
HAL Id: hal-02310048
https://hal.science/hal-02310048

Submitted on 10 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FIFO Buffers in tie Sauce
Franck Pommereau

To cite this version:
Franck Pommereau. FIFO Buffers in tie Sauce. Distributed and Parallel Systems, Sep 2000, Balaton-
füred, Hungary. pp.95-104, �10.1007/978-1-4615-4489-0_13�. �hal-02310048�

https://hal.science/hal-02310048
https://hal.archives-ouvertes.fr

FIFO bu�ers in tie sau
e

Fran
k Pommereau

LACL, Université Paris 12,

61 avenue du Général de Gaulle,

94010 Créteil, Fran
e

pommereau�univ-paris12.fr

Abstra
t. This paper introdu
es a new semanti
s for FIFO bu�ers in a parallel programming

language, B(PN)

2

. This semanti
s is given in the algebra of M-nets, whi
h is a pro
ess algebra

with a semanti
s in terms of labelled high-level Petri nets. The proposed semanti
s makes usage of

newly introdu
ed asyn
hronous link operator and repairs some drawba
ks of the previous semanti
s:

hannels are now fully expressible within the algebra, they are
onsiderably smaller, and they o�er

several other advantages.

Keywords. Parallel programming, Petri nets, pro
ess algebras, FIFO bu�ers, semanti
s.

B(PN)

2

[2℄ is a general purpose parallel programming language provided with features like par-

allel
omposition, iteration, guarded
ommands,
ommuni
ations through FIFO bu�ers (more

usually
alled
hannels) or shared variables, pro
edures [4℄ and, more re
ently, real-time exten-

sions with abortable blo
ks and ex
eptions [6℄.

The semanti
s of B(PN)

2

is traditionally given in terms of Petri nets, using a low-level nets

algebra
alled Petri Box Cal
ulus [1℄ or its high-level version, M-nets [℄. These two levels are

related by an unfolding operation whi
h transforms an M-net in a low-level net having an

equivalent behaviour. In this paper, we fo
us on M-net semanti
s sin
e it is mu
h more
ompa
t

and intuitive.

Using PEP toolkit [3℄, one may input a B(PN)

2

program and automati
ally generate its M-

net semanti
s for simulation purpose or the low-level unfolded net in order to model-
he
k ones

program against some properties.

The purpose of this paper is to propose a new M-net semanti
s for
hannels in B(PN)

2

.

This semanti
s uses asyn
hronous links
apabilities newly introdu
ed in M-nets an Petri Box

Cal
ulus [5℄. The proposed semanti
s has three main advantages: it is
ompletely expressible in

the algebra of M-net, its size (in number of pla
es in the unfolding) is
onsiderably smaller that

2 Fran
k Pommereau

for the existing semanti
s and �nally, it avoids the �availability defe
t� of the existing semanti
s

(a message sent to a
hannel was not immediately available for re
eiving).

B(PN)

2

is presented in [℄ and its M-net semanti
s is fully developed in [℄. In the following, we

fo
us on the intuition in order to keep the paper
ompa
t but as
omplete as possible.

M-nets primer

M-nets form a
lass of labelled high-level Petri nets whi
h were introdu
ed in [℄ and are now

widely used as a semanti
 domain for
on
urrent systems spe
i�
ations, programming languages

or proto
ols [℄. The most interesting features of M-nets, with respe
t to other
lasses of high-level

Petri nets, is their full
ompositionality, thanks to their algebrai
 stru
ture. As a
onsequen
e,

an M-net is built out of sub-nets with arbitrary �hand-made� nets as base
ases.

A pla
e in an M-net is labelled with its type (a set of values) whi
h indi
ates the tokens it may

hold. (In order to de�ne an algebra over M-nets, ea
h pla
e also has a status in fe; i; xg whi
h

re�e
ts whether it is an entry, an internal or an exit pla
e. This parti
ular point is not
ru
ial for

our purpose.) On the other hand, a transition t is labelled with a triple �(t):�(t):
(t) where �(t)

ontains (syn
hronous)
ommuni
ation a
tions, �(t) holds (asyn
hronous) links annotations and

(t) is a guard whi
h is a
ondition for allowing or not the �ring of t. Finally, ar
s are simply

labelled by multi-sets of values or variables, indi
ating what they transport.

