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Abstract. This paper introduces a new semantics for FIFO buffers in a parallel programming
language, B(PN)?. This semantics is given in the algebra of M-nets, which is a process algebra
with a semantics in terms of labelled high-level Petri nets. The proposed semantics makes usage of
newly introduced asynchronous link operator and repairs some drawbacks of the previous semantics:
channels are now fully expressible within the algebra, they are considerably smaller, and they offer
several other advantages.
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B(PN)? [2] is a general purpose parallel programming language provided with features like par-
allel composition, iteration, guarded commands, communications through FIFO buffers (more
usually called channels) or shared variables, procedures [4] and, more recently, real-time exten-
sions with abortable blocks and exceptions [6].

The semantics of B(PN)? is traditionally given in terms of Petri nets, using a low-level nets
algebra called Petri Box Calculus [1] or its high-level version, M-nets []. These two levels are
related by an wunfolding operation which transforms an M-net in a low-level net having an
equivalent behaviour. In this paper, we focus on M-net semantics since it is much more compact
and intuitive.

Using PEP toolkit [3], one may input a B(PN)? program and automatically generate its M-
net semantics for simulation purpose or the low-level unfolded net in order to model-check ones
program against some properties.

The purpose of this paper is to propose a new M-net semantics for channels in B(PN)?2.
This semantics uses asynchronous links capabilities newly introduced in M-nets an Petri Box
Calculus [5]. The proposed semantics has three main advantages: it is completely expressible in

the algebra of M-net, its size (in number of places in the unfolding) is considerably smaller that
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for the existing semantics and finally, it avoids the “availability defect” of the existing semantics
(a message sent to a channel was not immediately available for receiving).
B(PN)? is presented in [| and its M-net semantics is fully developed in [|. In the following, we

focus on the intuition in order to keep the paper compact but as complete as possible.

M-nets primer

M-nets form a class of labelled high-level Petri nets which were introduced in || and are now
widely used as a semantic domain for concurrent systems specifications, programming languages
or protocols []. The most interesting features of M-nets, with respect to other classes of high-level
Petri nets, is their full compositionality, thanks to their algebraic structure. As a consequence,
an M-net is built out of sub-nets with arbitrary “hand-made” nets as base cases.

A place in an M-net is labelled with its type (a set of values) which indicates the tokens it may
hold. (In order to define an algebra over M-nets, each place also has a status in {e,i,x} which
reflects whether it is an entry, an internal or an exit place. This particular point is not crucial for
our purpose.) On the other hand, a transition ¢ is labelled with a triple «(t).8(¢).v(#) where a(t)
contains (synchronous) communication actions, 3(¢) holds (asynchronous) links annotations and
v(t) is a guard which is a condition for allowing or not the firing of ¢. Finally, arcs are simply
labelled by multi-sets of values or variables, indicating what they transport.

When a transition ¢ fires, variables in its annotation and on its surrounding arcs are bound
to values, according to the tokens actually available in its input places and with respect to its
guard (t). Transition ¢ is allowed to fire only if such a coherent binding can be found using
available tokens. When fire occurs, tokens are consumed and produced coherently with respect
to the choosen binding.

M-nets algebra provides various operators for flow control and communications setup as de-
scribed in figure 1. Let us give more details about communications.

Scoping is the normal mean to perform synchronous communications between transitions in
an M-net. Figure 2 gives an illustration of scoping in a trivial case: in M-net N, transition
¢ performs an action A(z) and t» an A(y); the M-net resulting from scoping [A : N] has one
transition #1¢9 which is a mix of #; and ¢9 such that z and y are unified (here to z) in order to

make the communication actual. (z and y may also be constants in which case unification is only
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Ni; N> sequence N runs then N> does

Ni|| N2 parallel composition Ni runs in concurrence with No

Ni[] N2 choice N; or N> runs but not both

[N1 % N> x N3] iteration Ni runs once (initialization), then N> runs zero or more times

(iteration) and finally N3 runs once (termination)
[A: N] scoping sets-up synchronous communications between transitions

N tieb asynchronous links links transitions asynchronously

Fig. 1. Operator on M-nets

e.{e} e.{1,2} ‘ . e.{e}
{A(J:)}.(Z).@ {A(y)}.0.0
x.{e} O

e.{1,2}

M-net N M-net [A : N]

Fig. 2. An example of scoping. (z and y have been unified to x.)

possible when 2 = y.) In a more complex M-net, scoping is performed pairwise, between couples
of transitions such as ¢; and to. In the general case, annotations « are multi-sets of actions.

