

2

;:fb

�

(y)g:;

x:f1;2g

�

y

M-net N

.

.

e:f1;2g

t

1

;:;:;

x:f�g

x

�

e:f�g

t

2

;:;:;

x:f1;2g

�

y

i:f1;2g

s

b

x

y

M-net N tie b

Fig. 3. An example of asynhronous link (b has type f1; 2g)

.

.

e:f�g

t

�(t):�(t):(t)

�

x:f�g

�

Fig. 4. A simple M-net, denoted by �(t):�(t):(t) in this paper.

program ::= program blok (main program)

blok ::= begin sope end (blok with private delarations)

sope ::= om (arbitrary ommand)

| vardel ; sope (variable or hannel delaration)

| prodel ; sope (proedure delaration)

vardel ::= var ident set (variable delaration)

| var ident han k of set (hannel delaration)

Fig. 5. A fragment of the syntax of B(PN)

2

(prodel and om are not detailed here).

In the following, in order to avoid many �gures, we will denote by �(t):�(t):(t) an M-net

with a lonely transition t annotated by �(t):�(t):(t) and having only one input plae and one

outpu plae, both of type f�g (see �gure 4).

B(PN)

2

and its M-net semantis

Figure 5 gives a fragment of the syntax of B(PN)

2

, semantis is given ompositionally and is

guided by syntax: it exists a funtion Mnet whih gives its semantis to eah fragment of a

B(PN)

2

program and whose de�nition is reursive on the syntax. Base ase is either for an

atomi ation, giving an M-net like on �gure 4 where t would be labelled in order to implement

the ation, or a delaration whih semantis is given using some speial �hand-made� ressoure

M-nets (like for hannels in next setion).

A B(PN)

2

program is basially a blok whih may start with some delarations (they are

FIFO bu�ers in tie saue 5

kept loal to the blok) and ontinue with a ommand (whih may ontain sub-ommands and

possibly nested bloks). Eah blok may delare its own variables or hannels (or proedures): a

variable is named with an identi�er ident and takes its value from the set given in its delaration;

a hannel is delared similarly but with an additional apaity k, it may be 0 for handshake

ommuniation, k 2 N for a k-bounded hannel or 1 for an unbounded apaity.

The semantis for suh a blok is obtained from the semantis of its omponents: we just put

in parallel the M-net for the ommand and the M-net for all the delarations; then we sope on

ommuniation ations in order to make the ommuniations between omponents atual and

private. There is an additional termination net whih is added in sequene to the ommand

and whose goal is to terminate the nets for the delarations: terminating suh a net onsists in

removing all its tokens in order to make it lean for a possible re-usage. The semantis of any

delared ressoure X ontains a transition with an ation

X

t

whih performs the emptying, so

the termination net just onsists in a parallel omposition of M-nets suh as fX

t

g:;:;.

In the following setion, we show and disuss urrent semantis for a hannel delaration.

Existing hannels in B(PN)

2

Channels for B(PN)

2

were proposed in [℄ with the M-net semantis depited in �gure 6. There is

atually three semantis, depending on apaity k for the hannel. Three ations are available for

a blok whih delares a hannel C (regardless to is apaity):

C! for sending,

C? for reeiving

and

C

t

for terminating it when the program leaves the blok. In order to ommuniate with

the hannel, the M-net wih implements the program arry ations C! or C?. Ation C

t

an be

found in the assoiated termination net.

In �gure 6, transitions are named oherently on M-nets N

0

, N

1

and N

k

so, exepted when

spei�ed, the following desription is generi.

On transition t

1

, the �rst ation on the hannel an be performed. For N

0

this means sending

(with an ation C! in the program) and reeiving (ation C?) on the same transition (it is

handshake ommuniation), the guard ensures that the ommuniation is atual; for N

1

and N

k

we just have to put one value in the hannel.

Transitions t

2

and t

0

2

are for sending and reeiving. In N

0

, like for t

1

, both ation are performed

on the same transition t

2

. For N

1

or N

k

, these ations are separated. In N

1

we use a value " 62 set

6 Frank Pommereau

.