When a transition t �res, variables in its annotation and on its surrounding ar
s are bound

to values, a

ording to the tokens a
tually available in its input pla
es and with respe
t to its

guard
(t). Transition t is allowed to �re only if su
h a
oherent binding
an be found using

available tokens. When �re o

urs, tokens are
onsumed and produ
ed
oherently with respe
t

to the
hoosen binding.

M-nets algebra provides various operators for �ow
ontrol and
ommuni
ations setup as de-

s
ribed in �gure 1. Let us give more details about
ommuni
ations.

S
oping is the normal mean to perform syn
hronous
ommuni
ations between transitions in

an M-net. Figure 2 gives an illustration of s
oping in a trivial
ase: in M-net N , transition

t

1

performs an a
tion A(x) and t

2

an

b

A(y); the M-net resulting from s
oping [[A : N ℄℄ has one

transition t

1

t

2

whi
h is a mix of t

1

and t

2

su
h that x and y are uni�ed (here to x) in order to

make the
ommuni
ation a
tual. (x and y may also be
onstants in whi
h
ase uni�
ation is only

FIFO bu�ers in tie sau
e 3

N

1

;N

2

sequen
e N

1

runs then N

2

does

N

1

kN

2

parallel
omposition N

1

runs in
on
urren
e with N

2

N

1

N

2

hoi
e N

1

or N

2

runs but not both

[N

1

�N

2

�N

3

℄ iteration N

1

runs on
e (initialization), then N

2

runs zero or more times

(iteration) and �nally N

3

runs on
e (termination)

[[A : N ℄℄ s
oping sets-up syn
hronous
ommuni
ations between transitions

N tie b asyn
hronous links links transitions asyn
hronously

Fig. 1. Operator on M-nets

.

.

e:f1;2g

t

1

fA(x)g:;:;

x:f�g

x

�

e:f�g

t

2
f

b

A(y)g:;:;

x:f1;2g

�

y

M-net N

.

.

e:f1;2g

x:f�g

e:f�g

x:f1;2g

t

1

t

2

;:;:;

x

�

�

x

M-net [[A : N ℄℄

Fig. 2. An example of s
oping. (x and y have been uni�ed to x.)

possible when x = y.) In a more
omplex M-net, s
oping is performed pairwise, between
ouples

of transitions su
h as t

1

and t

2

. In the general
ase, annotations � are multi-sets of a
tions.

Asyn
hronous links are available through links annotations. A transition may export an item

x on a link symbol b thanks to a link b

+

(x), su
h an exported item may be imported later with

a link b

�

(y). (Here again, x and y may be
onstants or variables.) Figure 3 gives an example

of a basi
 asyn
hronous
ommuni
ation between two transitions. In a more
omplex M-net N ,

their would be also a single pla
e s

b

for all the links on b (there is only one pla
e s

b

for N tie b

but later, there may be new ones if N tie b is reused in a
ontext with new links on b) and all

the transitions in N with a link b

+

(x) (resp. b

�

(y)) would be atta
hed an ar
 to (resp. from) s

b

.

Like for syn
hronous
ommuni
ation a
tions, annotations � are a
tually multi-sets of links.

In order to give a type to the pla
es added by operator tie, ea
h link symbol b is asso
iated

a type whi
h be
omes the type of any pla
e
reated by an appli
ation of tie b.

To
on
lude on
ommuni
ations, let us add that it is possible to perform syn
hronous and

asyn
hronous
ommuni
ations on the same transition. We will see an example of this in the

proposed semanti
s for
hannels. Noti
e also that s
oping and asyn
hronous links being
om-

mutative (ea
h one with itself), we use extended notations su
h as [[fA;A

0

g : N ℄℄ or N tie fb; b

0

g.

4 Fran
k Pommereau

.

.

e:f1;2g

t

1

;:fb

+

(x)g:;

x:f�g

x

�

e:f�g

t

2

;:fb

�

(y)g:;

x:f1;2g

�

y

M-net N

.

.

e:f1;2g

t

1

;:;:;

x:f�g

x

�

e:f�g

t

2

;:;:;

x:f1;2g

�

y

i:f1;2g

s

b

x

y

M-net N tie b

Fig. 3. An example of asyn
hronous link (b has type f1; 2g)

.