Asynchronous links are available through links annotations. A transition may export an item
x on a link symbol b thanks to a link b+ (z), such an exported item may be imported later with
a link b~ (y). (Here again, z and y may be constants or variables.) Figure 3 gives an example
of a basic asynchronous communication between two transitions. In a more complex M-net N,
their would be also a single place s;, for all the links on b (there is only one place s, for N tieb
but later, there may be new ones if N tieb is reused in a context with new links on b) and all
the transitions in N with a link b (z) (resp. b (y)) would be attached an arc to (resp. from) sy.
Like for synchronous communication actions, annotations [ are actually multi-sets of links.

In order to give a type to the places added by operator tie, each link symbol b is associated
a type which becomes the type of any place created by an application of tieb.

To conclude on communications, let us add that it is possible to perform synchronous and
asynchronous communications on the same transition. We will see an example of this in the
proposed semantics for channels. Notice also that scoping and asynchronous links being com-

mutative (each one with itself), we use extended notations such as [{A, A’} : N] or N tie {b,b'}.
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e.{1,2} e.{e}
x i.{1,2} °
0.0.0 [t (O]t ]0.0.0
Sb
° Y
x.{e} O x.{1,2}
M-net N M-net N tieb

Fig. 3. An example of asynchronous link (b has type {1,2})

a(t).B(t).v(t)
e.{o} O . [t ] . Ox.{.}

Fig. 4. A simple M-net, denoted by «(t).3(t).v(¢) in this paper.

program ::= program block (main program)
block  ::= begin scope end (block with private declarations)
scope = com (arbitrary command)
| vardecl ; scope (variable or channel declaration)
| procdecl ; scope (procedure declaration)
vardecl ::= var ident set (variable declaration)
| var ident chan k of set (channel declaration)

Fig. 5. A fragment of the syntax of B(PN)? (procdecl and com are not detailed here).

In the following, in order to avoid many figures, we will denote by «(t).5(¢).7(t) an M-net
with a lonely transition ¢ annotated by «(t).8(t).y(t) and having only one input place and one

outpu place, both of type {e} (see figure 4).

B(PN)2 and its M-net semantics

Figure 5 gives a fragment of the syntax of B(PN)?2, semantics is given compositionally and is
guided by syntax: it exists a function Mnet which gives its semantics to each fragment of a
B(PN)? program and whose definition is recursive on the syntax. Base case is either for an
atomic action, giving an M-net like on figure 4 where ¢ would be labelled in order to implement
the action, or a declaration which semantics is given using some special “hand-made” ressource
M-nets (like for channels in next section).

A B(PN)?2 program is basically a block which may start with some declarations (they are
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kept local to the block) and continue with a command (which may contain sub-commands and
possibly nested blocks). Each block may declare its own variables or channels (or procedures): a
variable is named with an identifier ident and takes its value from the set given in its declaration;
a channel is declared similarly but with an additional capacity k, it may be 0 for handshake
communication, k € N for a k-bounded channel or co for an unbounded capacity.

The semantics for such a block is obtained from the semantics of its components: we just put
in parallel the M-net for the command and the M-net for all the declarations; then we scope on
communication actions in order to make the communications between components actual and
private. There is an additional termination net which is added in sequence to the command
and whose goal is to terminate the nets for the declarations: terminating such a net consists in
removing all its tokens in order to make it clean for a possible re-usage. The semantics of any
declared ressource X contains a transition with an action )/{}t which performs the emptying, so
the termination net just consists in a parallel composition of M-nets such as {X;}.0.0.

In the following section, we show and discuss current semantics for a channel declaration.

Existing channels in B(PN)?2

Channels for B(PN)? were proposed in [| with the M-net semantics depicted in figure 6. There is
actually three semantics, depending on capacity k for the channel. Three actions are available for
a block which declares a channel C' (regardless to is capacity): C! for sending, C? for receiving
and é\t for terminating it when the program leaves the block. In order to communicate with
the channel, the M-net wich implements the program carry actions C! or C?. Action Cy can be
found in the associated termination net.

In figure 6, transitions are named coherently on M-nets Ny, N1 and N so, excepted when
specified, the following description is generic.

On transition £y, the first action on the channel can be performed. For Ny this means sending
(with an action C! in the program) and receiving (action C?) on the same transition (it is
handshake communication), the guard ensures that the communication is actual; for Ny and Ny
we just have to put one value in the channel.