.

e:f�g

t

1

f

C!(x);

C?(y)g

:;:fx=y2setg

�

i

i:f�g

�

t

2

f

C!(x);

C?(y)g

:;:fx=y2setg

�

�

t

3 f

C

t

g:;:;

�

x:f�g

�

t

0

3

f

C

t

g:;:;

�

�

M-net N

0

.

.

e:f�g

t

1f

C!(x)g:;:fx2setg

�

i

i:set℄f"g

x

t

2

f

C!(x)g:

;:fx2setg

x

"

t

0

2

f

C?(y)g:

;:fy 6="g

"

y

t

3 f

C

t

g:;:;

x

x:f�g

�

t

0

3

f

C

t

g:;:;

�

�

M-net N

1

.

.

e:f�g

t

1
f

C!(x)g:;:fx2setg

�

i

1

i:set

k

x

t

2

f

C!(x)g:;:

fsize(oldlist)<k;

newlist=oldlist:xg

oldlist

newlist

i

2

i:set℄f"g

"

t

4

;:;:

flist=head:tail;

size(head)=1g

list

tail

"

head

t

0

2

f

C?(y)g:

;:fy 6="g

y

"

t

3

f

C

t

g:;:;

list

y

x:f�g

�

t

0

3

f

C

t

g:;:;

�

�

M-net N

k

Fig. 6. Existing semantis for a hannel delaration �var C han k of set�. Handshake ommuniation (apaity

k = 0) is shown on the top left, for k = 1 we use the M-net on the top right and the M-net of the bottom is for

k > 1, inluding k = 1.

to denote an empty hannel, annotations on ars ensure that one value an be wrote only if plae

i holds value ". The guards ensure that only values in set are stored in the hannel and that " is

never read. For N

k

, the situation is more omplex sine the queue that a hannel atually stores

is enoded into tokens strutured has k-bounded lists. These lists are stored in i

1

(type set

k

ontains all sequenes of at most k values from set, plus an additional " for the empty sequene).

Transition t

2

adds one value at the end of the list and there is an additional transition t

4

whose

goal is to extrat the head of the list and to store it in i

2

(only if it holds an "); on the other

side, transition t

0

2

is like t

0

2

in N

1

.

Transitions t

3

and t

0

3

are for hannels termination (whenever they have been used or not).

For N

k

, it is easy to see that the mehanism is quite omplex sine it requires list manipula-

FIFO bu�ers in tie saue 7

tions. And unfortunately, k-bounded hannels are ertainly the most ommonly used. . . Addi-

tionally, we an point out an important drawbak in N

k

: the program has to wait for t

4

to �re

before it an reeive a value whih yet has been sent to the hannel.

We will see in the following setion that these problems are solved in our semantis of hannels.

Let us onlude urrent setion with a remark on the unfolding. We already said that any M-

net an be unfolded into a low-level equivalent; it is a labelled plae/transition net with the only

available token value being �. As far as plaes are onerned, the unfolding operation produes

one low-level plae for eah possible value of eah plae in the M-net. As a diret onsequene,

unfolding M-net N

k

leads to 1 + jsetj

k

plaes just for i

1

; the other plaes unfold in either 1 or

1 + jsetj low-level plaes. So we an state that the number of plaes in the unfolding of M-net

N

k

is O(jsetj

k

).

A new semantis for hannels

First of all, let us eliminate the ase of handshake ommuniations: the semantis for this par-

tiular ase remains the same. For a hannel C, it an be expressed as the following M-net:

�

f

C

t

g:;:;

� h

f

C!(x);

C?(y)g:;:fx = y 2 setg � f

C!(x);

C?(y)g:;:fx = y 2 setg � f

C

t

g:;:;

i

(As explained before, notations as f

C

t

g:;:; stand for an M-net like on �gure 4 with the orre-

sponding label on its transition.)