.

e:f�g

t

�(t):�(t):
(t)

�

x:f�g

�

Fig. 4. A simple M-net, denoted by �(t):�(t):
(t) in this paper.

program ::= program blo
k (main program)

blo
k ::= begin s
ope end (blo
k with private de
larations)

s
ope ::=
om (arbitrary
ommand)

| varde
l ; s
ope (variable or
hannel de
laration)

| pro
de
l ; s
ope (pro
edure de
laration)

varde
l ::= var ident set (variable de
laration)

| var ident
han k of set (
hannel de
laration)

Fig. 5. A fragment of the syntax of B(PN)

2

(pro
de
l and
om are not detailed here).

In the following, in order to avoid many �gures, we will denote by �(t):�(t):
(t) an M-net

with a lonely transition t annotated by �(t):�(t):
(t) and having only one input pla
e and one

outpu pla
e, both of type f�g (see �gure 4).

B(PN)

2

and its M-net semanti
s

Figure 5 gives a fragment of the syntax of B(PN)

2

, semanti
s is given
ompositionally and is

guided by syntax: it exists a fun
tion Mnet whi
h gives its semanti
s to ea
h fragment of a

B(PN)

2

program and whose de�nition is re
ursive on the syntax. Base
ase is either for an

atomi
 a
tion, giving an M-net like on �gure 4 where t would be labelled in order to implement

the a
tion, or a de
laration whi
h semanti
s is given using some spe
ial �hand-made� ressour
e

M-nets (like for
hannels in next se
tion).

A B(PN)

2

program is basi
ally a blo
k whi
h may start with some de
larations (they are

FIFO bu�ers in tie sau
e 5

kept lo
al to the blo
k) and
ontinue with a
ommand (whi
h may
ontain sub-
ommands and

possibly nested blo
ks). Ea
h blo
k may de
lare its own variables or
hannels (or pro
edures): a

variable is named with an identi�er ident and takes its value from the set given in its de
laration;

a
hannel is de
lared similarly but with an additional
apa
ity k, it may be 0 for handshake

ommuni
ation, k 2 N for a k-bounded
hannel or 1 for an unbounded
apa
ity.

The semanti
s for su
h a blo
k is obtained from the semanti
s of its
omponents: we just put

in parallel the M-net for the
ommand and the M-net for all the de
larations; then we s
ope on

ommuni
ation a
tions in order to make the
ommuni
ations between
omponents a
tual and

private. There is an additional termination net whi
h is added in sequen
e to the
ommand

and whose goal is to terminate the nets for the de
larations: terminating su
h a net
onsists in

removing all its tokens in order to make it
lean for a possible re-usage. The semanti
s of any

de
lared ressour
e X
ontains a transition with an a
tion

X

t

whi
h performs the emptying, so

the termination net just
onsists in a parallel
omposition of M-nets su
h as fX

t

g:;:;.

In the following se
tion, we show and dis
uss
urrent semanti
s for a
hannel de
laration.

Existing
hannels in B(PN)

2

Channels for B(PN)

2

were proposed in [℄ with the M-net semanti
s depi
ted in �gure 6. There is

a
tually three semanti
s, depending on
apa
ity k for the
hannel. Three a
tions are available for

a blo
k whi
h de
lares a
hannel C (regardless to is
apa
ity):

C! for sending,

C? for re
eiving

and

C

t

for terminating it when the program leaves the blo
k. In order to
ommuni
ate with

the
hannel, the M-net wi
h implements the program
arry a
tions C! or C?. A
tion C

t

an be

found in the asso
iated termination net.

In �gure 6, transitions are named
oherently on M-nets N

0

, N

1

and N

k

so, ex
epted when

spe
i�ed, the following des
ription is generi
.

On transition t

1

, the �rst a
tion on the
hannel
an be performed. For N

0

this means sending

(with an a
tion C! in the program) and re
eiving (a
tion C?) on the same transition (it is

handshake
ommuni
ation), the guard ensures that the
ommuni
ation is a
tual; for N

1

and N

k

we just have to put one value in the
hannel.

Transitions t

2

and t

0

2

are for sending and re
eiving. In N

0

, like for t

1

, both a
tion are performed

on the same transition t

2

. For N

1

or N

k

, these a
tions are separated. In N

1

we use a value " 62 set

6 Fran
k Pommereau

.