Transitions to and #}, are for sending and receiving. In Ny, like for ¢1, both action are performed

on the same transition to. For Ny or Ni, these actions are separated. In N7 we use a value € & set
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e.{o} e.{o}

*/ [u {q?'{(m ), ;’gezf {Cl(a)}0.{weset} [t |

° Yy
D ] T cm (O [ i i @100
. . AT

0.{y<}
N []@r00 [65] @00

M-net N1

{Cl(x)}.

— newlist
{C!(z)}.0.
{size(oldlist)<k,
newlist=oldlist.x}

i 0.0.
oldlist {list=head.tail,

size(head)=1}
list

M-net Ny

Fig. 6. Existing semantics for a channel declaration “var C' chan k of set”. Handshake communication (capacity
k = 0) is shown on the top left, for Kk = 1 we use the M-net on the top right and the M-net of the bottom is for

k > 1, including k = co.

to denote an empty channel, annotations on arcs ensure that one value can be wrote only if place
1 holds value €. The guards ensure that only values in set are stored in the channel and that ¢ is
never read. For Ng, the situation is more complex since the queue that a channel actually stores
is encoded into tokens structured has k-bounded lists. These lists are stored in i; (type set®
contains all sequences of at most k values from set, plus an additional ¢ for the empty sequence).
Transition ¢ty adds one value at the end of the list and there is an additional transition ¢4 whose
goal is to extract the head of the list and to store it in 45 (only if it holds an €); on the other
side, transition #} is like #}, in Nj.
Transitions ¢3 and t5 are for channels termination (whenever they have been used or not).

For N, it is easy to see that the mechanism is quite complex since it requires list manipula-
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tions. And unfortunately, k-bounded channels are certainly the most commonly used... Addi-
tionally, we can point out an important drawback in Ni: the program has to wait for #4 to fire
before it can receive a value which yet has been sent to the channel.

We will see in the following section that these problems are solved in our semantics of channels.

Let us conclude current section with a remark on the unfolding. We already said that any M-
net can be unfolded into a low-level equivalent; it is a labelled place/transition net with the only
available token value being e. As far as places are concerned, the unfolding operation produces
one low-level place for each possible value of each place in the M-net. As a direct consequence,
unfolding M-net Nj leads to 1 + |set|’C places just for i1; the other places unfold in either 1 or
1 + |set| low-level places. So we can state that the number of places in the unfolding of M-net

Ny is O(|set|¥).

A new semantics for channels

First of all, let us eliminate the case of handshake communications: the semantics for this par-

ticular case remains the same. For a channel C, it can be expressed as the following M-net:

({6’:}00) [] [ {Cl(z),C?(y)}.0.{z =y € set} * {Cl(z),C?(y)}.0.{z =y € set} * {6’:}00]

(As explained before, notations as {a}.(b.(b stand for an M-net like on figure 4 with the corre-
sponding label on its transition.)

For bounded non-zero capacities (1 < k < o0), we will use a single M-net, parametrized by k.
In order to avoid lists handling, the stored values are numbered modulus £ and the M-net takes
care to remember the numbers for the next value to send and, separately, the next to receive.

In order to bound capacity, we cannot use a single counter, shared by the sending and receiving
actions, which would count how many values are stored at a given moment: this would forbid
concurrent sendings and receivings since accessing to this counter would be a conflict on a place.
Instead of this, we use a collection of tokens, one for each possible value in the channel, which are
considered as “tickets for sending” or “tickets for receiving”: in order to store a value, a transition
must take a ticket, if none is available, then sending is impossible. Fach send transforms a “ticket
for sending” into a “ticket for receiving” and symmetrically. So when one action (say sending) is

not allowed to fire because of a lack of ticket, it must wait for the other action (here receiving)
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to convert one of its tickets (here it means that the channel is not full anymore). This system
avoids conflicts since the sending transition consumes “tickets for sending” while the receiving
transition does not, and symmetrically.