For bounded non-zero apaities (1 � k <1), we will use a single M-net, parametrized by k.

In order to avoid lists handling, the stored values are numbered modulus k and the M-net takes

are to remember the numbers for the next value to send and, separately, the next to reeive.

In order to bound apaity, we annot use a single ounter, shared by the sending and reeiving

ations, whih would ount how many values are stored at a given moment: this would forbid

onurrent sendings and reeivings sine aessing to this ounter would be a on�it on a plae.

Instead of this, we use a olletion of tokens, one for eah possible value in the hannel, whih are

onsidered as �tikets for sending� or �tikets for reeiving�: in order to store a value, a transition

must take a tiket, if none is available, then sending is impossible. Eah send transforms a �tiket

for sending� into a �tiket for reeiving� and symmetrially. So when one ation (say sending) is

not allowed to �re beause of a lak of tiket, it must wait for the other ation (here reeiving)

8 Frank Pommereau

to onvert one of its tikets (here it means that the hannel is not full anymore). This system

avoids on�its sine the sending transition onsumes �tikets for sending� while the reeiving

transition does not, and symmetrially.

In the following, we use name K for the set f0; : : : ; k � 1g. The M-net for hannels uses

asynhronous links for data storage and values numbering; the following link symbols are use

with the following meaning:

� is where numbered data are stored, under the form of ouples (v; n) where v is the value

and n its number (we an dedue from this that must have type set�K);

� nw and nr are used to remember the number for the next value to send or reeive (both

have type K);

� tw and tr store tikets for sending or reeiving (also of type K).

The omplete semantis for a k-bounded hannel C (1 � k <1) is as follows:

Mnet(var C han k of set) = [[fI; Tg : ore ℄℄ tie f; nw; nr; tw; trg

where I and T are synhronous ommuniation ations used internally. The ore of the semantis

an be expressed as two onurrent iteration, one for sends and the other for reeives:

ore =

h

init � send � terminate

i

h

wait

i

� reeive � wait

t

i

In this M-net, the sending part an be onsidered as ative and the reeiving part as passive:

M-net wait

i

just waits for init to be exeuted and similarly, wait

t

waits for terminate. The

waiting M-nets an be simply expressed has: wait

i

= f

b

Ig:;:; and wait

t

= f

b

Tg:;:;.

M-net init is omposed of a single transition whih �res when the �rst send takes plae.

init = f

C!(x); Ig : f

+

((x; 0)); tr

+

(0); tw

+

(1); : : : ; tw

+

(k � 1); nw

+

(1mod k); nr

+

(0)g : ;

It stores the value, with number 0, produes all the tikets and initializes �next ounters�. It

also triggers M-net wait

i

thanks to a synhronization on I. (Notation �tw

+

(1); : : : ; tw

+

(k � 1)�

is void when k = 1.)

Notie that there is no need to add a guard suh as x 2 set beause the type of ensures it

must be the ase. It is the same with send and reeive whose de�nitions are quite natural:

dend = f

C!(x)g : ftw

�

(t); tr

+

(t); nw

�

(n); nw

+

(n+ 1mod k);

+

((x; n))g : ;

reeive = f

C?(y)g : ftr

�

(t); tw

+

(t); nr

�

(n); nr

+

(n+ 1mod k);

�

((y; n))g : ;

FIFO bu�ers in tie saue 9

Termination annot be done in one single ation beause we do not know where tikets are

and how many tokens holds (whenever it has some). This problem is solved by an iteration

wih triggers wait

t

on starts:

terminate =

h

f

C

t

; Tg:;:; � ;:ftr

�

(t); tw

+

(t);

�

((y; n))g:;

� f

C

0

t

g:ftw

�

(0); : : : ; tw

�

(k � 1); nr

�

(r); nw

�

(w)g:;

i

(notation �tw

�

(0); : : : ; tw

�

(k � 1)� redues to �tw

�

(0)� when k = 0)

The goal of this iteration is to onsume �for free� eah value in the hannel, and for eah suh

value, one tiket is onverted. When (and only when) all the values are onsumed (and so, all

the tikets are onverted), iteration may terminate, onsuming all the �tikets for sending� and

the �next ounters� while synhronizing with the program on a seond termination ation

C

0

t

.