.

e:f�g

t

1

f

C!(x);

C?(y)g

:;:fx=y2setg

�

i

i:f�g

�

t

2

f

C!(x);

C?(y)g

:;:fx=y2setg

�

�

t

3 f

C

t

g:;:;

�

x:f�g

�

t

0

3

f

C

t

g:;:;

�

�

M-net N

0

.

.

e:f�g

t

1f

C!(x)g:;:fx2setg

�

i

i:set℄f"g

x

t

2

f

C!(x)g:

;:fx2setg

x

"

t

0

2

f

C?(y)g:

;:fy 6="g

"

y

t

3 f

C

t

g:;:;

x

x:f�g

�

t

0

3

f

C

t

g:;:;

�

�

M-net N

1

.

.

e:f�g

t

1
f

C!(x)g:;:fx2setg

�

i

1

i:set

k

x

t

2

f

C!(x)g:;:

fsize(oldlist)<k;

newlist=oldlist:xg

oldlist

newlist

i

2

i:set℄f"g

"

t

4

;:;:

flist=head:tail;

size(head)=1g

list

tail

"

head

t

0

2

f

C?(y)g:

;:fy 6="g

y

"

t

3

f

C

t

g:;:;

list

y

x:f�g

�

t

0

3

f

C

t

g:;:;

�

�

M-net N

k

Fig. 6. Existing semanti
s for a
hannel de
laration �var C
han k of set�. Handshake
ommuni
ation (
apa
ity

k = 0) is shown on the top left, for k = 1 we use the M-net on the top right and the M-net of the bottom is for

k > 1, in
luding k = 1.

to denote an empty
hannel, annotations on ar
s ensure that one value
an be wrote only if pla
e

i holds value ". The guards ensure that only values in set are stored in the
hannel and that " is

never read. For N

k

, the situation is more
omplex sin
e the queue that a
hannel a
tually stores

is en
oded into tokens stru
tured has k-bounded lists. These lists are stored in i

1

(type set

k

ontains all sequen
es of at most k values from set, plus an additional " for the empty sequen
e).

Transition t

2

adds one value at the end of the list and there is an additional transition t

4

whose

goal is to extra
t the head of the list and to store it in i

2

(only if it holds an "); on the other

side, transition t

0

2

is like t

0

2

in N

1

.

Transitions t

3

and t

0

3

are for
hannels termination (whenever they have been used or not).

For N

k

, it is easy to see that the me
hanism is quite
omplex sin
e it requires list manipula-

FIFO bu�ers in tie sau
e 7

tions. And unfortunately, k-bounded
hannels are
ertainly the most
ommonly used. . . Addi-

tionally, we
an point out an important drawba
k in N

k

: the program has to wait for t

4

to �re

before it
an re
eive a value whi
h yet has been sent to the
hannel.

We will see in the following se
tion that these problems are solved in our semanti
s of
hannels.

Let us
on
lude
urrent se
tion with a remark on the unfolding. We already said that any M-

net
an be unfolded into a low-level equivalent; it is a labelled pla
e/transition net with the only

available token value being �. As far as pla
es are
on
erned, the unfolding operation produ
es

one low-level pla
e for ea
h possible value of ea
h pla
e in the M-net. As a dire
t
onsequen
e,

unfolding M-net N

k

leads to 1 + jsetj

k

pla
es just for i

1

; the other pla
es unfold in either 1 or

1 + jsetj low-level pla
es. So we
an state that the number of pla
es in the unfolding of M-net

N

k

is O(jsetj

k

).

A new semanti
s for
hannels

First of all, let us eliminate the
ase of handshake
ommuni
ations: the semanti
s for this par-

ti
ular
ase remains the same. For a
hannel C, it
an be expressed as the following M-net:

�

f

C

t

g:;:;

� h

f

C!(x);

C?(y)g:;:fx = y 2 setg � f

C!(x);

C?(y)g:;:fx = y 2 setg � f

C

t

g:;:;

i

(As explained before, notations as f

C

t

g:;:; stand for an M-net like on �gure 4 with the
orre-

sponding label on its transition.)

For bounded non-zero
apa
ities (1 � k <1), we will use a single M-net, parametrized by k.

In order to avoid lists handling, the stored values are numbered modulus k and the M-net takes

are to remember the numbers for the next value to send and, separately, the next to re
eive.