In the following, we use name K for the set {0,...,k — 1}. The M-net for channels uses
asynchronous links for data storage and values numbering; the following link symbols are use

with the following meaning;:

— ¢ is where numbered data are stored, under the form of couples (v,n) where v is the value
and n its number (we can deduce from this that ¢ must have type set x K);

— nw and nr are used to remember the number for the next value to send or receive (both
have type K);

— tw and tr store tickets for sending or receiving (also of type K).
The complete semantics for a k-bounded channel C' (1 < k < o0) is as follows:
Mnet(var C chan k of set) = [{I,T}: core] tie {c,nw,nr tw,tr}

where I and T are synchronous communication actions used internally. The core of the semantics

can be expressed as two concurrent iteration, one for sends and the other for receives:
core = | init * send x terminate ] H [ wait; * receiwe * waily ]

In this M-net, the sending part can be considered as active and the receiving part as passive:
M-net wasit; just waits for init to be executed and similarly, wait; waits for terminate. The
waiting M-nets can be simply expressed has: wait; = {I}.0.0 and wait, = {T}.0.0.

M-net init is composed of a single transition which fires when the first send takes place.
init = {6’\'(56),[} At ((z,0)), tr™(0), tw' (1), ..., tw' (k- 1), nw"™ (1 mod k), nr*(0)} .0

It stores the value, with number 0, produces all the tickets and initializes “next counters”. It
also triggers M-net wait; thanks to a synchronization on I. (Notation “tw™*(1),...,tw*(k —1)”
is void when £k =1.)
Notice that there is no need to add a guard such as = € set because the type of ¢ ensures it
must be the case. It is the same with send and receive whose definitions are quite natural:
dend = {6’\'(20)} Atw (¢), trt(t), nw (n), nwt(n+ 1modk), ct((z,n))} .0
receive = {é?’(y)} Atr=(t), twT(t), nr~(n), nrT(n+ 1 modk), ¢ ((y,n))} .0
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Termination cannot be done in one single action because we do not know where tickets are
and how many tokens ¢ holds (whenever it has some). This problem is solved by an iteration

wich triggers wait; on starts:

terminate = [{@,T}.@.@ & 0.4tr (1), tw (), ¢ ((y,n))}.0
* {a}.{tw*(O), vy tw (k= 1), nr—(r), nw*(w)}.ﬂ]

(notation “tw(0),...,tw (k —1)” reduces to “tw(0)” when k = 0)

The goal of this iteration is to consume “for free” each value in the channel, and for each such
value, one ticket is converted. When (and only when) all the values are consumed (and so, all
the tickets are converted), iteration may terminate, consuming all the “tickets for sending” and

the “next counters” while synchronizing with the program on a second termination action Cj.

In order to model unbounded capacity, we just have to remove modulus arithmetic on the
“next counters” and to forget the system of tickets (just by removing all the links on tw and #r):
sending is always possible since the capacity is unbounded and receive is controled by its “next
counter” and the availability of data in ¢ (actually, “tickets for receiving” were useless from the

beginning but it was necessary to manage them in a coherent way and so, on receive also).

In this case, we cannot rely on tickets to know if the channel is empty but we can trust “next
counters”: while performing action /C\{, we just have to add a guard r = w which means that the

count of ¢~ (---) equals the count of ¢ (---) and so that the channel is empty.

Now, let us consider the size of the unfolding in the k-bounded case. Here no place is directly
visible since we just gave expressions, but since control flow operators just produce places with
types {®}, it is enough to focus on places added for asynchronous communications. Places for nw,
nr, tw and ¢r have type K so they all unfold into k& low-level places. Place s. for c as type set x K
so it unfolds into |set| x k low-level places. So we can state a total of O ((4 + |set|) - k) which is

a considerable improvement with respect to the exponential size in k for the old semantics.

As a price for this improvement, we now have two termination actions instead of only one. In
the termination net, a channel C' with the old semantics contributed an M-net {C;}.0.0, for our

semantics, we just have to use instead a sequence ({C;}.0.0); ({C1}.0.0).
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Concluding remarks

We can see that the new proposed semantics has several advantages over the old one. First, it
is expressed in the algebra, with no more “hand-made” M-nets. We think that this application
of tie tends to show how it can be useful: it is an efficient way to introduce in an M-net some
places with arbitrary types, without having to use “hand-made” M-nets.

Additionally, there is no complex list management to do and the program does not have to wait
any more before to receive an actually sent value: it is now immediately available. Moreover,
semantics is more homogeneous since exceptions are now for & = 0 and & = oo (instead of
kE =0 and k£ = 1) which we feel to be intrinsically exceptions: a handshake is not a buffered
communication and an unbounded buffer is certainly not realistic.

Finally, unfolding the M-net for a channel now gives a low-level net with O ((4 + |set|) - k)
places while the old semantics unfolded into O(|set|¥) places. This is a great improvement,

especially if we consider the problem of model-checking a B(PN)? program with channels.
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