In order to model unbounded apaity, we just have to remove modulus arithmeti on the

�next ounters� and to forget the system of tikets (just by removing all the links on tw and tr):

sending is always possible sine the apaity is unbounded and reeive is ontroled by its �next

ounter� and the availability of data in (atually, �tikets for reeiving� were useless from the

beginning but it was neessary to manage them in a oherent way and so, on reeive also).

In this ase, we annot rely on tikets to know if the hannel is empty but we an trust �next

ounters�: while performing ation

C

0

t

, we just have to add a guard r = w whih means that the

ount of

�

(� � �) equals the ount of

+

(� � �) and so that the hannel is empty.

Now, let us onsider the size of the unfolding in the k-bounded ase. Here no plae is diretly

visible sine we just gave expressions, but sine ontrol �ow operators just produe plaes with

types f�g, it is enough to fous on plaes added for asynhronous ommuniations. Plaes for nw,

nr, tw and tr have type K so they all unfold into k low-level plaes. Plae s

for as type set�K

so it unfolds into jsetj � k low-level plaes. So we an state a total of O ((4 + jsetj) � k) whih is

a onsiderable improvement with respet to the exponential size in k for the old semantis.

As a prie for this improvement, we now have two termination ations instead of only one. In

the termination net, a hannel C with the old semantis ontributed an M-net fC

t

g:;:;, for our

semantis, we just have to use instead a sequene (fC

t

g:;:;); (fC

0

t

g:;:;).

10 Frank Pommereau

Conluding remarks

We an see that the new proposed semantis has several advantages over the old one. First, it

is expressed in the algebra, with no more �hand-made� M-nets. We think that this appliation

of tie tends to show how it an be useful: it is an e�ient way to introdue in an M-net some

plaes with arbitrary types, without having to use �hand-made� M-nets.

Additionally, there is no omplex list management to do and the program does not have to wait

any more before to reeive an atually sent value: it is now immediately available. Moreover,

semantis is more homogeneous sine exeptions are now for k = 0 and k = 1 (instead of

k = 0 and k = 1) whih we feel to be intrinsially exeptions: a handshake is not a bu�ered

ommuniation and an unbounded bu�er is ertainly not realisti.

Finally, unfolding the M-net for a hannel now gives a low-level net with O ((4 + jsetj) � k)

plaes while the old semantis unfolded into O(jsetj

k

) plaes. This is a great improvement,

espeially if we onsider the problem of model-heking a B(PN)

2

program with hannels.

Referenes

1. E. Best, R. Devillers, and J. G. Hall. The box alulus: a new ausal algebra with multi-label ommuniation.

Leture Notes in Computer Siene, 609:21�69, 1992.

2. E. Best and R. P. Hopkins. B(PN)

2

� A basi Petri net programming notation. In Arndt Bode, Mike Reeve,

and Gottfried Wolf, editors, Proeedings of PARLE '93 � Parallel Arhitetures and Languages Europe, Leture

Notes in Computer Siene, pages 379�390, Munih, Germany, 1993. Springer-Verlag.

3. B. Grahlmann. The PEP tool. In Proeedings of CAV'97, volume 1254 of LNCS, pages 440�443, 1997.

4. H. Klaudel. Compositional high-level Petri net semantis of a parallel programming language with proedures.

Submitted paper (available on http://).

5. H. Klaudel and F. Pommereau. Asynhronous links in the PBC and M-nets. In Advanes in Computing

Siene � ASIAN'99, volume 1742 of LNCS, pages 190�200. Springer, 1999.

6. H. Klaudel and F. Pommereau. Petri net nemantis of abortion, timeout and exeptions. Tehnial Report

0021, LACL, Université Paris 12, Feb 2000.