In order to bound
apa
ity, we
annot use a single
ounter, shared by the sending and re
eiving

a
tions, whi
h would
ount how many values are stored at a given moment: this would forbid

on
urrent sendings and re
eivings sin
e a

essing to this
ounter would be a
on�i
t on a pla
e.

Instead of this, we use a
olle
tion of tokens, one for ea
h possible value in the
hannel, whi
h are

onsidered as �ti
kets for sending� or �ti
kets for re
eiving�: in order to store a value, a transition

must take a ti
ket, if none is available, then sending is impossible. Ea
h send transforms a �ti
ket

for sending� into a �ti
ket for re
eiving� and symmetri
ally. So when one a
tion (say sending) is

not allowed to �re be
ause of a la
k of ti
ket, it must wait for the other a
tion (here re
eiving)

8 Fran
k Pommereau

to
onvert one of its ti
kets (here it means that the
hannel is not full anymore). This system

avoids
on�i
ts sin
e the sending transition
onsumes �ti
kets for sending� while the re
eiving

transition does not, and symmetri
ally.

In the following, we use name K for the set f0; : : : ; k � 1g. The M-net for
hannels uses

asyn
hronous links for data storage and values numbering; the following link symbols are use

with the following meaning:

�
 is where numbered data are stored, under the form of
ouples (v; n) where v is the value

and n its number (we
an dedu
e from this that
 must have type set�K);

� nw and nr are used to remember the number for the next value to send or re
eive (both

have type K);

� tw and tr store ti
kets for sending or re
eiving (also of type K).

The
omplete semanti
s for a k-bounded
hannel C (1 � k <1) is as follows:

Mnet(var C
han k of set) = [[fI; Tg :
ore ℄℄ tie f
; nw; nr; tw; trg

where I and T are syn
hronous
ommuni
ation a
tions used internally. The
ore of the semanti
s

an be expressed as two
on
urrent iteration, one for sends and the other for re
eives:

ore =

h

init � send � terminate

i

h

wait

i

� re
eive � wait

t

i

In this M-net, the sending part
an be
onsidered as a
tive and the re
eiving part as passive:

M-net wait

i

just waits for init to be exe
uted and similarly, wait

t

waits for terminate. The

waiting M-nets
an be simply expressed has: wait

i

= f

b

Ig:;:; and wait

t

= f

b

Tg:;:;.

M-net init is
omposed of a single transition whi
h �res when the �rst send takes pla
e.

init = f

C!(x); Ig : f

+

((x; 0)); tr

+

(0); tw

+

(1); : : : ; tw

+

(k � 1); nw

+

(1mod k); nr

+

(0)g : ;

It stores the value, with number 0, produ
es all the ti
kets and initializes �next
ounters�. It

also triggers M-net wait

i

thanks to a syn
hronization on I. (Notation �tw

+

(1); : : : ; tw

+

(k � 1)�

is void when k = 1.)

Noti
e that there is no need to add a guard su
h as x 2 set be
ause the type of
 ensures it

must be the
ase. It is the same with send and re
eive whose de�nitions are quite natural:

dend = f

C!(x)g : ftw

�

(t); tr

+

(t); nw

�

(n); nw

+

(n+ 1mod k);

+

((x; n))g : ;

re
eive = f

C?(y)g : ftr

�

(t); tw

+

(t); nr

�

(n); nr

+

(n+ 1mod k);

�

((y; n))g : ;

FIFO bu�ers in tie sau
e 9

Termination
annot be done in one single a
tion be
ause we do not know where ti
kets are

and how many tokens
 holds (whenever it has some). This problem is solved by an iteration

wi
h triggers wait

t

on starts:

terminate =

h

f

C

t

; Tg:;:; � ;:ftr

�

(t); tw

+

(t);

�

((y; n))g:;

� f

C

0

t

g:ftw

�

(0); : : : ; tw

�

(k � 1); nr

�

(r); nw

�

(w)g:;

i

(notation �tw

�

(0); : : : ; tw

�

(k � 1)� redu
es to �tw

�

(0)� when k = 0)

The goal of this iteration is to
onsume �for free� ea
h value in the
hannel, and for ea
h su
h

value, one ti
ket is
onverted. When (and only when) all the values are
onsumed (and so, all

the ti
kets are
onverted), iteration may terminate,
onsuming all the �ti
kets for sending� and

the �next
ounters� while syn
hronizing with the program on a se
ond termination a
tion

C

0

t

.

In order to model unbounded
apa
ity, we just have to remove modulus arithmeti
 on the

�next
ounters� and to forget the system of ti
kets (just by removing all the links on tw and tr):

sending is always possible sin
e the
apa
ity is unbounded and re
eive is
ontroled by its �next

ounter� and the availability of data in
 (a
tually, �ti
kets for re
eiving� were useless from the

beginning but it was ne
essary to manage them in a
oherent way and so, on re
eive also).

In this
ase, we
annot rely on ti
kets to know if the
hannel is empty but we
an trust �next

ounters�: while performing a
tion

C

0

t

, we just have to add a guard r = w whi
h means that the

ount of

�

(� � �) equals the
ount of

+

(� � �) and so that the
hannel is empty.

Now, let us
onsider the size of the unfolding in the k-bounded
ase. Here no pla
e is dire
tly

visible sin
e we just gave expressions, but sin
e
ontrol �ow operators just produ
e pla
es with

types f�g, it is enough to fo
us on pla
es added for asyn
hronous
ommuni
ations. Pla
es for nw,

nr, tw and tr have type K so they all unfold into k low-level pla
es. Pla
e s

for
 as type set�K

so it unfolds into jsetj � k low-level pla
es. So we
an state a total of O ((4 + jsetj) � k) whi
h is

a
onsiderable improvement with respe
t to the exponential size in k for the old semanti
s.

As a pri
e for this improvement, we now have two termination a
tions instead of only one. In

the termination net, a
hannel C with the old semanti
s
ontributed an M-net fC

t

g:;:;, for our

semanti
s, we just have to use instead a sequen
e (fC

t

g:;:;); (fC

0

t

g:;:;).

10 Fran
k Pommereau

Con
luding remarks

We
an see that the new proposed semanti
s has several advantages over the old one. First, it

is expressed in the algebra, with no more �hand-made� M-nets. We think that this appli
ation

of tie tends to show how it
an be useful: it is an e�
ient way to introdu
e in an M-net some

pla
es with arbitrary types, without having to use �hand-made� M-nets.

Additionally, there is no
omplex list management to do and the program does not have to wait

any more before to re
eive an a
tually sent value: it is now immediately available. Moreover,

semanti
s is more homogeneous sin
e ex
eptions are now for k = 0 and k = 1 (instead of

k = 0 and k = 1) whi
h we feel to be intrinsi
ally ex
eptions: a handshake is not a bu�ered

ommuni
ation and an unbounded bu�er is
ertainly not realisti
.

Finally, unfolding the M-net for a
hannel now gives a low-level net with O ((4 + jsetj) � k)

pla
es while the old semanti
s unfolded into O(jsetj

k

) pla
es. This is a great improvement,

espe
ially if we
onsider the problem of model-
he
king a B(PN)

2

program with
hannels.

Referen
es

1. E. Best, R. Devillers, and J. G. Hall. The box
al
ulus: a new
ausal algebra with multi-label
ommuni
ation.

Le
ture Notes in Computer S
ien
e, 609:21�69, 1992.

2. E. Best and R. P. Hopkins. B(PN)

2

� A basi
 Petri net programming notation. In Arndt Bode, Mike Reeve,

and Gottfried Wolf, editors, Pro
eedings of PARLE '93 � Parallel Ar
hite
tures and Languages Europe, Le
ture

Notes in Computer S
ien
e, pages 379�390, Muni
h, Germany, 1993. Springer-Verlag.

3. B. Grahlmann. The PEP tool. In Pro
eedings of CAV'97, volume 1254 of LNCS, pages 440�443, 1997.

4. H. Klaudel. Compositional high-level Petri net semanti
s of a parallel programming language with pro
edures.

Submitted paper (available on http://).

5. H. Klaudel and F. Pommereau. Asyn
hronous links in the PBC and M-nets. In Advan
es in Computing

S
ien
e � ASIAN'99, volume 1742 of LNCS, pages 190�200. Springer, 1999.

6. H. Klaudel and F. Pommereau. Petri net nemanti
s of abortion, timeout and ex
eptions. Te
hni
al Report

0021, LACL, Université Paris 12, Feb 2000.

